Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Authors = Yuping Wu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3586 KiB  
Article
Effects of Different Types of Pot-Mat Trays on the Growth of Densely Sown Seedlings and Root Morphology of Machine-Transplanted Rice
by Yuhang Shang, Peng Zhang, Xinling Ma, Xiang Wu, Yulin Chen, Huizhe Chen, Yuping Zhang, Jing Xiang, Yaliang Wang, Zhigang Wang, Yiwen Xu, Xuzhu Zhang and Yikai Zhang
Agronomy 2025, 15(7), 1616; https://doi.org/10.3390/agronomy15071616 - 2 Jul 2025
Viewed by 345
Abstract
Weak seedlings and poor growth uniformity affect the mechanical transplanting of densely sown rice seedlings. To address these issues, seedlings of the conventional japonica rice “Zhehexiang 2” were grown in a traditional flat tray (control), pot-mat tray (26 × 52 bowls; BT(26)), and [...] Read more.
Weak seedlings and poor growth uniformity affect the mechanical transplanting of densely sown rice seedlings. To address these issues, seedlings of the conventional japonica rice “Zhehexiang 2” were grown in a traditional flat tray (control), pot-mat tray (26 × 52 bowls; BT(26)), and pot-mat tray (30 × 58 bowls; BT(30)) to compare the effects of different specifications of pot-mat trays (BTs) on the growth and quality of mechanical transplanting of densely sown rice seedlings with 250 g/tray. The BT-raised seedlings showed improved seedling quality, with increases in the shoot and root dry weights by 7.44% and 20.11%, respectively, compared to the flat tray. Under the dense sowing rate, the plant height uniformity of the BT(26) and BT(30) treatments was significantly increased by 6.95% and 3.43%, and the root entwining force of the seedlings was 14.28% and 10.21% higher, respectively, compared with those of the control. The missing hill rate for BT-raised seedlings after mechanical transplanting was significantly reduced by 53.15%. The loss of roots during mechanical transplanting was reduced. Compared with the control, the root length, root surface area, and root number were increased, and a greater number of large roots were retained, which promoted the early development of seedlings after mechanical transplanting. The proportion of holes with two to five seedlings was higher after mechanical transplanting. The pot-mat tray divided the root growth area of seedlings, promoted the growth of the seedlings, and reduced the root loss and missing hill rate under the high sowing rate. Thus, the quality of mechanical transplanting of densely sown seedlings was improved. Full article
(This article belongs to the Special Issue Rice Cultivation and Physiology)
Show Figures

