Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (186)

Search Parameters:
Authors = Rui Tong ORCID = 0000-0003-4779-8200

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2284 KiB  
Article
Rhizobacteria’s Effects on the Growth and Competitiveness of Solidago canadensis Under Nutrient Limitation
by Zhi-Yun Huang, Ying Li, Hu-Anhe Xiong, Misbah Naz, Meng-Ting Yan, Rui-Ke Zhang, Jun-Zhen Liu, Xi-Tong Ren, Guang-Qian Ren, Zhi-Cong Dai and Dao-Lin Du
Agriculture 2025, 15(15), 1646; https://doi.org/10.3390/agriculture15151646 - 30 Jul 2025
Viewed by 186
Abstract
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere [...] Read more.
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere of the invasive weed Solidago canadensis. We assessed their nitrogen utilization capacity and indoleacetic acid (IAA) production capabilities to evaluate their ecological functions. Our three-stage experimental design encompassed strain promotion, nutrient stress, and competition phases. Bacillus sp. ScRB44 demonstrated robust IAA production and significantly improved the nitrogen utilization efficiency, significantly enhancing S. canadensis growth, especially under nutrient-poor conditions, and promoting a shift in biomass allocation toward the roots, thereby conferring a competitive advantage over native species. Conversely, Pseudomonas sp. ScRB22 exhibited limited functional activity and a negligible impact on plant performance. These findings underscore that the ecological impact of rhizosphere bacteria on invasive weeds is closely linked to their specific growth-promoting functions. By enhancing stress adaptation and optimizing resource allocation, certain microorganisms may facilitate the establishment of invasive weeds in adverse environments. This study highlights the significance of microbial functional traits in invasion ecology and suggests novel approaches for microbiome-based invasive weed management, with potential applications in agricultural soil health improvement and ecological restoration. Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
Show Figures

Figure 1

17 pages, 1681 KiB  
Article
Pharmacokinetics, Safety, and Tolerability of (R)-Ketamine Hydrochloride Injection, a Novel Rapid-Acting Antidepressant, in Healthy Chinese Subjects
by Rui Wang, Yuqian Yang, Tong Zhou, Bingjie Zou and Li Ding
Pharmaceuticals 2025, 18(7), 1079; https://doi.org/10.3390/ph18071079 - 21 Jul 2025
Viewed by 433
Abstract
Objectives: (R)-ketamine hydrochloride injection is a novel, rapid-acting antidepressant for the treatment of treatment-resistant depression. The aim of this study was to assess the pharmacokinetics, safety, and tolerability of (R)-ketamine hydrochloride injection in healthy Chinese subjects following ascending single intravenous doses ranging [...] Read more.
Objectives: (R)-ketamine hydrochloride injection is a novel, rapid-acting antidepressant for the treatment of treatment-resistant depression. The aim of this study was to assess the pharmacokinetics, safety, and tolerability of (R)-ketamine hydrochloride injection in healthy Chinese subjects following ascending single intravenous doses ranging from 10.0 mg to 180 mg. Methods: This randomized, double-blind, placebo-controlled study was conducted in 50 healthy male and female Chinese subjects after single ascending doses of (R)-ketamine hydrochloride injection (10.0, 30.0, 60.0, 120, and 180 mg). Ten subjects (including two subjects treated with a placebo) were included in each dose cohort. Pharmacokinetic characteristics, safety, and tolerability profiles of the study drug were evaluated. Results: After the intravenous doses administered from 10.0 mg to 180 mg of (R)-ketamine hydrochloride injection to the subjects, the Cmax and AUC values for both (R)-ketamine and its metabolite (R)-norketamine in the subjects increased approximately proportionally to the doses. The average peak plasma concentration levels at the five dose cohorts ranged from 56.0 to 1424 ng/mL and 27.7 to 491 ng/mL for (R)-ketamine and (R)-norketamine, respectively. The adverse events of (R)-ketamine hydrochloride injection were temporary and recovered spontaneously without treatment. Conclusions: In summary, (R)-ketamine hydrochloride injection was safe and well tolerated in healthy Chinese subjects. The clinical study results laid a foundation for the further clinical studies of (R)-ketamine hydrochloride injection in patients. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

