Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Authors = Reinhard Töpfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1242 KiB  
Article
Identification of Vitis riparia as Donor of Black Rot Resistance in the Mapping Population V3125 x ‘Börner’ and Additive Effect of Rgb1 and Rgb2
by Patricia Weber, Anna Werner, Friederike Rex, Franco Röckel, Oliver Trapp, Reinhard Töpfer and Ludger Hausmann
Agronomy 2025, 15(6), 1484; https://doi.org/10.3390/agronomy15061484 - 19 Jun 2025
Viewed by 764
Abstract
Viticulture is facing challenges, like the impact of climate change and various pests and pathogens. Alongside powdery and downy mildew, black rot is one of the most prevalent fungal diseases in European wine-growing regions. The focus of grapevine breeding research has so far [...] Read more.
Viticulture is facing challenges, like the impact of climate change and various pests and pathogens. Alongside powdery and downy mildew, black rot is one of the most prevalent fungal diseases in European wine-growing regions. The focus of grapevine breeding research has so far been mainly on resistance to mildew diseases, and marker-assisted selection (MAS) in breeding material is possible for the most important resistance loci. However, only a few loci have been described for black rot resistance and these cannot yet be used for MAS. Thus, the characterization of genetic resistance to black rot and the establishment of closely linked genetic markers is important for the breeding of cultivars with multifungal resistances. In this study, an improved SSR marker-based genetic map of the biparental mapping population V3125 (‘Schiava Grossa’ x ‘Riesling’) x ‘Börner‘ (Vitis riparia x Vitis cinerea) was used to perform QTL analysis for black rot resistance. A total of 195 F1 individuals were analyzed at 347 SSR marker positions distributed on all 19 chromosomes. QTL analysis detected two QTLs conferring resistance to black rot on linkage groups 14 (Rgb1) and 16 (Rgb2). Our results revealed for the first time that Rgb1 and Rgb2 are derived from the wild species V. riparia. The presence of both loci in F1 individuals showed a clear additive effect for black rot resistance, supporting the breeding strategy of pyramiding two or more resistance factors to achieve a stronger overall resistance. Full article
Show Figures

