Impact of Deficit Irrigation During Pre-Ripening Stages on Jujube (Ziziphus jujube Mill.‘Jing39’) Fruit-Soluble Solids Content and Cracking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of Study Area
2.2. Experimental Design
2.3. Measurements
2.4. Data Analysis
3. Results
3.1. The Soil Water Status
3.2. The Shoot Growth, Fruit Growth, and Yield
3.3. The Accumulation of Fruit Total Soluble Solids
3.4. The Fruit Cracking
4. Discussion
4.1. The Effects of Deficit Irrigation on the Shoot and Fruit Growth of Jujube Trees
4.2. The Effects of Deficit Irrigation on the Accumulation of Total Soluble Solids in Jujube Fruits
4.3. The Effects of Deficit Irrigation on the Final Fruit Cracking
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, W.; Kang, J.; Liu, Y.; Guo, M.; Chen, G. Effect of salicylic acid treatment on antioxidant capacity and endogenous hormones in winter jujube during shelf life. Food Chem. 2022, 397, 133788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, C.; Wu, C.; Kou, X.; Xue, Z. Storage quality prediction of winter jujube based on particle swarm optimization-backpropagation-artificial neural network (PSO-BP-ANN). Sci. Hortic. 2024, 331, 112789. [Google Scholar] [CrossRef]
- Du, X.; Jiang, F.; Li, S.; Xu, N.; Li, D.; Wu, C. Design and experiment of vibratory harvesting mechanism for Chinese hickory nuts based on orthogonal eccentric masses. Comput. Electron. Agric. 2019, 156, 178–186. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, Z.; Yu, C.; Feng, J.; Qiao, Y. Vibration response characteristics of Jujube trees based on finite element method and structure-from-motion. Sci. Hortic. 2024, 331, 113125. [Google Scholar] [CrossRef]
- Guo, Y.; Shan, G. The Chinese Jujube; Shanghai Scientific and Technical Publishers: Shanghai, China, 2010. [Google Scholar]
- Measham, P. Rain-Induced Fruit Cracking in Sweet Cherry (Prunus avium L.); School of Agricultural Science, University of Tasmania: Tasmania, Australia, 2011; p. 170. [Google Scholar]
- Meland, M.; Kaiser, C.; Christensen, J.M. Physical and chemical methods to avoid fruit cracking in cherry. AgroLife Sci. J. 2014, 3, 177–183. [Google Scholar]
- Hua, Y.; Song, Y.; Li, J.; Tian, C.; Zhou, X.G.; Li, L. A proposed systemic modeling software for jujube fruit cracking. Am. J. Plant Sci. 2015, 6, 565–573. [Google Scholar] [CrossRef]
- Ozturk, B.; Bektas, E.; Aglar, E.; Karakaya, O.; Gun, S. Cracking and quality attributes of jujube fruits as affected by covering and pre-harvest Parka and GA3 treatments. Sci. Hortic. 2018, 240, 65–71. [Google Scholar] [CrossRef]
- Clarke, S.J.; Hardie, W.J.; Rogiers, S.Y. Changes in susceptibility of grape berries to splitting are related to impaired osmotic water uptake associated with losses in cell vitality. Aust. J. Grape Wine Res. 2010, 16, 469–476. [Google Scholar] [CrossRef]
- Gülșen, Y.; Dumanoğlu, H.; Kunter, B. Fruit cracking in some turkish apricot cultivars. Acta Hortic. 1995, 384, 277–282. [Google Scholar] [CrossRef]
- Zuzunaga-Rosas, J.; González-Orenga, S.; Calone, R.; Rodríguez-Heredia, R.; Asaff-Torres, A.; Boscaiu, M.; Ibáñez-Asensio, S.; Moreno-Ramón, H.; Vicente, O. Use of a biostimulant to mitigate the effects of excess salinity in soil and irrigation water in tomato plants. Plants 2023, 12, 1190. [Google Scholar] [CrossRef]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Khizar, C.; Reddy, S.P.P. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef]
- Christensen, J.V. Rain-induced cracking of sweet cherries: Its causes and prevention. In Cherries: Crop Physiology, Production and Uses; Webster, A.D., Looney, N.E., Eds.; CAB International: Wallingford, UK, 1996; pp. 297–327. [Google Scholar]