27 pages, 6169 KiB  
Article
Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment
by Hua Xia, Zili Qin, Yuanxin Tong, Yintian Li, Rui Zhang and Hongxia Luo
Land 2025, 14(7), 1472; https://doi.org/10.3390/land14071472 - 15 Jul 2025
Viewed by 250
Abstract
Landslide susceptibility assessment (LSA) plays a crucial role in disaster prevention and mitigation. Traditional random selection of non-landslide samples (labeled as 0) suffers from poor representativeness and high randomness, which may include potential landslide areas and affect the accuracy of LSA. To address [...] Read more.
Landslide susceptibility assessment (LSA) plays a crucial role in disaster prevention and mitigation. Traditional random selection of non-landslide samples (labeled as 0) suffers from poor representativeness and high randomness, which may include potential landslide areas and affect the accuracy of LSA. To address this issue, this study proposes a novel Landslide Susceptibility Index–based Semi-supervised Fuzzy C-Means (LSI-SFCM) sampling strategy combining membership degrees. It utilizes landslide and unlabeled samples to map landslide membership degree via Semi-supervised Fuzzy C-Means (SFCM). Non-landslide samples are selected from low-membership regions and assigned membership values as labels. This study developed three models for LSA—Convolutional Neural Network (CNN), U-Net, and Support Vector Machine (SVM), and compared three negative sample sampling strategies: Random Sampling (RS), SFCM (samples labeled 0), and LSI-SFCM. The results demonstrate that the LSI-SFCM effectively enhances the representativeness and diversity of negative samples, improving the predictive performance and classification reliability. Deep learning models using LSI-SFCM performed with superior predictive capability. The CNN model achieved an area under the receiver operating characteristic curve (AUC) of 95.52% and a prediction rate curve value of 0.859. Furthermore, compared with the traditional unsupervised fuzzy C-means (FCM) clustering, SFCM produced a more reasonable distribution of landslide membership degrees, better reflecting the distinction between landslides and non-landslides. This approach enhances the reliability of LSA and provides a scientific basis for disaster prevention and mitigation authorities. Full article
Show Figures

Figure 1

14 pages, 3533 KiB  
Article
New Chaetoglobosins with Fungicidal Activity from Chaetomium sp. UJN-EF006 Endophytic in Vaccinium bracteatum
by Luo-Jing Wang, Zong-Yan Ma, Xin-Ling Wang, Kai-Le Wang, Tong Zhang, Rui-Ying Han, Jun-Jiang Li, Jie Bao, Yin-Yin Wang and Hua Zhang
J. Fungi 2025, 11(7), 511; https://doi.org/10.3390/jof11070511 - 7 Jul 2025
Viewed by 509
Abstract
Nine chaetoglobosins (19) including five previously undescribed ones (15) were obtained from the culture broth of an endophytic fungus (Chaetomium sp. UJN-EF006) isolated from the leaves of Vaccinium bracteatum. The structures of these [...] Read more.
Nine chaetoglobosins (19) including five previously undescribed ones (15) were obtained from the culture broth of an endophytic fungus (Chaetomium sp. UJN-EF006) isolated from the leaves of Vaccinium bracteatum. The structures of these fungal metabolites were elucidated by spectroscopic methods including mass spectroscopy, nuclear magnetic resonance, single crystal X-ray crystallography, and electronic circular dichroism. To accelerate the development of novel fungicides, all of the isolated chaetoglobosins were evaluated for their antifungal activity against two crop pathogens, Botrytis cinerea and Sclerotinia sclerotiorum. The assay results revealed that chaetoglobosins 2, 6, 7, and 9 possessed a significant fungicidal effect against B. cinerea, with EC50 values all below 10 μg/mL. Particularly, the most potent compound, 7, was 175- and 96-fold as active as the commercially available fungicides carbendazim (EC50 70.11 μg/mL) and azoxystrobin (EC50 39.02 μg/mL), respectively. A further observation under scanning electron microscope indicated that compound 2 could markedly impair the fungal hyphae of B. cinerea. The study demonstrates that the chaetoglobosins had excellent in vitro antifungal activities against B. cinerea. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites from Fungi)
Show Figures