Figure 1

16 pages, 2983 KiB  
Article
Rpv10.2: A Haplotype Variant of Locus Rpv10 Enables New Combinations for Pyramiding Downy Mildew Resistance Traits in Grapevine
by Tim Höschele, Nagarjun Malagol, Salvador Olivella Bori, Sophia Müllner, Reinhard Töpfer, Jürgen Sturm, Eva Zyprian and Oliver Trapp
Plants 2024, 13(18), 2624; https://doi.org/10.3390/plants13182624 - 20 Sep 2024
Viewed by 1263
Abstract
In viticulture, pathogens like the oomycete Plasmopara viticola, the causal agent of downy mildew, can cause severe yield loss and require extensive application of plant protection chemicals. Breeders are generating pathogen-resistant varieties exploiting American and Asian wild Vitis germplasm as sources of [...] Read more.
In viticulture, pathogens like the oomycete Plasmopara viticola, the causal agent of downy mildew, can cause severe yield loss and require extensive application of plant protection chemicals. Breeders are generating pathogen-resistant varieties exploiting American and Asian wild Vitis germplasm as sources of resistance. Several loci mediating resistance to P. viticola have been identified in the past but may be overcome by specifically adapted strains of the pathogen. Aiming to find and characterize novel loci, a cross population with Vitis amurensis ancestry was investigated searching for resistance-correlated quantitative trait loci (QTL). As a prerequisite, a genetic map was generated by analyzing the 244 F1 individuals derived from a cross of the downy mildew susceptible Vitis vinifera cultivar ‘Tigvoasa’ and the resistant V. amurensis pBC1 breeding line We 90-06-12. This genetic map is based on the information from 627 molecular markers including 56 simple sequence repeats and 571 rhAmpSeq markers. A phenotypic characterization of the progeny showed a clear segregation of the resistance traits in the F1 population after an experimental inoculation of leaf discs with downy mildew. Combining genetic and phenotypic data, an analysis for QTL revealed a major locus on linkage Group 9 that correlates strongly with the resistance to downy mildew. The locus was mapped to a region of about 80 kb on the PN40024 (12x.V2) grapevine reference genome. This genomic region co-localizes with the formerly identified locus Rpv10 from the grapevine cultivar ‘Solaris’. As we found different allele sizes of the locus-linked SSR markers than those characterizing the known Rpv10 locus and differences in the sequence of a candidate gene, it was regarded as a haplotype variant and named Rpv10.2. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 1887 KiB  
Article
Determination of Sugars and Acids in Grape Must Using Miniaturized Near-Infrared Spectroscopy
by Lucie Cornehl, Julius Krause, Xiaorong Zheng, Pascal Gauweiler, Florian Schwander, Reinhard Töpfer, Robin Gruna and Anna Kicherer
Sensors 2023, 23(11), 5287; https://doi.org/10.3390/s23115287 - 2 Jun 2023
Cited by 7 | Viewed by 3059
Abstract
An automatic determination of grape must ingredients during the harvesting process would support cellar logistics and enables an early termination of the harvest if quality parameters are not met. One of the most important quality-determining characteristics of grape must is its sugar and [...] Read more.
An automatic determination of grape must ingredients during the harvesting process would support cellar logistics and enables an early termination of the harvest if quality parameters are not met. One of the most important quality-determining characteristics of grape must is its sugar and acid content. Among others, the sugars in particular determine the quality of the must and wine. Chiefly in wine cooperatives, in which a third of all German winegrowers are organized, these quality characteristics serve as the basis for payment. They are acquired upon delivery at the cellar of the cooperative or the winery and result in the acceptance or rejection of grapes and must. The whole process is very time-consuming and expensive, and sometimes grapes that do not meet the quality requirements for sweetness, acidity, or healthiness are destroyed or not used at all, which leads to economic loss. Near-infrared spectroscopy is now a widely used technique to detect a wide variety of ingredients in biological samples. In this study, a miniaturized semi-automated prototype apparatus with a near-infrared sensor and a flow cell was used to acquire spectra (1100 nm to 1350 nm) of grape must at defined temperatures. Data of must samples from four different red and white Vitis vinifera (L.) varieties were recorded throughout the whole growing season of 2021 in Rhineland Palatinate, Germany. Each sample consisted of 100 randomly sampled berries from the entire vineyard. The contents of the main sugars (glucose and fructose) and acids (malic acid and tartaric acid) were determined with high-performance liquid chromatography. Chemometric methods, using partial least-square regression and leave-one-out cross-validation, provided good estimates of both sugars (RMSEP = 6.06 g/L, R2 = 89.26%), as well as malic acid (RMSEP = 1.22 g/L, R2 = 91.10%). The coefficient of determination (R2) was comparable for glucose and fructose with 89.45% compared to 89.08%, respectively. Although tartaric acid was predictable for only two of the four varieties using near-infrared spectroscopy, calibration and validation for malic acid were accurate for all varieties in an equal extent like the sugars. These high prediction accuracies for the main quality determining grape must ingredients using this miniaturized prototype apparatus might enable an installation on a grape harvester in the future. Full article
(This article belongs to the Special Issue Recent Advances in Terahertz, Mid-Infrared, and Near-Infrared Sensing)
Show Figures