- Richardson, D.G. Rain-cracking of ‘Royal Ann’ sweet cherries: Fruit physiological relationships, water temperature, orchard treatments, and cracking index. Acta Hortic. 1998, 468, 677–682. [Google Scholar] [CrossRef]
- Correia, S.; Schouten, R.; Silva, A.P.; GonçalveS, B. Sweet cherry fruit cracking mechanisms and prevention strategies: A review. Sci. Hortic. 2018, 240, 369–377. [Google Scholar] [CrossRef]
- de Lima, R.S.N.; de Assis Figueiredo, F.A.M.M.; Martins, A.O.; da Silva de Deus, B.C.; Ferraz, T.M.; de Assis Gomes, M.M.; de Sousa, E.F.; Glenn, D.M.; Campostrini, E. Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) effects on stomatal conductance, growth, photosynthetic capacity, and water-use efficiency of papaya. Sci. Hortic. 2015, 183, 13–22. [Google Scholar] [CrossRef]
- Çolak, Y.B.; Yazar, A. Evaluation of crop water stress index on Royal table grape variety under partial root drying and conventional deficit irrigation regimes in the Mediterranean Region. Sci. Hortic. 2017, 224, 384–394. [Google Scholar] [CrossRef]
- Mossad, A.; Scalisi, A.; Lo Bianco, R. Growth and water relations of field-grown ‘Valencia’ orange trees under long-term partial rootzone drying. Irrig. Sci. 2018, 36, 9–24. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Wang, Y.; Tao, H.; Fan, J.; Zhao, Z.; Guo, Y. Effects of soil water stress on fruit yield, quality and their relationship with sugar metabolism in ‘Gala’ apple. Sci. Hortic. 2019, 258, 108753. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Z.; Wang, W.; Ma, Y.; Huang, X. Yield and growth of mature pear trees under water deficit during slow fruit growth stages in sparse planting orchard. Sci. Hortic. 2013, 164, 189–195. [Google Scholar] [CrossRef]
- Francaviglia, D.; Farina, V.; Avellone, G.; Bianco, R.L. Fruit yield and quality responses of apple cvars Gala and Fuji to partial rootzone drying under Mediterranean conditions. J. Agric. Sci. 2013, 151, 556–569. [Google Scholar] [CrossRef]
- Arji, I.; Hassany, B.; Ghamarnia, H. The effects of water stress on apple qualities and quantities (Golden delicious variety). J. Hortic. Sci. 2016, 29, 610–620. [Google Scholar]
- Chen, J.; Duan, Y.; Hu, Y.; Li, W.; Sun, D.; Hu, H.; Xie, J. Transcriptome analysis of atemoya pericarp elucidates the role of polysaccharide metabolism in fruit ripening and cracking after harvest. BMC Plant Biol. 2019, 19, 219. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhu, M.; Wang, M.; Tang, W.; Wu, S.; Zhang, K.; Yang, G. Effect of nordihydroguaiaretic acid on grape berry cracking. Sci. Hortic. 2020, 261, 108979. [Google Scholar] [CrossRef]
- Christensen, J.V. Cracking in Cherries: IV. Physiological Studies of the Mechanism of Cracking. Acta Agric. Scand. 1972, 22, 153–162. [Google Scholar] [CrossRef]
- Sekse, L.; Bjerke, K.L.; Vangdal, E. Fruit cracking in sweet cherries-an integrated approach. In Proceedings of the IV International Cherry Symposium, Richland, WA, USA, 24–29 June 2001; pp. 471–474. [Google Scholar]
- Measham, P.F.; Bound, A.; Gracie, J.; Wilson, S.J. Incidence and type of cracking in sweet cherry (Prunus avium L.) are affected by genotype and season. Crop Pasture Sci. 2009, 60, 1002–1008. [Google Scholar] [CrossRef]
- Simon, G.; Hajagos, A.; Ghasemi, S.; Végvári, G. Fruit quality analysis of two new promising Hungarian sweet cherry (Prunus avium L.) cultivars on different rootstocks. Acta Aliment. 2012, 41, 180–186. [Google Scholar] [CrossRef]
- Considine, J.A. Physical aspects of fruit growth: Cuticular fracture and fracture patterns in relation to fruit structure in Vitis vinifera. J. Hortic. Sci. 1982, 57, 79–91. [Google Scholar] [CrossRef]