Figure 1

22 pages, 4798 KiB  
Article
Earthworm (Eisenia fetida) Mediated Macropore Network Formation in Black Soil: Decay Straw as a Trigger for Sustainable Tillage
by Baoguang Wu, Pu Chen, Yuping Liu, Zhipeng Yin, Qiuju Wang, Shun Xu, Jinsong Zhang, Bingqi Bai, Deyi Zhou and Yuxin Liu
Agriculture 2025, 15(13), 1397; https://doi.org/10.3390/agriculture15131397 - 29 Jun 2025
Viewed by 381
Abstract
In this study, a method for creating networked macropores through tillage using Eisenia fetida attracted by food sources derived from decomposing straw was proposed. The effects of Eisenia fetida activity and corn stalk addition, as well as the synergistic effects of Bacillus subtilis [...] Read more.
In this study, a method for creating networked macropores through tillage using Eisenia fetida attracted by food sources derived from decomposing straw was proposed. The effects of Eisenia fetida activity and corn stalk addition, as well as the synergistic effects of Bacillus subtilis, on macropore formation were systematically studied. A 3D visualization technique was used to render the pore network model. When compared with undisturbed soil, the results demonstrate that cultivation using earthworms attracted by food sources from decomposing straw creates a soil pore structure with the most significant effect. The 3D porosity of the soil increased 6.90-fold, its average pore volume increased 5.49-fold, and its equivalent diameter increased 4.88-fold. Cylindrical pores, which accounted for the largest proportion (4.38%), had a channel radius of 1–5 mm and comprised approximately 86.7% of all macropores. The channel length increased by 28.5%, the average roundness decreased by 2.5%, and the average coordination number increased by 33.3%. The macroporous network structure formed by these earthworm-generated pores was more beneficial for improving the structure of phaeozem, offering technical support for the field application of earthworm farming. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 2690 KiB  
Article
Integrated Metabolomics and Proteomics Analyses of the Grain-Filling Process and Differences in the Quality of Tibetan Hulless Barleys
by Yanrong Pang, Yuping Yang, Kaifeng Zheng, Xiaozhuo Wu, Yanfen Zhang, Jinyuan Chen, Guigong Geng, Feng Qiao and Shengcheng Han
Plants 2025, 14(13), 1946; https://doi.org/10.3390/plants14131946 - 25 Jun 2025
Viewed by 424
Abstract
Tibetan hulless barley (qingke) grains are becoming more popular because of their high nutritional benefits. Comparative metabolomics and proteomics analyses of qingke grains (at 16, 20, 36, and 42 days after flowering) were conducted to explore the metabolic dynamics during grain filling and [...] Read more.
Tibetan hulless barley (qingke) grains are becoming more popular because of their high nutritional benefits. Comparative metabolomics and proteomics analyses of qingke grains (at 16, 20, 36, and 42 days after flowering) were conducted to explore the metabolic dynamics during grain filling and compare the differences in quality among three different varieties, Dulihuang, Kunlun 14, and Heilaoya. A total of 728 metabolites and 4864 proteins were identified. We first found that both the metabolite and protein profiles were more closely associated with the grain developmental stage in each cultivar than across different stages in a single cultivar. Next, we focused on the energy metabolism and biosynthesis pathways of key quality components, such as flavonoids, starch, and β-glucans in qingke grains. Quantitative analysis revealed significant variation in the abundance of cellulose synthase-like enzyme (CslF) among the three cultivars. Notably, Heilaoya displayed substantially lower CslF6 levels at 36 and 42 DAF than Kunlun 14 and Dulihuang did. These observed differences in CslF6 abundance may represent a key regulatory mechanism underlying the distinct β-glucan biosynthesis patterns among the three cultivars. Collectively, our results enhance the understanding of metabolic networks involved in qingke grain development and serve as a foundation for advancing breeding studies. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

31 pages, 2695 KiB  
Article
Multidimensional Risk Assessment in Sustainable Coal Supply Chains for China’s Low-Carbon Transition: An AHP-FCE Framework
by Yang Zhou, Ming Guo, Junfang Hao, Wanqiang Xu and Yuping Wu
Sustainability 2025, 17(13), 5689; https://doi.org/10.3390/su17135689 - 20 Jun 2025
Viewed by 600
Abstract
Driven by the global energy transition and the pursuit of “dual carbon” goals, sustainability risks within the coal supply chain have emerged as a central obstacle impeding the low-carbon transformation of high-carbon industries. To address the critical gap in systematic and multidimensional risk [...] Read more.
Driven by the global energy transition and the pursuit of “dual carbon” goals, sustainability risks within the coal supply chain have emerged as a central obstacle impeding the low-carbon transformation of high-carbon industries. To address the critical gap in systematic and multidimensional risk assessments for coal supply chains, this study proposes a hybrid framework that integrates the analytic hierarchy process (AHP) with the fuzzy comprehensive evaluation (FCE) method. Utilizing the Delphi method and the coefficient of variation technique, this study develops a risk assessment system encompassing eight primary criteria and forty sub-criteria. These indicators cover economic, operational safety, ecological and environmental, management policy, demand, sustainable supply, information technology, and social risks. An empirical analysis is conducted, using a prominent Chinese coal enterprise as a case study. The findings demonstrate that the overall risk level of the enterprise is “moderate”, with demand risk, information technology risk, and social risk ranking as the top three concerns. This underscores the substantial impact of accelerated energy substitution, digital system vulnerabilities, and stakeholder conflicts on supply chain resilience. Further analysis elucidates the transmission mechanisms of critical risk nodes, including financing constraints, equipment modernization delays, and deficiencies in end-of-pipe governance. Targeted strategies are proposed, such as constructing a diversified financing matrix, developing a blockchain-based data-sharing platform, and establishing a community co-governance mechanism. These measures offer scientific decision-making support for the coal industry’s efforts to balance “ensuring supply” with “reducing carbon emissions”, and provide a replicable risk assessment paradigm for the sustainable transformation of global high-carbon supply chains. Full article
Show Figures