Figure 1

15 pages, 1756 KiB  
Article
Comparative Study on Grape Berry Anthocyanins of Various Teinturier Varieties
by László Kőrösi, Szilárd Molnár, Péter Teszlák, Ágnes Dörnyei, Erika Maul, Reinhard Töpfer, Tamás Marosvölgyi, Éva Szabó and Franco Röckel
Foods 2022, 11(22), 3668; https://doi.org/10.3390/foods11223668 - 16 Nov 2022
Cited by 20 | Viewed by 4488
Abstract
The red-fleshed grape cultivars, called teinturier or dyer grapes, contain anthocyanins in both the skin and flesh. These phenolic compounds exhibit excellent coloring ability, and as antioxidants, they are important bioactive compounds in food crops. In this work, anthocyanin patterns of grape berries [...] Read more.
The red-fleshed grape cultivars, called teinturier or dyer grapes, contain anthocyanins in both the skin and flesh. These phenolic compounds exhibit excellent coloring ability, and as antioxidants, they are important bioactive compounds in food crops. In this work, anthocyanin patterns of grape berries of fifteen teinturier varieties collected from the gene bank located at Pécs in the southwest of Hungary were compared. Anthocyanin profiles of numerous varieties originating from Hungary such as ‘Bíborkadarka’, ‘Kármin’, ‘Kurucvér’, and ‘Turán’ are reported for the first time. Anthocyanins extracted separately from the skin and juice were analyzed using high-performance liquid chromatography coupled with a photodiode array detector. For the identification of compounds, high-resolution orbitrap mass spectrometry was used. All in all, twenty-one anthocyanins were identified and quantified. We found that anthocyanin patterns differed significantly in the skin and juice for all investigated cultivars. For Vitis vinifera varieties, the predominant anthocyanin in the skin was malvidin-3-O-glucoside, while the main pigment in the juice was peonidin-3-O-glucoside. For the first time, a significant amount of diglucosides was detected in two Vitis Vinifera cultivars with a direct relationship. In general, the pigment composition of the skin was much more complex than that of the juice. The comparative study with presented patterns gives valuable and beneficial information from a chemotaxonomical point of view. Our results also help to choose the appropriate teinturier varieties with the desired anthocyanins for food coloring or winemaking purposes. Full article
(This article belongs to the Special Issue Fruits and Fruit-Based Products as a Source of Bioactive Compounds)
Show Figures

Figure 1

19 pages, 1830 KiB  
Article
Relieving the Phenotyping Bottleneck for Grape Bunch Architecture in Grapevine Breeding Research: Implementation of a 3D-Based Phenotyping Approach for Quantitative Trait Locus Mapping
by Florian Rist, Florian Schwander, Robert Richter, Jennifer Mack, Anna Schwandner, Ludger Hausmann, Volker Steinhage, Reinhard Töpfer and Katja Herzog
Horticulturae 2022, 8(10), 907; https://doi.org/10.3390/horticulturae8100907 - 5 Oct 2022
Cited by 6 | Viewed by 2557
Abstract
In viticulture, winemakers and the industry demand grape bunches that have a reduced degree of bunch compactness. The major aspect is that a loose bunch compactness reduces the risk of severe Botrytis bunch-rot infections. Grapevine breeders focus hereby on several bunch-architecture-related traits. For [...] Read more.
In viticulture, winemakers and the industry demand grape bunches that have a reduced degree of bunch compactness. The major aspect is that a loose bunch compactness reduces the risk of severe Botrytis bunch-rot infections. Grapevine breeders focus hereby on several bunch-architecture-related traits. For specific breeding approaches and breeding-research-related topics, such as Quantitative Trait Locus (QTL) analysis or molecular marker development, the exact and objective phenotyping of such traits is mandatory. In this study, a precise and high-throughput 3D phenotyping pipeline was applied to screen 1514 genotypes from three mapping populations with different genetic backgrounds to investigate its applicability for QTL mapping approaches. In the first step, the phenotypic data of one population containing 150 genotypes were collected and analyzed with the 3D phenotyping pipeline. Additionally, corresponding reference data were obtained. Phenotypic values and results of a QTL analysis were compared with each other. Strongly positive correlations up to r = 0.93 between 3D and reference measurements could be detected for several traits. The ten-times-faster 3D phenotyping pipeline revealed 20, and the reference phenotyping methods revealed 22 QTLs. Eighteen of these QTLs were consistent between both procedures. In the next step, screening was extended to four different mapping populations across several seasons. In total, up to 1500 genotypes were screened during one season (>5000 grape bunches in total). The data analysis revealed significant differences across years and populations. Three bunch-architecture traits, including total berry volume, bunch width, and berry diameter, explained the highest amount of variability in the phenotypic data. A QTL analysis was performed on the phenotypic data of the involved populations to identify comparative genetic loci for bunch-architecture traits. Between 20 and 26 stable and reproducible QTLs for the investigated populations were detected. A common QTL for berry diameter could be identified for all populations. Our results strongly conclude that this locus is co-located on chromosome 17 when mapped to the grapevine reference genome. The results show that the implementation of the 3D phenotyping platform allows for precise and extended screenings of different, genetic diverse mapping populations and thus opens up the possibility to uncover the genomic architecture of this highly complex quantitative grapevine trait. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