- Zhang, W.; Song, P.; Li, G.; Wang, E.; Lv, Z.; Zhang, Y.; Zhang, Q.; Liang, F.; Yang, J. Exogenous application of nutrient elements effectively reduces grape cracking and improves fruit quality. Sci. Hortic. 2023, 319, 112157. [Google Scholar] [CrossRef]
- Li, Y.; Jin, G.; Wen, M.; Zhu, X.; Zheng, Y. Mechanisms and Management Strategies for Satsuma Mandarin Fruit Cracking. Agronomy 2025, 15, 698. [Google Scholar] [CrossRef]
- Wang, Y. Study on Fruit Cracking Characteristic and Preventive Technigues of Zizyphus jujuba Mll.cv.Lingwu Changzao in Protected Cultivation. Master’s Thesis, Ningxia University, Yinchuan, China, 2017. [Google Scholar]
- Choi, J.H.; Lee, B.; Gu, M.; Lee, U.Y.; Kim, M.S.; Jung, S.K.; Choi, H.S. Course of fruit cracking in ‘Whansan’ pears. Hortic. Environ. Biotechnol. 2020, 61, 51–59. [Google Scholar] [CrossRef]
- Seo, H.J.; Sawant, S.S.; Lee, B.; Kim, K.; Song, J.; Choi, E.D. Mechanisms driving fruit cracking in ‘Sinhwa’ pears (Pyrus pyrifolia Nakai) and effect of foliar fertilizer application on fruit quality. Sci. Hortic. 2024, 332, 113232. [Google Scholar] [CrossRef]
- Seo, H.J.; Sawant, S.S.; Song, J. Fruit Cracking in Pears: Its Cause and Management-A Review. Agronomy 2022, 12, 2437. [Google Scholar] [CrossRef]
- Shi, G.; Zhou, X.; Tong, C.; Zhang, D. The Physiological and Molecular Mechanisms of Fruit Cracking Alleviation by Exogenous Calcium and GA3 in the Lane Late Navel Orange. Horticulturae 2024, 10, 1283. [Google Scholar] [CrossRef]
- Krajewski, A.; Ebert, T.; Schumann, A.; Waldo, L. Pre-Harvest Fruit Splitting of Citrus. Agronomy 2022, 12, 1505. [Google Scholar] [CrossRef]
- Cui, N.; Du, T.; Kang, S.; Li, F.; Hu, X.; Wang, M.; Li, Z. Relationship between stable carbon isotope discrimination and water use efficiency under regulated deficit irrigation of pear-jujube tree. Agric. Water Manag. 2009, 96, 1615–1622. [Google Scholar] [CrossRef]
- Cui, N.; Du, T.; Li, Z.; Wang, M.; Guo, J. Effects of regulated deficit irrigation at different growth stages on greenhouse pear-jujube quality. Trans. CSAE 2009, 25, 32–38, (In Chinese with English Abstract). [Google Scholar]
- Feng, Y.; Cui, N.; Du, T.; Gong, D.; Hu, X.; Zhao, L. Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China. Agric. Water Manag. 2017, 194, 1–12. [Google Scholar] [CrossRef]
- Dai, Z.; Fei, L.; Huang, D.; Zeng, J.; Chen, L.; Cai, Y. Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region. Agric. Water Manag. 2019, 213, 146–154. [Google Scholar] [CrossRef]
- Ma, F.; Kang, S.; Wang, M.; Pang, X.; Wang, J.; Li, Z. Effect of regulated deficit irrigation on water use efficiency and fruit quality of pear-jujube tree in greenhouse. Trans. CSAE 2006, 22, 37–43, (In Chinese with English abstract). [Google Scholar]
- Dong, X.; Tang, H.; Zhang, Q.; Zhang, C.; Wang, Z. Transcriptomic analyses provide new insights into jujube fruit quality affected by water deficit stress. Sci. Hortic. 2022, 291, 110558. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, H.X.; Xue, W.K.; Liu, X. Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples. Agric. Water Manag. 2021, 243, 106482. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, M.; Liu, S. Mulching broad ridges with a woven polypropylene fabric increase the growth and yield of young pear trees ‘Yuluxiang’ in the North China Plain. Hortic. Plant J. 2023, 9, 414–424. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Royo, J.B. Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv ‘Tempranillo’. Agric Water Manag. 2011, 98, 1171–1179. [Google Scholar] [CrossRef]