Figure 1

30 pages, 3914 KiB  
Article
Dietary Supplementation with Rhodotorula mucilaginosa Enhances Resistance to Aeromonas veronii Infection in Red Claw Crayfish (Cherax quadricarinatus)
by Qin Zhang, Liuqing Meng, Haoliang Lu, Luoqing Li, Qinghui Zeng, Dapeng Wang, Rui Wang, Tong Tong, Yongqiang Liu and Huizan Yang
Animals 2025, 15(13), 1912; https://doi.org/10.3390/ani15131912 - 28 Jun 2025
Viewed by 263
Abstract
The objective of this study was to evaluate the effects of dietary supplementation with different levels of Rhodotorula mucilaginosa (0.0 g/kg, 0.1 g/kg, 1.0 g/kg, and 10.0 g/kg) on resistance to Aeromonas veronii infection in red claw crayfish (Cherax quadricarinatus) (initial [...] Read more.
The objective of this study was to evaluate the effects of dietary supplementation with different levels of Rhodotorula mucilaginosa (0.0 g/kg, 0.1 g/kg, 1.0 g/kg, and 10.0 g/kg) on resistance to Aeromonas veronii infection in red claw crayfish (Cherax quadricarinatus) (initial body weight of 0.13 ± 0.06 g). The investigation combined a 56-day feeding trial with a subsequent 7-day infection challenge to assess cumulative mortality, immune and antioxidant enzyme activities, and the relative expression of immune-related genes. During the A. veronii infection test, the cumulative mortalities for the 0.1 g/kg, 1.0 g/kg, and 10.0 g/kg groups were 44.44%, 38.89%, and 38.89%, respectively, all significantly lower (p < 0.05) than that of the control group (58.33%). Compared with the control group, after infection with A. veronii, the activities of acid phosphatase, alkaline phosphatase, catalase, and superoxide dismutase in the hepatopancreas and alkaline phosphatase, lysozyme in the hemolymph of red claw crayfish in the 1.0 g/kg group significantly increased (p < 0.05). The activities of aspartate aminotransferase and alanine aminotransferase in the hemolymph of red claw crayfish in the 1.0 g/kg group significantly decreased (p < 0.05). The relative expression levels of serine protease inhibitor, crustacean hyperglycemic hormone, anti-lipopolysaccharide factor, and superoxide dismutase genes in the hepatopancreas of red claw crayfish in the 1.0 g/kg group were significantly upregulated (p < 0.05). In conclusion, R. mucilaginosa could significantly improve the antibacterial ability of red claw crayfish against A. veronii. In this experimental context, the ideal addition level of R. mucilaginosa is determined to be 1.0 g/kg. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

13 pages, 2517 KiB  
Article
Study on the Wear Resistance of 6061 Aluminum Alloy Bipolar Plasma Electrolytic Oxidation Ceramic Coating by the Addition of K2ZrF6
by Rui Tong, Shiquan Zhou, Hongtao Li, Xiang Tao and Jian Chen
Materials 2025, 18(13), 2962; https://doi.org/10.3390/ma18132962 - 23 Jun 2025
Viewed by 361
Abstract
A plasma electrolytic oxidation (PEO) coating was produced on 6061 aluminum alloy within a silicate-containing electrolyte using a bipolar pulsed power supply. The impact of K2ZrF6 addition on the wear resistance of the coating was investigated. The phase composition, surface [...] Read more.
A plasma electrolytic oxidation (PEO) coating was produced on 6061 aluminum alloy within a silicate-containing electrolyte using a bipolar pulsed power supply. The impact of K2ZrF6 addition on the wear resistance of the coating was investigated. The phase composition, surface morphology, and elemental distribution of the coatings were assessed by means of X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). Experimental data revealed that the growth rate of the coating increased by 37.3% compared to that without K2ZrF6; the addition of K2ZrF6 favored the formation of mullite and enhanced the coating densification; it also improved the breakdown voltage of the coating, which increased by 46.0% compared to that without K2ZrF6; and it also demonstrated excellent abrasion resistance, with a reduction of 41.8% in the weight of the abrasion. Full article
(This article belongs to the Special Issue Surface Technology and Coatings Materials)
Show Figures