13 pages, 15298 KiB  
Article
A 69 kbp Deletion at the Berry Color Locus Is Responsible for Berry Color Recovery in Vitis vinifera L. Cultivar ‘Riesling Rot’
by Franco Röckel, Carina Moock, Florian Schwander, Erika Maul, Reinhard Töpfer and Ludger Hausmann
Int. J. Mol. Sci. 2022, 23(7), 3708; https://doi.org/10.3390/ijms23073708 - 28 Mar 2022
Cited by 5 | Viewed by 3030
Abstract
‘Riesling Weiss’ is a white grapevine variety famous worldwide for fruity wines with higher acidity. Hardly known is ‘Riesling Rot’, a red-berried variant of ‘Riesling Weiss’ that disappeared from commercial cultivation but has increased in awareness in the last decades. The question arises [...] Read more.
‘Riesling Weiss’ is a white grapevine variety famous worldwide for fruity wines with higher acidity. Hardly known is ‘Riesling Rot’, a red-berried variant of ‘Riesling Weiss’ that disappeared from commercial cultivation but has increased in awareness in the last decades. The question arises of which variant, white or red, is the original and, consequently, which cultivar is the true ancestor. Sequencing the berry color locus of ‘Riesling Rot’ revealed a new VvmybA gene variant in one of the two haplophases called VvmybA3/1RR. The allele displays homologous recombination of VvmybA3 and VvmybA1 with a deletion of about 69 kbp between both genes that restores VvmybA1 transcripts. Furthermore, analysis of ‘Riesling Weiss’, ‘Riesling Rot’, and the ancestor ‘Heunisch Weiss’ along chromosome 2 using SSR (simple sequence repeat) markers elucidated that the haplophase of ‘Riesling Weiss’ was inherited from the white-berried parent variety ‘Heunisch Weiss’. Since no color mutants of ‘Heunisch Weiss’ are described that could have served as allele donors, we concluded that, in contrast to the public opinion, ‘Riesling Rot’ resulted from a mutational event in ‘Riesling Weiss’ and not vice versa. Full article
(This article belongs to the Special Issue Genetic Regulation of Fruit Pigmentation)
Show Figures

Figure 1

22 pages, 2133 KiB  
Article
Genetic Diversity of Armenian Grapevine (Vitis vinifera L.) Germplasm: Molecular Characterization and Parentage Analysis
by Kristine Margaryan, Gagik Melyan, Franco Röckel, Reinhard Töpfer and Erika Maul
Biology 2021, 10(12), 1279; https://doi.org/10.3390/biology10121279 - 6 Dec 2021
Cited by 23 | Viewed by 7509
Abstract
Armenia is an important country of origin of cultivated Vitis vinifera subsp. vinifera and wild Vitis vinifera subsp. sylvestris and has played a key role in the long history of grape cultivation in the Southern Caucasus. The existence of immense grapevine biodiversity in [...] Read more.
Armenia is an important country of origin of cultivated Vitis vinifera subsp. vinifera and wild Vitis vinifera subsp. sylvestris and has played a key role in the long history of grape cultivation in the Southern Caucasus. The existence of immense grapevine biodiversity in a small territory is strongly linked with unique relief and diverse climate conditions assembled with millennium-lasting cultural and historical context. In the present in-depth study using 25 nSSR markers, 492 samples collected in old vineyards, home gardens, and private collections were genotyped. For verification of cultivar identity, the symbiotic approach combining genotypic and phenotypic characterization for each genotype was carried out. The study provided 221 unique varieties, including 5 mutants, from which 66 were widely grown, neglected or minor autochthonous grapevine varieties, 49 turned out to be new bred cultivars created within the national breeding programs mainly during Soviet Era and 34 were non-Armenian varieties with different countries of origin. No references and corresponding genetic profiles existed for 67 genotypes. Parentage analysis was performed inferring 62 trios with 53 out of them having not been previously reported and 185 half-kinships. Instability of grapevine cultivars was detected, showing allelic variants, with three and in rare cases four alleles at one loci. Obtained results have great importance and revealed that Armenia conserved an extensive grape genetic diversity despite geographical isolation and low material exchange. This gene pool richness represents a huge reservoir of under-explored genetic diversity. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