Figure 1

18 pages, 5056 KiB  
Article
Research into the Mechanical Tillage Regulation Mechanisms of the Soil Structure in Black Soil Paddy Fields
by Qiuju Wang, Bingqi Bai, Yuping Liu, Baoguang Wu, Jingyang Li and Jiahe Zou
Agriculture 2025, 15(11), 1145; https://doi.org/10.3390/agriculture15111145 - 26 May 2025
Viewed by 381
Abstract
This study investigated the impact of the response mechanism of tillage construction on paddy yield in black soil fields by adopting four mechanical tillage techniques, namely, rotary tillage (RT), shallow plowing (SP), deep plowing (DP), and culvert pipe drainage (CD), to solve the [...] Read more.
This study investigated the impact of the response mechanism of tillage construction on paddy yield in black soil fields by adopting four mechanical tillage techniques, namely, rotary tillage (RT), shallow plowing (SP), deep plowing (DP), and culvert pipe drainage (CD), to solve the problems associated with the reduction in the effective tillage layer in black soil paddy fields, as well as the poor quality and low yield of paddy rice. The results showed that SP, DP, and CD techniques were able to increase the rice yield and improve the effective tillage layer of the soil and the soil structure. Among them, DP had the most obvious effect, compared with traditional RT; the fast-acting N was 37.27 mg/kg higher in the 20–30 cm soil layer, and the soil solid phase decreased by 1.86–3.90% in the soil tripartite ratio. The soil bulk density of DP in the 10–20 cm soil layer decreased by 0.08 g/cm3, and, in the 20–30 cm soil layer, it decreased by 0.03 g/cm3. These physicochemical properties promoted the development and growth of roots and increased the growth of the root system by 6.53–16.33%, with the yield also increased by up to 9.81%. The CD technique could improve paddy field drainage and increase crop yields. This study combines four mechanical tillage techniques and proposes a mechanism of tillage construction from soil structure improvement to soil physicochemical property enhancement, and then to root system and yield enhancement. This mechanism may help to guide the implementation of mechanical tillage methods in paddy fields, which will provide important insights for future agricultural practices. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

16 pages, 2452 KiB  
Article
Impact of Deficit Irrigation During Pre-Ripening Stages on Jujube (Ziziphus jujube Mill.‘Jing39’) Fruit-Soluble Solids Content and Cracking
by Yang Wu, Zhi Zhao, Yuping Zhang, Dongye Lu and Qinghua Pan
Horticulturae 2025, 11(5), 461; https://doi.org/10.3390/horticulturae11050461 - 25 Apr 2025
Viewed by 456
Abstract
A field experiment was conducted in 2023 and 2024 in Beijing, China, to investigate effects of soil water stress, applied before the fruit ripening stage, on the fruit total soluble solid accumulation and cracking of jujube trees. The experiment consisted of two variation [...] Read more.
A field experiment was conducted in 2023 and 2024 in Beijing, China, to investigate effects of soil water stress, applied before the fruit ripening stage, on the fruit total soluble solid accumulation and cracking of jujube trees. The experiment consisted of two variation factors: (a) irrigation levels (MDI and SDI, applied 80% and 50% of the irrigation volume, respectively) and (b) growth stages (stage 1, before the fruit enlargement stage, and 2, before the fruit ripening stage). The two irrigation levels were applied at each growth stage in a 2 × 2 factorial arrangement, plus a control treatment receiving 100% irrigation volume, resulting in five treatments per replicate. The findings indicated that pre-enlargement stage water stress enhanced the accumulation of total soluble solid content within fruits, which subsequently promoted faster fruit growth in from the early- to mid-August period. However, by late August, both the total soluble solid content and fruit growth rates had declined, thereby mitigating the risk of fruit cracking. During the fruit enlargement stage, the fruit total soluble solid content in SDI-2 increased by approximately 24% by the end of August compared to the control, leading to lower osmotic potential and higher turgor pressure during the following ripening stage. As skin growth ceased, high turgor pressure caused fruit cracking at the following ripening stage. The SDI-2 treatment demonstrated a fruit cracking rate approximately 1.5 times higher than that of the control. Pearson correlation analysis also indicated that fruit cracking was positively correlated with total soluble solids accumulated in August. Meanwhile, the yield of SDI-2 was reduced about 18%. Therefore, the adequate soil moisture during the fruit enlargement stage was crucial to minimize jujube fruit cracking and economic losses. Meanwhile, the deficit irrigation applied during the pre-enlargement stage could effectively conserve water resources and mitigate the occurrence of extensive jujube fruit cracking. Full article
(This article belongs to the Special Issue Orchard Management: Strategies for Yield and Quality)
Show Figures