Figure 1

16 pages, 7535 KiB  
Article
Effects of Current Output Modes on Corrosion Resistance of Micro-Arc Oxidation Black Coatings on Aluminum Alloy
by Shiquan Zhou, Rui Tong, Hongtao Li, Xiang Tao and Jian Chen
Materials 2025, 18(13), 2949; https://doi.org/10.3390/ma18132949 - 22 Jun 2025
Cited by 1 | Viewed by 505
Abstract
In this work, micro-arc oxidation (MAO) under constant- and gradient-current modes was used to modify the surface of 6061 aluminum alloy. A black coating was created in situ on the alloy surface by controlling the spark discharge parameters during MAO. Using an electrochemical [...] Read more.
In this work, micro-arc oxidation (MAO) under constant- and gradient-current modes was used to modify the surface of 6061 aluminum alloy. A black coating was created in situ on the alloy surface by controlling the spark discharge parameters during MAO. Using an electrochemical workstation (Metrohm Autolab, PGSTAT302 N, Herisau, Switzerland), energy-dispersive spectroscopy (EDS, JEOL, JSM-IT500A, Tokyo Metropolis, Japan), and scanning electron microscopy (SEM, JEOL, JSM-7900F, Tokyo Metropolis, Japan), the effects of the current output modes on the coating growth rate, energy consumption, colorimetric parameters (L*, a*, b*), microstructure, and corrosion resistance were methodically examined. The findings showed that the gradient-current mode (6 → 4 → 2 A/dm2) greatly lowered the micropore size (from 3.89 μm to 1.52 μm) and improved the coating compactness (porosity dropped by 40%), and all coatings satisfied the necessary blackness criterion (L* < 30). Additionally, this mode achieved excellent corrosion resistance, as demonstrated by a one-order-of-magnitude reduction in the corrosion current density (2.55 × 10−8 A/cm2 vs. 2.34 × 10−7 A/cm2), while minimizing the energy consumption (2.37 kW·h/m2·μm vs. 3.45 kW·h/m2·μm for constant current). Full article
(This article belongs to the Special Issue Surface Technology and Coatings Materials)
Show Figures