16 pages, 983 KiB  
Technical Note
Grapevine and Wine Metabolomics-Based Guidelines for FAIR Data and Metadata Management
by Stefania Savoi, Panagiotis Arapitsas, Éric Duchêne, Maria Nikolantonaki, Ignacio Ontañón, Silvia Carlin, Florian Schwander, Régis D. Gougeon, António César Silva Ferreira, Georgios Theodoridis, Reinhard Töpfer, Urska Vrhovsek, Anne-Francoise Adam-Blondon, Mario Pezzotti and Fulvio Mattivi
Metabolites 2021, 11(11), 757; https://doi.org/10.3390/metabo11110757 - 3 Nov 2021
Cited by 20 | Viewed by 6351
Abstract
In the era of big and omics data, good organization, management, and description of experimental data are crucial for achieving high-quality datasets. This, in turn, is essential for the export of robust results, to publish reliable papers, make data more easily available, and [...] Read more.
In the era of big and omics data, good organization, management, and description of experimental data are crucial for achieving high-quality datasets. This, in turn, is essential for the export of robust results, to publish reliable papers, make data more easily available, and unlock the huge potential of data reuse. Lately, more and more journals now require authors to share data and metadata according to the FAIR (Findable, Accessible, Interoperable, Reusable) principles. This work aims to provide a step-by-step guideline for the FAIR data and metadata management specific to grapevine and wine science. In detail, the guidelines include recommendations for the organization of data and metadata regarding (i) meaningful information on experimental design and phenotyping, (ii) sample collection, (iii) sample preparation, (iv) chemotype analysis, (v) data analysis (vi) metabolite annotation, and (vii) basic ontologies. We hope that these guidelines will be helpful for the grapevine and wine metabolomics community and that it will benefit from the true potential of data usage in creating new knowledge being revealed. Full article
(This article belongs to the Special Issue Grape and Wine Metabolome Analysis)
Show Figures

Graphical abstract

16 pages, 5881 KiB  
Article
High-Throughput Phenotyping of Leaf Discs Infected with Grapevine Downy Mildew Using Shallow Convolutional Neural Networks
by Daniel Zendler, Nagarjun Malagol, Anna Schwandner, Reinhard Töpfer, Ludger Hausmann and Eva Zyprian
Agronomy 2021, 11(9), 1768; https://doi.org/10.3390/agronomy11091768 - 2 Sep 2021
Cited by 17 | Viewed by 5097
Abstract
Objective and standardized recording of disease severity in mapping crosses and breeding lines is a crucial step in characterizing resistance traits utilized in breeding programs and to conduct QTL or GWAS studies. Here we report a system for automated high-throughput scoring of disease [...] Read more.
Objective and standardized recording of disease severity in mapping crosses and breeding lines is a crucial step in characterizing resistance traits utilized in breeding programs and to conduct QTL or GWAS studies. Here we report a system for automated high-throughput scoring of disease severity on inoculated leaf discs. As proof of concept, we used leaf discs inoculated with Plasmopara viticola ((Berk. and Curt.) Berl. and de Toni) causing grapevine downy mildew (DM). This oomycete is one of the major grapevine pathogens and has the potential to reduce grape yield dramatically if environmental conditions are favorable. Breeding of DM resistant grapevine cultivars is an approach for a novel and more sustainable viticulture. This involves the evaluation of several thousand inoculated leaf discs from mapping crosses and breeding lines every year. Therefore, we trained a shallow convolutional neural-network (SCNN) for efficient detection of leaf disc segments showing P. viticola sporangiophores. We could illustrate a high and significant correlation with manually scored disease severity used as ground truth data for evaluation of the SCNN performance. Combined with an automated imaging system, this leaf disc-scoring pipeline has the potential to considerably reduce the amount of time during leaf disc phenotyping. The pipeline with all necessary documentation for adaptation to other pathogens is freely available. Full article
Show Figures