Figure 1

26 pages, 20476 KiB  
Article
Transcriptomic and Metabolomic Insights into Plant Hormone Modulation and Secondary Metabolite Accumulation in Basil Under Far-Red and Ultraviolet-A Light
by Dandan Li, Haibin Shen, Lishu Yu, Kaili Zhu, Yongxue Zhang, Shaofang Wu, Liying Chang, Xiaotao Ding and Yuping Jiang
Int. J. Mol. Sci. 2025, 26(8), 3758; https://doi.org/10.3390/ijms26083758 - 16 Apr 2025
Cited by 1 | Viewed by 617
Abstract
In this study, red–blue light (7R3B) was used as the control (CK), while far-red (FR) and ultraviolet-A (UVA) light were supplemented to evaluate their effects on basil growth. The results showed that the FR treatment promoted plant height, stem diameter, and biomass, but [...] Read more.
In this study, red–blue light (7R3B) was used as the control (CK), while far-red (FR) and ultraviolet-A (UVA) light were supplemented to evaluate their effects on basil growth. The results showed that the FR treatment promoted plant height, stem diameter, and biomass, but reduced chlorophyll and carotenoid content, while the UVA treatment increased stem diameter and chlorophyll b content. Meanwhile, transcriptomic and metabolomic analyses were employed to examine changes in gene expression and metabolite accumulation in basil. The FR treatment reduced the levels of differentially accumulated metabolites (DAMs) in the carotenoid biosynthesis pathway, potentially contributing to the observed decrease in chlorophyll. The FR treatment upregulated the levels of five DAMs (gibberellin, cytokinin, brassinosteroid, jasmonic acid, and salicylic acid) and altered the differentially expressed genes (DEGs) such as gibberellin receptor (GID1) and jasmonate ZIM domain-containing protein (JAZ) in the plant hormone signal transduction pathway, thereby promoting plant growth and shade avoidance responses. The UVA treatment upregulated the 9-cis-epoxycarotenoid dioxygenase (NCED) expression in the carotenoid biosynthesis pathway, possibly indirectly promoting flavonoid synthesis. In the flavonoid biosynthesis pathway, the UVA treatment also promoted flavonoid accumulation by upregulating DEGs including flavonol synthase (FLS), anthocyanidin synthase (ANS), 5-O-(4-coumaroyl)-D-quinate 3′-monooxygenase (CYP98A), and flavanone 7-O-glucoside 2″-O-beta-L-rhamnosyltransferase (C12RT1), as well as increasing the levels of DAMs such as kaempferol, luteolin, apigenin, and leucopelargonidin. The accumulation of flavonoids improved antioxidant capacity and nutritional value in basil. Through a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, this study provided valuable insights into the molecular and metabolic mechanisms of the FR and UVA regulation of basil growth, providing guidance for optimizing supplementary lighting strategies in plant factories. Full article
Show Figures