- Romero, P.; Pérez-Pérez, J.G.; del Amor, F.M.; Martinez-Cutillas, A.; Dodd, I.C.; Botía, P. Partial root zone drying exerts different physiological responses on field-grown grapevine (Vitis vinifera cv. Monastrell) in comparison to regulated deficit irrigation. Funct. Plant Biol. 2014, 41, 1087–1106. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhao, Z.; Liu, S.; Huang, X.; Wang, W. Does partial root-zone drying have advantages over regulated deficit irrigation in pear orchard under desert climates? Sci. Hortic. 2020, 262, 109099. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Wang, H.; Li, H. Effects of Drought Stress on Photosynthetic Characteristics and Endogenous Hormone Levels in the Sweet Potato (Ipomoea batatas). Horticulturae 2025, 11, 456. [Google Scholar] [CrossRef]
- Behboudian, M.H.; Lawes, G.S.; Griffiths, K.M. The influence of water deficit on water relations, photosynthesis and fruit growth in Asian pear (Pyrus serotina Rehd.). Sci. Hortic. 1994, 60, 89–99. [Google Scholar] [CrossRef]
- Cui, N.; Du, T.; Li, F.; Tong, L.; Kang, S.; Wang, M.; Liu, X.; Li, Z. Response of vegetative growth and fruit development to regulated deficit irrigation at different growth stages of pear-jujube tree. Agric. Water Manag. 2009, 96, 1237–1246. [Google Scholar] [CrossRef]
- Laribi, A.; Palou, L.; Intrigliolo, D.; Nortes, P.; Rojas-Argudo, C.; Taberner, V.; Bartual, J.; Pérez-Gago, M.B. Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. ‘Mollar De Elche’ at harvest and during cold storage. Agric. Water Manag. 2013, 125, 61–70. [Google Scholar] [CrossRef]
- Paschoalinotto, B.H.; Polyzos, N.; Liava, V.; Mandim, F.; Pires, T.C.S.P.; Añibarro-Ortega, M.; Ferreira, I.C.F.R.; Dias, M.I.; Barros, L.; Petropoulos, S.A. The Effect of Cropping System and Irrigation Regime on the Plant Growth and Biochemical Profile of Cichorium spinosum. Horticulturae 2025, 11, 306. [Google Scholar] [CrossRef]
- Kapur, B.; Karaca, C.; Sarıda¸s, M.A.; Ağçam, E.; Çeliktopuz, E.; Kargı, S.P. Enhancing secondary compounds in strawberry fruit through optimized irrigation and seaweed application. Sci. Hortic. 2024, 324, 112609. [Google Scholar] [CrossRef]
- Abdou, N.M.; Roby, M.H.H.; AL-Huqail, A.A.; Elkelish, A.; Sayed, A.A.S.; Alharbi, B.M.; Mahdy, H.A.A.; Abou-Sreea, A.I.B. Compost Improving Morphophysiological and Biochemical Traits, Seed Yield, and Oil Quality of Nigella sativa under Drought Stress. Agronomy 2023, 13, 1147. [Google Scholar] [CrossRef]
- Hassan, I.F.; Ajaj, R.; Abd El-Khalek, A.F.; Alam-Eldein, S.M.; Gaballah, M.S.; Athar, H.u.R.; Hatterman-Valenti, H.M. Effects of deficit irrigation on growth, yield, and quality of pomegranate (Punica granatum) grown in semi-arid conditions. Horticulturae 2025, 11, 101. [Google Scholar] [CrossRef]
- Nasrabadi, M.; Ramezanian, A.; Eshghi, S.; Sarkhosh, A. Chilling and heat requirement of pomegranate (Punica granatum L.) trees grown under sustained deficit irrigation. Sci. Hortic. 2020, 263, 109117. [Google Scholar] [CrossRef]
- Thomas, A.; Beena, R.; Laksmi, G.; Soni, K.B.; Swapna, A.; Viji, M.M. Changes in sucrose metabolic enzymes to water stress in contrasting rice genotypes. Plant Stress 2022, 5, 100088. [Google Scholar] [CrossRef]
- Kobasshi, K.; Gemma, H.; Iwahori, S. Sugar accumulation in peach fruit as affected by abscisic acid (ABA) treatment in relation to some sugar metabolizing enzymes. J. Jpn. Soc. Hortic. Sci. 1999, 68, 465–470. [Google Scholar] [CrossRef]
- Sha, J.; Jia, Z.; Zhang, X.; Wu, X.; Ge, S.; Jing, Y. Effects of exogenous ABA on translocation of photosynthate to fruit of Fuji apple during late stage of fruit rapid-swelling. J. Appl. Ecol. 2019, 30, 1854–1860. [Google Scholar]
- Asif, M.; Kamran, A. Plant Breeding for Water-Limited Environments. Crop Sci. 2011, 51, 2911. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Liu, J.; Yuan, Z.; Hu, S.; Sun, C.; Du, J.; Ji, W.; Cao, G.; Wang, Z. Effects of straw returning on drought tolerance and growth status of maize under drought stress in the cold and arid regions of northern China. Agronomy 2024, 14, 2580. [Google Scholar] [CrossRef]