Figure 1

26 pages, 1297 KiB  
Review
Research Progress on the Application of Neutralizing Nanobodies in the Prevention and Treatment of Viral Infections
by Qingling Duan, Tong Ai, Yingying Ma, Ruoyu Li, Hanlin Jin, Xingyi Chen, Rui Zhang, Kunlu Bao and Qi Chen
Microorganisms 2025, 13(6), 1352; https://doi.org/10.3390/microorganisms13061352 - 11 Jun 2025
Viewed by 732
Abstract
Public health crises triggered by viral infections pose severe threats to individual health and disrupt global socioeconomic systems. Against the backdrop of global pandemics caused by highly infectious diseases such as COVID-19 and Ebola virus disease (EVD), the development of innovative prevention and [...] Read more.
Public health crises triggered by viral infections pose severe threats to individual health and disrupt global socioeconomic systems. Against the backdrop of global pandemics caused by highly infectious diseases such as COVID-19 and Ebola virus disease (EVD), the development of innovative prevention and treatment strategies has become a strategic priority in the field of biomedicine. Neutralizing antibodies, as biological agents, are increasingly recognized for their potential in infectious disease control. Among these, nanobodies (Nbs) derived from camelid heavy-chain antibodies exhibit remarkable technical advantages due to their unique structural features. Compared to traditional neutralizing antibodies, nanobodies offer significant cost-effectiveness in production and enable versatile administration routes (e.g., subcutaneous injection, oral delivery, or aerosol inhalation), making them particularly suitable for respiratory infection control and resource-limited settings. Furthermore, engineered modification strategies—including multivalent constructs, multi-epitope recognition designs, and fragment crystallizable (Fc) domain fusion—effectively enhance their neutralizing activity and suppress viral immune escape mechanisms. Breakthroughs have been achieved in combating pathogens such as the Ebola virus and SARS-CoV-2, with mechanisms involving the blockade of virus–host interactions, induction of viral particle disintegration, and enhancement of immune responses. This review comprehensively discusses the structural characteristics, high-throughput screening technologies, and engineering strategies of nanobodies, providing theoretical foundations for the development of novel antiviral therapeutics. These advances hold strategic significance for addressing emerging and re-emerging infectious diseases. Full article
Show Figures

Figure 1

19 pages, 5243 KiB  
Article
Effects of Polyphenols from Oat and Oat Bran on Anti-Inflammatory Activity and Intestinal Barrier Function in Raw264.7 and Caco-2 Models
by Wen Duan, Bisheng Zheng, Tong Li and Rui Hai Liu
Nutrients 2025, 17(12), 1962; https://doi.org/10.3390/nu17121962 - 9 Jun 2025
Viewed by 950
Abstract
Background/Objectives: Oats and oat bran are rich in dietary fiber, polyphenols and other phytochemicals. Methods: In this study, we evaluated the phytochemical content and established LPS-induced RAW 264.7 macrophage inflammation and DSS-induced Caco-2 cell inflammation models to investigate the anti-inflammatory activities of oat [...] Read more.
Background/Objectives: Oats and oat bran are rich in dietary fiber, polyphenols and other phytochemicals. Methods: In this study, we evaluated the phytochemical content and established LPS-induced RAW 264.7 macrophage inflammation and DSS-induced Caco-2 cell inflammation models to investigate the anti-inflammatory activities of oat and oat bran polyphenols and their molecular mechanisms. Results: The results showed that oat and oat bran polyphenols (free and bound polyphenols) enhanced phagocytosis, decreased the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), reduced the production of NO and ROS, increased the mitochondrial membrane potential, and reduced the inflammatory cytokines (TNF-α, IL-1β, and IL-6) at the gene level in the RAW 264.7 macrophage inflammation model induced by LPS expression, thus demonstrating strong anti-inflammatory activity. In Caco-2 cells, oat and oat bran polyphenols pretreatment attenuated the DSS-induced decrease in trans-epithelial electron resistance value, increased tight junction protein expression, and reduced cell permeability in Caco-2 cell monolayers, which in turn reduced inflammatory damage in the organism. Conclusions: In summary, the present study not only reveals the mechanism by which oat and oat bran polyphenols inhibit macrophage inflammation and impairment of intestinal barrier function at defined concentration in vitro, but also highlights potential for oat bran as a functional food. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health—2nd Edition)
Show Figures