Figure 1

25 pages, 5858 KiB  
Article
Research on the Temporal and Spatial Distribution of Marginal Abatement Costs of Carbon Emissions in the Logistics Industry and Its Influencing Factors
by Yuping Wu, Bohui Du, Chuanyang Xu, Shibo Wei, Jinghua Yang and Yipeng Zhao
Sustainability 2025, 17(7), 2839; https://doi.org/10.3390/su17072839 - 22 Mar 2025
Cited by 1 | Viewed by 475
Abstract
While existing research has focused on logistics carbon emissions, understanding spatiotemporal emission cost dynamics and drivers remains limited. This study bridges three gaps through methodological advances: (1) Applying the Non-Radial Directional Distance Function (NDDF) to measure Marginal Carbon Abatement Costs (MCAC), overcoming traditional [...] Read more.
While existing research has focused on logistics carbon emissions, understanding spatiotemporal emission cost dynamics and drivers remains limited. This study bridges three gaps through methodological advances: (1) Applying the Non-Radial Directional Distance Function (NDDF) to measure Marginal Carbon Abatement Costs (MCAC), overcoming traditional Data Envelopment Analysis (DEA) model’s proportional adjustment constraints for provincial heterogeneity; (2) Pioneering dual-dimensional MCAC analysis integrating temporal trends (2013–2022) with spatial autocorrelation; and (3) Developing a spatial Durbin error model with time-fixed effects capturing direct/indirect impacts of innovation and infrastructure. Based on provincial data from 2013–2022, our findings demonstrate a U-shaped temporal trajectory of MCAC with the index fluctuating between 0.3483 and 0.4655, alongside significant spatial heterogeneity following an Eastern > Central > Northeastern > Western pattern. The identification of persistent high-high/low-low clusters through local Moran’s I analysis provides new evidence of spatial dependence in emission reduction costs, with these polarized clusters consistently comprising 70% of Chinese cities throughout the study period. Notably, the spatial econometric results reveal that foreign investment and logistics infrastructure exert competitive spillover effects, paradoxically increasing neighboring regions’ MCAC, a previously undocumented phenomenon in sustainability literature. These methodological advancements and empirical insights establish a novel framework for spatial cost allocation in emission reduction planning. Full article
(This article belongs to the Collection Air Pollution Control and Sustainable Development)
Show Figures

Figure 1

28 pages, 3061 KiB  
Article
Research on Spatial and Temporal Divergence and Influencing Factors of the Coal Industry Transformation and Development Under Energy Security and Dual-Carbon Target
by Guanghua Zheng, Yifan He, Zhaohan Lu and Yuping Wu
Sustainability 2025, 17(6), 2709; https://doi.org/10.3390/su17062709 - 19 Mar 2025
Viewed by 514
Abstract
To achieve the “dual-carbon” target and ensure energy security, there is an urgent need to promote the transformation of the energy system, of which the coal industry is the main battlefield. In order to study the spatial and temporal characteristics and influencing factors [...] Read more.
To achieve the “dual-carbon” target and ensure energy security, there is an urgent need to promote the transformation of the energy system, of which the coal industry is the main battlefield. In order to study the spatial and temporal characteristics and influencing factors of the coal industry transformation and development (CITD), this article establishes an evaluation index system for the transformation and development of the coal industry, including 17 indicators in six dimensions. The projection pursuit (PP) model, which relies on the Real Coded Accelerating Genetic Algorithm (RAGA), is applied to assess the CITD index in 23 Chinese provinces between 2011 and 2021. The findings indicate that (1) the CITD index in China as a whole shows an upward trend, and the regional differences are more obvious, in the following order: eastern, central, and western. (2) There is striking spatial autocorrelation in the CITD in China, and the CITD in this region has a striking spatial spillover effect on the neighboring regions. (3) Human capital, foreign direct investment level, and employment density are positively correlated with CITD, while industrial development level and government intervention extent are negatively correlated with it. Policymakers should incorporate the findings of the study and formulate targeted policies to provide ideas for fueling the transformational development of the coal industry. Full article
Show Figures