- Song, Y.; Yu, J.; Xu, M.; Wang, S.; He, J.; Ai, L. Physiological factors associated with interspecific variations in drought tolerance in centipedegrass. Agronomy 2024, 14, 1624. [Google Scholar] [CrossRef]
- Kaur, K.; Gupta, A.K.; Kaur, N. Effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism in seedlings of wheat cultivars. Indian J. Biochem. Biophys. 2007, 44, 223–230. [Google Scholar]
- Yu, J.; Zhang, R.; Li, X.; Dong, D.; Wang, S. Sugar Metabolism and Transport in Response to Drought–Rehydration in Poa pratensis. Agronomy 2025, 15, 320. [Google Scholar] [CrossRef]
- Yooyongwech, S.; Samphumphuang, T.; Tisarumb, R.; Theerawitaya, C.; Cha-um, S. Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci. Hortic. 2016, 198, 107–117. [Google Scholar] [CrossRef]
- Weichert, H.; Jagemann, C.V.; Peschel, S.; Knoche, M.; Neumann, D.; Erfurth, W. Studies on Water Transport through the Sweet Cherry Fruit Surface: VIII. Effect of Selected Cations on Water Uptake and Fruit Cracking. J. Amer. Soc. Hort. Sci. 2004, 129, 781–788. [Google Scholar] [CrossRef]
- Sekse, L. Fruit cracking mechanisms in sweet cherries (Prunus avium L.)—A review. Acta Hortic. 1998, 468, 637–648. [Google Scholar] [CrossRef]
- Kanayama, Y. Sugar metabolism and fruit development in the tomato. Hortic. J. 2017, 86, 417–425. [Google Scholar] [CrossRef]
- Rachma, D.F.; Munyanont, M.; Maeda, K.; Lu, N.; Takagaki, M. Estimation of harvest time based on cumulative temperatures to produce high-quality cherry tomatoes in a plant factory. Agronomy 2024, 14, 3074. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, N.; Singh, H. Fruit cracking in lemon cv. Punjab Baramasi in relation to developmental physiology. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 561–568. [Google Scholar] [CrossRef]
Treatment | Water Applied | ||
---|---|---|---|
Slow Fruit Growth Stage (Late May to Late July) | Fruit Enlargement Stage (August) | Fruit Ripening Stage (Early September to Harvest) | |
MDI-1 | 80% of IRC | 100% of IRC | 100% of IRC |
SDI-1 | 50% of IRC | 100% of IRC | 100% of IRC |
MDI-2 | 80% of IRC | 80% of IRC | 100% of IRC |
SDI-2 | 50% of IRC | 50% of IRC | 100% of IRC |
Control | IRC | IRC | IRC |
Treatment | Irrigation Amount (mm) | |
---|---|---|
2023 | 2024 | |
MDI-1 | 331 | 361 |
SDI-1 | 261 | 290 |
MDI-2 | 310 | 344 |
SDI-2 | 208 | 246 |
Control | 378 | 412 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhao, Z.; Zhang, Y.; Lu, D.; Pan, Q. Impact of Deficit Irrigation During Pre-Ripening Stages on Jujube (Ziziphus jujube Mill.‘Jing39’) Fruit-Soluble Solids Content and Cracking. Horticulturae 2025, 11, 461. https://doi.org/10.3390/horticulturae11050461
Wu Y, Zhao Z, Zhang Y, Lu D, Pan Q. Impact of Deficit Irrigation During Pre-Ripening Stages on Jujube (Ziziphus jujube Mill.‘Jing39’) Fruit-Soluble Solids Content and Cracking. Horticulturae. 2025; 11(5):461. https://doi.org/10.3390/horticulturae11050461
Chicago/Turabian StyleWu, Yang, Zhi Zhao, Yuping Zhang, Dongye Lu, and Qinghua Pan. 2025. "Impact of Deficit Irrigation During Pre-Ripening Stages on Jujube (Ziziphus jujube Mill.‘Jing39’) Fruit-Soluble Solids Content and Cracking" Horticulturae 11, no. 5: 461. https://doi.org/10.3390/horticulturae11050461
APA StyleWu, Y., Zhao, Z., Zhang, Y., Lu, D., & Pan, Q. (2025). Impact of Deficit Irrigation During Pre-Ripening Stages on Jujube (Ziziphus jujube Mill.‘Jing39’) Fruit-Soluble Solids Content and Cracking. Horticulturae, 11(5), 461. https://doi.org/10.3390/horticulturae11050461