Figure 1

27 pages, 5990 KiB  
Article
Neuroprotective Effects of Qi Jing Wan and Its Active Ingredient Diosgenin Against Cognitive Impairment in Plateau Hypoxia
by Tiantian Xia, Ziqiao Yan, Pan Shen, Mingyang Chang, Nan Zhang, Yunan Zhang, Qi Chen, Rui Wang, Li Tong, Wei Zhou, Zhexin Ni and Yue Gao
Pharmaceuticals 2025, 18(5), 738; https://doi.org/10.3390/ph18050738 - 17 May 2025
Viewed by 614
Abstract
Background/Objectives: High-altitude environments have a significant detrimental impact on the cognitive functions of the brain. Qi Jing Wan (QJW), a traditional herbal formula composed of Angelica sinensis, Astragalus membranaceus, and Rhizoma Polygonati Odorati, has demonstrated potential efficacy in treating [...] Read more.
Background/Objectives: High-altitude environments have a significant detrimental impact on the cognitive functions of the brain. Qi Jing Wan (QJW), a traditional herbal formula composed of Angelica sinensis, Astragalus membranaceus, and Rhizoma Polygonati Odorati, has demonstrated potential efficacy in treating cognitive disorders. However, its effects on cognitive dysfunction in plateau hypoxic environments remain unclear. Methods: In this study, acute and chronic plateau cognitive impairment mouse models were constructed to investigate the preventive and therapeutic effects of QJW and its significant active ingredient, diosgenin (Dio). Behavioral experiments were conducted to assess learning and memory in mice. Morphological changes in hippocampal neurons and synapses were assessed, and microglial activation and inflammatory factor levels were measured to evaluate brain damage. Potential active ingredients capable of crossing the blood–brain barrier were identified through chemical composition analysis and network database screening, followed by validation in animal and brain organoid experiments. Transcriptomics analysis, immunofluorescence staining, and molecular docking techniques were employed to explore the underlying mechanisms. Results: QJW significantly enhanced learning and memory abilities in plateau model mice, reduced structural damage to hippocampal neurons, restored NeuN expression, inhibited inflammatory factor levels and microglial activation, and improved hippocampal synaptic damage. Transcriptomics analysis revealed that Dio alleviated hypoxic brain damage and protected cognitive function by regulating the expression of PDE4C. Conclusions: These findings indicate that QJW and its significant active ingredient Dio effectively mitigate hypoxic brain injury and prevent cognitive impairment in high-altitude environments. Full article
Show Figures

Graphical abstract

18 pages, 7426 KiB  
Article
Evaluation of Thermal Damage Effect of Forest Fire Based on Multispectral Camera Combined with Dual Annealing Algorithm
by Pan Pei, Xiaojian Hao, Ziqi Wu, Rui Jia, Shenxiang Feng, Tong Wei, Wenxiang You, Chenyang Xu, Xining Wang and Yuqian Dong
Appl. Sci. 2025, 15(10), 5553; https://doi.org/10.3390/app15105553 - 15 May 2025
Viewed by 479
Abstract
In recent years, the frequency and severity of large-scale forest fires have increased globally, threatening forest ecosystems, human lives, and property while potentially triggering cascading ecological and social crises. Despite significant advancements in remote sensing-based forest fire monitoring, early warning systems, and fire [...] Read more.
In recent years, the frequency and severity of large-scale forest fires have increased globally, threatening forest ecosystems, human lives, and property while potentially triggering cascading ecological and social crises. Despite significant advancements in remote sensing-based forest fire monitoring, early warning systems, and fire risk zoning, post-fire thermal damage assessment remains insufficiently addressed. This study introduces an innovative approach combining multispectral imaging with a dual annealing constrained optimization algorithm to enable dynamic monitoring of fire temperature distribution. Based on this method, we develop a dynamic thermal damage assessment model to quantify thermal impacts during forest fires. The proposed model provides valuable insights for defining thermal damage zones, optimizing evacuation strategies, and supporting firefighting operations, ultimately enhancing emergency response and forest fire management efficiency. Full article
Show Figures