Figure 1

17 pages, 3639 KiB  
Article
Lycorine Pre-Treatment Alleviates Microglia Inflammation After Cerebral Ischemia by Inhibiting NF-κB Phosphorylation
by Wuyan Zheng, Wanyu Wu, Yuhan Li, Bo Qin, Yuping Wang, Yunhan Zeng, Betty Yuen Kwan Law and Vincent Kam Wai Wong
Brain Sci. 2025, 15(3), 290; https://doi.org/10.3390/brainsci15030290 - 9 Mar 2025
Cited by 1 | Viewed by 1333
Abstract
Background: Middle-aged and elderly individuals may experience detrimental health effects due to ischemic stroke (IS). The inflammatory response triggered during IS exacerbates neuronal damage, becoming a barrier to effective IS treatment and leading to poor patient prognosis. Nevertheless, the specific role of microglia [...] Read more.
Background: Middle-aged and elderly individuals may experience detrimental health effects due to ischemic stroke (IS). The inflammatory response triggered during IS exacerbates neuronal damage, becoming a barrier to effective IS treatment and leading to poor patient prognosis. Nevertheless, the specific role of microglia in the inflammatory response triggered by IS remains mostly unclear. The primary target of this investigation is to study the neuroinflammatory impact of lycorine (LYC) during the IS process. Our objective is to evaluate whether LYC deploys its anti-inflammatory effect with modulation of the NF-κB signaling pathway, thereby reducing IS symptoms. Methods: In this research, BV-2 cells were pre-treated with LYC for 24 h before LPS was added to induce inflammation. Results: It has been discovered that LYC suppresses BV-2 cell polarization and reduces the levels of inflammatory cytokines (IL-1β, IL-6, TNF-α), showing its potential anti-inflammatory effects in vitro. Furthermore, IκBα and p65 play crucial roles in regulating the inflammatory response within the NF-κB signaling pathway. Mechanistic exploration indicates that LYC can activate the expression of IκBα in LPS-induced BV-2 cells. IκBα inhibits NF-κB by binding to its p65 subunit, sequestering it in the cytoplasm and preventing its translocation to the nucleus, thereby inhibiting inflammation. Additionally, p65 is a key transcription factor for pro-inflammatory genes, and its downregulation leads to decreased transcriptional activity of these genes. The combined effect of increased IκBα and decreased p65 results in significantly reduced NF-κB activity, thereby alleviating the inflammatory response. Meanwhile, in vivo studies indicate that LYC pre-treatment significantly reduces the infarct size caused by middle cerebral artery occlusion (MCAO) in rats. The assessment of cerebral infarction volume, neurological scores, brain edema rate and inflammation levels in MCAO rats pre-treated with LYC indicates positive therapeutic effects. Conclusions: In summary, our research indicates that LYC pre-treatment has significant anti-inflammatory effects by attenuating inflammation levels through NF-κB inhibition, which contributes to potential therapeutic benefits in ischemic stroke (IS) and may improve disease prognosis. LYC may serve as an adjunctive clinical pre-treatment for IS, which has to be confirmed by clinical trials in the future. Full article
(This article belongs to the Special Issue The Role of Glia in Inflammatory Processes)
Show Figures

Figure 1

17 pages, 13385 KiB  
Article
Exserohilum turcicum Alters Phyllosphere Microbiome Diversity and Functions—Implications for Plant Health Management
by Shengqian Chao, Yifan Chen, Jiandong Wu, Yin Zhang, Lili Song, Peng Li, Yu Sun, Yingxiong Hu, Hui Wang, Yuping Jiang and Beibei Lv
Microorganisms 2025, 13(3), 524; https://doi.org/10.3390/microorganisms13030524 - 27 Feb 2025
Cited by 1 | Viewed by 686
Abstract
The phyllosphere represents the largest biological surface on Earth and serves as an untapped reservoir of functional microbiota. The phyllosphere microbiome has the potential to mitigate plant diseases; however, limited information exists regarding its role in maintaining plant health. In this study, metagenomic [...] Read more.
The phyllosphere represents the largest biological surface on Earth and serves as an untapped reservoir of functional microbiota. The phyllosphere microbiome has the potential to mitigate plant diseases; however, limited information exists regarding its role in maintaining plant health. In this study, metagenomic sequencing was employed to analyze the microbiomes of the adaxial and abaxial leaf surfaces of healthy (CKWT) and diseased (EWT) maize, with the aim of dissecting the influence of Exserohilum turcicum on phyllosphere microbiome function. E. turcicum altered the alpha and beta diversity of the phyllosphere microbiome, with the Shannon diversity and Chao1 index values significantly reduced in EWT. More beneficial microbes accumulated in the CKWT phyllosphere, whereas pathogenic microbes decreased. E. turcicum may have altered the balance between commensal and pathogenic microorganisms. The species and abundances of microorganisms on the two sets of leaf surfaces were also altered after inoculation with E. turcicum. Further analysis of disease-resistance-related metabolic pathways and abundances of antibiotic-resistance genes revealed that E. turcicum altered the abundance of the functional microbiome and modified the microbiome differences between adaxial and abaxial leaf surfaces. In conclusion, the results reveal that microbial diversity in the maize phyllosphere can influence the microbiome and regulate microbial functions to support plant health. These findings enhance our understanding of how E. turcicum affects the phyllosphere microbiome and provide a theoretical basis for biological control of E. turcicum. Full article
Show Figures