Figure 1

14 pages, 7852 KiB  
Article
Life Prediction Model for Press-Pack IGBT Module Based on Thermal Resistance Degradation
by Rui Zhou, Xiang Wang, Jianqiang Li, Tong An, Zhengqiang Yu, Xiaochen Wang and Yan Li
Electronics 2025, 14(9), 1726; https://doi.org/10.3390/electronics14091726 - 24 Apr 2025
Viewed by 489
Abstract
The contact interfaces of a press-pack insulated-gate bipolar transistor (PP-IGBT) module under fluctuating thermal stress will undergo minor friction and mutual sliding during service, which results in damage to the contact surface and a decline in the thermal performance of the contact interface. [...] Read more.
The contact interfaces of a press-pack insulated-gate bipolar transistor (PP-IGBT) module under fluctuating thermal stress will undergo minor friction and mutual sliding during service, which results in damage to the contact surface and a decline in the thermal performance of the contact interface. Therefore, the temperature inside the module will continue to increase, leading to eventual failure. In this work, a life prediction method based on thermal resistance degradation within a PP-IGBT module is established. The junction temperature can be determined via power loss and a resistance-capacitance (RC) thermal network model, and a life prediction model of the PP-IGBT module is developed based on thermal resistance degradation. The method considers the service quality under power cycling conditions and the influence of the self-accelerating effect of damage accumulation at the contact interface of the PP-IGBT module on fatigue life. The experimental results verify that the proposed PP-IGBT module life prediction method can effectively predict service life under power cycling conditions. Full article
Show Figures

Graphical abstract

18 pages, 2202 KiB  
Review
A Citation Analysis and Bibliometric Graph of Human Evacuation Research
by Yixuan Huang, Rui Li, Yunhe Tong and Wei Xie
Fire 2025, 8(4), 161; https://doi.org/10.3390/fire8040161 - 21 Apr 2025
Cited by 1 | Viewed by 535
Abstract
Effective evacuation is vital for minimizing casualties during disasters. This study employed the Web of Science (WOS) database to perform a bibliometric analysis of the evacuation literature. VOSViewer (v1.6.20) and CiteSpace (v6.3.R1) software were used to visualize publication trends, international collaboration networks, keyword [...] Read more.
Effective evacuation is vital for minimizing casualties during disasters. This study employed the Web of Science (WOS) database to perform a bibliometric analysis of the evacuation literature. VOSViewer (v1.6.20) and CiteSpace (v6.3.R1) software were used to visualize publication trends, international collaboration networks, keyword co-occurrence, clustering, and keyword bursts. The findings indicate that three research focuses are foundational to advancing the field of evacuation research, with shifts in these areas reflecting the dynamic nature of the field’s transition. Four key research themes outline the core content of the field’s investigation. Furthermore, this study identifies three key research phases in evacuation: the theoretical model development and foundational research phase, the behavioral dynamics and advanced simulation phase, and the data-driven intelligence and practical application phase. Future directions of evacuation research are discussed. This study provides a comprehensive analytical framework that deepens the understanding of the evacuation field. Full article
Show Figures

Figure 1

38 pages, 6236 KiB  
Article
Accelerating Towards Sustainability: Policy and Technology Dynamic Assessments in China’s Road Transport Sector
by Yao Yi, Z.Y. Sun, Bi-An Fu, Wen-Yu Tong and Rui-Song Huang
Sustainability 2025, 17(8), 3668; https://doi.org/10.3390/su17083668 - 18 Apr 2025
Viewed by 1081
Abstract
This study examines the policy and technological dynamics shaping China’s road transport sector’s transition to low-carbon sustainability, focusing on battery electric vehicles (BEVs) and hydrogen fuel cell electric vehicles (HFCEVs). As the world’s second-largest carbon emitter, China faces significant challenges in reducing its [...] Read more.
This study examines the policy and technological dynamics shaping China’s road transport sector’s transition to low-carbon sustainability, focusing on battery electric vehicles (BEVs) and hydrogen fuel cell electric vehicles (HFCEVs). As the world’s second-largest carbon emitter, China faces significant challenges in reducing its fossil fuel dependency in road transport, which accounts for diverse emissions and energy security risks. The present work, using a dual tech multi-level perspective (DTMLP) framework integrating multi-level perspective (MLP) and an advocacy coalition framework (ACF), analyzes the interplay of landscape pressures (global carbon constraints), regime dynamics (policy–market interactions), and niche innovations (BEV/FCEV competition). The results reveal BEVs’ dominance in light-duty markets, achieving remarkable operational emission reductions but facing lifecycle carbon lock-ins from battery production and coal-dependent power grids. HFCEVs demonstrate potential for heavy-duty decarbonization but struggle with gray hydrogen reliance and infrastructure gaps. Policy evolution highlights shifting governance from subsidies to market-driven mechanisms, alongside regional disparities in implementation. This study proposes a three-phase roadmap: structural optimization (2025–2030), technological adaptation (2030–2045), and hydrogen–electric system integration (post-2045), emphasizing material innovation, renewable energy alignment, and multi-level governance. Our findings underscore the necessity of coordinated policy–technology synergies, grid decarbonization, and circular economy strategies, to overcome institutional inertia and achieve China’s ‘Dual Carbon’ targets. This work provides actionable insights for global sustainable transport transitions amid competing technological pathways and geopolitical resource constraints. Full article
Show Figures

Figure 1

18 pages, 1908 KiB  
Article
Development of In Vitro Potency Methods to Replace In Vivo Tests for Enterovirus 71 Inactivated Vaccine (Human Diploid Cell-Based/Vero Cell-Based)
by Xuanxuan Zhang, Li Yi, Dan Yu, Jun Li, Xintian Li, Xing Wu, Fan Gao, Qian He, Wenhui Wang, Kaiwen Wang, Zejun Wang, Zhengling Liu, Yadong Li, Yong Zhao, Huiyi Li, Xiao Ma, Qingbing Zheng, Longfa Xu, Tong Cheng, Rui Zhu, Jing Guo, Jing Li, Qunying Mao and Zhenglun Liangadd Show full author list remove Hide full author list
Vaccines 2025, 13(4), 404; https://doi.org/10.3390/vaccines13040404 - 13 Apr 2025
Viewed by 790
Abstract
Background: The three commercial Enterovirus 71 (EV71) inactivated vaccines which have effectively controlled the EV71 pandemic currently rely on inherent variable in vivo potency methods for batch release. To align with 3R (Replacement, Reduction, Refinement) principles and enhance quality control, this study referred [...] Read more.
Background: The three commercial Enterovirus 71 (EV71) inactivated vaccines which have effectively controlled the EV71 pandemic currently rely on inherent variable in vivo potency methods for batch release. To align with 3R (Replacement, Reduction, Refinement) principles and enhance quality control, this study referred to WHO guidelines and the European Pharmacopoeia to develop in vitro relative potency (IVRP) methods. Methods: Working standards tracing to phase 3 clinical vaccines were established. Manufacture-specific IVRP methods were developed and validated per ICH Q14/Q2(R2), utilizing conformational epitope-targeting neutralizing monoclonal antibodies (MAbs). One of the MAbs (CT11F9) recognition sites was clarified with Cryo-EM. Subsequently, the performance of IVRP was assessed using varied concentrations and heat-treated vaccines. The correlation between IVRP and in vivo methods was analyzed, followed by setting IVRP specifications. Results: The manufacturer-specific working standard exhibited ED50 values comparable to those of related phase 3 clinical vaccines. All IVRP methods achieved a relative bias/precision/total error ≤ 15%. The IVRP methods correlated with in vivo methods (p < 0.05, r > 0.9) can discriminate EV71 antigen concentrations (p < 0.01, r > 0.99) and indicate the stability of the vaccines. Cryo-EM was adopted to identify the epitopes recognized by CT11F9, revealing that this neutralizing antibody recognizes a conformational epitope spanning VP1-3 of the same protomer. Using 31–47 batches of commercial vaccines, IVRP specifications were proposed as 0.56–1.35, 0.58–1.40, and 0.54–1.50. Conclusions: Based on conformational epitope-targeting neutralizing MAbs, manufacturer-specific IVRP methods, which were sensitive to process variations and correlated with in vivo results, have been established. IVRP methods provide a reliable, animal-free alternative for EV71 vaccine batch release. Full article
Show Figures

Figure 1

Back to TopTop