Figure 1

19 pages, 12739 KiB  
Article
Bioremediation of Sulfamethazine Contaminated Environments by Bacillus cereus J2
by Jiayu Zhang, Yuping Tang, Zhaokang Li, Tianyu Li, Xinfeng Zhao and Zihao Wu
Water 2025, 17(4), 468; https://doi.org/10.3390/w17040468 - 7 Feb 2025
Cited by 1 | Viewed by 1234
Abstract
Sulfamethazine (SM2), a prevalent sulfonamide antibiotic, is commonly detected as an environmental pollutant. Microbial degradation serves as an important approach to treating SM2 contamination. In this study, an SM2-degrading strain, identified as Bacillus cereus J2, was isolated from the activated sludge that had [...] Read more.
Sulfamethazine (SM2), a prevalent sulfonamide antibiotic, is commonly detected as an environmental pollutant. Microbial degradation serves as an important approach to treating SM2 contamination. In this study, an SM2-degrading strain, identified as Bacillus cereus J2, was isolated from the activated sludge that had been cultured using SM2 as the exclusive carbon source, which demonstrated exceptional degradation capabilities. Under optimized conditions (30 °C, initial OD600 = 0.1, pH = 8), strain J2 completely degraded 50 mg/L SM2 within 36 h. The strain also showed high degradation efficiency for other sulfonamides, such as sulfamethoxazole and sulfadiazine, and could grow normally in a mixed system containing these compounds. The growth kinetics with SM2 as the exclusive carbon source conformed well to the Haldane model (R2 = 0.925), revealing that the strain’s maximum specific growth rate was determined to be 0.066 h−1max) at an initial SM2 concentration of 51.35 mg/L. Seven intermediate degradation products were identified using TQ-LCMS analysis, suggesting three potential degradation pathways for SM2. These findings suggest that Bacillus cereus J2 holds significant promise for the bioremediation of SM2-contaminated environments. Full article
Show Figures

Figure 1

15 pages, 5281 KiB  
Article
State of Health Estimation for Lithium-Ion Batteries Using Enhanced Whale Optimization Algorithm for Feature Selection and Support Vector Regression Model
by Rui Wang, Xikang Xu, Qi Zhou, Jingtao Zhang, Jing Wang, Jilei Ye and Yuping Wu
Processes 2025, 13(1), 158; https://doi.org/10.3390/pr13010158 - 8 Jan 2025
Cited by 2 | Viewed by 1024
Abstract
Evaluating the state of health (SOH) of lithium-ion batteries (LIBs) is essential for their safe deployment and the advancement of electric vehicles (EVs). Existing machine learning methods face challenges in the automation and effectiveness of feature extraction, necessitating improved computational efficiency. To address [...] Read more.
Evaluating the state of health (SOH) of lithium-ion batteries (LIBs) is essential for their safe deployment and the advancement of electric vehicles (EVs). Existing machine learning methods face challenges in the automation and effectiveness of feature extraction, necessitating improved computational efficiency. To address this issue, we propose a collaborative approach integrating an enhanced whale optimization algorithm (EWOA) for feature selection and a lightweight support vector regression (SVR) model for SOH estimation. Key features are extracted from charging voltage, current, temperature, and incremental capacity (IC) curves. The EWOA selects features by initially assigning weights based on importance scores from a random forest model. Gaussian noise increases population diversity, while a dynamic threshold method optimizes the selection process, preventing local optima. The selected features construct the SVR model for SOH estimation. This method is validated using four aging datasets from the NASA database, conducting 50 prediction experiments per battery. The results indicate optimal average absolute error (MAE) and root mean square error (RMSE) within 0.41% and 0.71%, respectively, with average errors below 1% and 1.3%. This method enhances automation and accuracy in feature selection while ensuring efficient SOH estimation, providing valuable insights for practical LIB applications. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 8251 KiB  
Article
Effects of Far-Red Light and Ultraviolet Light-A on Growth, Photosynthesis, Transcriptome, and Metabolome of Mint (Mentha haplocalyx Briq.)
by Lishu Yu, Lijun Bu, Dandan Li, Kaili Zhu, Yongxue Zhang, Shaofang Wu, Liying Chang, Xiaotao Ding and Yuping Jiang
Plants 2024, 13(24), 3495; https://doi.org/10.3390/plants13243495 - 14 Dec 2024
Cited by 2 | Viewed by 1458
Abstract
To investigate the effects of different light qualities on the growth, photosynthesis, transcriptome, and metabolome of mint, three treatments were designed: (1) 7R3B (70% red light and 30% blue light, CK); (2) 7R3B+ far-red light (FR); (3) 7R3B+ ultraviolet light A (UVA). The [...] Read more.
To investigate the effects of different light qualities on the growth, photosynthesis, transcriptome, and metabolome of mint, three treatments were designed: (1) 7R3B (70% red light and 30% blue light, CK); (2) 7R3B+ far-red light (FR); (3) 7R3B+ ultraviolet light A (UVA). The results showed that supplemental FR significantly promoted the growth and photosynthesis of mint, as evidenced by the increase in plant height, plant width, biomass, effective quantum yield of PSII photochemistry (Fv’/Fm’), maximal quantum yield of PSII (Fv/Fm), and performance index (PI). UVA and CK exhibited minimal differences. Transcriptomic and metabolomic analysis indicated that a total of 788 differentially expressed genes (DEGs) and 2291 differential accumulated metabolites (DAMs) were identified under FR treatment, mainly related to plant hormone signal transduction, phenylpropanoid biosynthesis, and flavonoid biosynthesis. FR also promoted the accumulation of phenylalanine, sinapyl alcohol, methylchavicol, and anethole in the phenylpropanoid biosynthesis pathway, and increased the levels of luteolin and leucocyanidin in the flavonoid biosynthesis pathway, which may perhaps be applied in practical production to promote the natural antibacterial and antioxidant properties of mint. An appropriate increase in FR radiation might alter transcript reprogramming and redirect metabolic flux in mint, subsequently regulating its growth and secondary metabolism. Our study uncovered the regulation of FR and UVA treatments on mint in terms of growth, physiology, transcriptome, and metabolome, providing reference for the cultivation of mint and other horticultural plants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

19 pages, 4245 KiB  
Article
Photoperiodic Effect on Growth, Photosynthesis, Mineral Elements, and Metabolome of Tomato Seedlings in a Plant Factory
by Shaofang Wu, Rongguang Li, Chongxing Bu, Cuifang Zhu, Chen Miao, Yongxue Zhang, Jiawei Cui, Yuping Jiang and Xiaotao Ding
Plants 2024, 13(22), 3119; https://doi.org/10.3390/plants13223119 - 5 Nov 2024
Cited by 5 | Viewed by 2931
Abstract
The duration of light exposure is a crucial environmental factor that regulates various physiological processes in plants, with optimal timing differing between species and varieties. To assess the effect of photoperiods on the growth and metabolites of a specific truss tomato cultivar, three [...] Read more.
The duration of light exposure is a crucial environmental factor that regulates various physiological processes in plants, with optimal timing differing between species and varieties. To assess the effect of photoperiods on the growth and metabolites of a specific truss tomato cultivar, three photoperiods (12 h, 16 h, and 20 h) were tested in a plant factory. Growth parameters, including plant height, stem diameter, fresh and dry weights of shoots and roots, photosynthetic characteristics, mineral content, and metabolome profiles, were analyzed under these conditions. The results indicated that prolonged light exposure enhanced plant growth, with the highest photosynthesis and chlorophyll content observed under a 20 h photoperiod. However, no significant correlation was observed between the photoperiod and the mineral element content, particularly for macro minerals. Metabolome analysis revealed that different photoperiods influenced the accumulation of metabolites, particularly in the lipid metabolism, amino acid metabolism, and membrane transport pathways. Long periods of light would enhance photosynthesis and metabolism, improving the rapid growth of tomato seedlings. Overall, this study provides a theoretical basis for understanding the responses of truss tomato cultivars to varying photoperiods in plant factories and proposes an optimizable method for accelerating the progress of tomato seedling cultivation. Full article
Show Figures

Figure 1

Back to TopTop