Figure 1

20 pages, 4738 KiB  
Article
Confirmation and Fine Mapping of the Resistance Locus Ren9 from the Grapevine Cultivar ‘Regent’
by Daniel Zendler, Reinhard Töpfer and Eva Zyprian
Plants 2021, 10(1), 24; https://doi.org/10.3390/plants10010024 - 24 Dec 2020
Cited by 24 | Viewed by 3882
Abstract
Grapevine (Vitis vinifera ssp. vinifera) is a major fruit crop with high economic importance. Due to its susceptibility towards fungal and oomycete pathogens such as Erysiphe necator and Plasmopara viticola, the causal agents of powdery and downy mildew (PM and DM, [...] Read more.
Grapevine (Vitis vinifera ssp. vinifera) is a major fruit crop with high economic importance. Due to its susceptibility towards fungal and oomycete pathogens such as Erysiphe necator and Plasmopara viticola, the causal agents of powdery and downy mildew (PM and DM, respectively), grapevine growers annually face a major challenge in coping with shortfalls of yield caused by these diseases. Here we report the confirmation of a genetic resource for grapevine resistance breeding against PM. During the delimitation process of Ren3 on chromosome 15 from the cultivar ‘Regent’, a second resistance-encoding region on chromosome 15 termed Ren9 was characterized. It mediates a trailing necrosis associated with the appressoria of E. necator and restricts pathogen growth. In this study, we confirm this QTL in a related mapping population of ‘Regent’ × ‘Cabernet Sauvignon’. The data show that this locus is located at the upper arm of chromosome 15 between markers GF15-58 (0.15 Mb) and GF15-53 (4 Mb). The efficiency of the resistance against one of the prominent European PM isolates (EU-B) is demonstrated. Based on fine-mapping and literature knowledge we propose two possible regions of interest and supply molecular markers to follow both regions in marker-assisted selection. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

20 pages, 3232 KiB  
Article
Detection of Two Different Grapevine Yellows in Vitis vinifera Using Hyperspectral Imaging
by Nele Bendel, Andreas Backhaus, Anna Kicherer, Janine Köckerling, Michael Maixner, Barbara Jarausch, Sandra Biancu, Hans-Christian Klück, Udo Seiffert, Ralf T. Voegele and Reinhard Töpfer
Remote Sens. 2020, 12(24), 4151; https://doi.org/10.3390/rs12244151 - 18 Dec 2020
Cited by 33 | Viewed by 4953
Abstract
Grapevine yellows (GY) are serious phytoplasma-caused diseases affecting viticultural areas worldwide. At present, two principal agents of GY are known to infest grapevines in Germany: Bois noir (BN) and Palatinate grapevine yellows (PGY). Disease management is mostly based on prophylactic measures as there [...] Read more.
Grapevine yellows (GY) are serious phytoplasma-caused diseases affecting viticultural areas worldwide. At present, two principal agents of GY are known to infest grapevines in Germany: Bois noir (BN) and Palatinate grapevine yellows (PGY). Disease management is mostly based on prophylactic measures as there are no curative in-field treatments available. In this context, sensor-based disease detection could be a useful tool for winegrowers. Therefore, hyperspectral imaging (400–2500 nm) was applied to identify phytoplasma-infected greenhouse plants and shoots collected in the field. Disease detection models (Radial-Basis Function Network) have successfully been developed for greenhouse plants of two white grapevine varieties infected with BN and PGY. Differentiation of symptomatic and healthy plants was possible reaching satisfying classification accuracies of up to 96%. However, identification of BN-infected but symptomless vines was difficult and needs further investigation. Regarding shoots collected in the field from different red and white varieties, correct classifications of up to 100% could be reached using a Multi-Layer Perceptron Network for analysis. Thus, hyperspectral imaging seems to be a promising approach for the detection of different GY. Moreover, the 10 most important wavelengths were identified for each disease detection approach, many of which could be found between 400 and 700 nm and in the short-wave infrared region (1585, 2135, and 2300 nm). These wavelengths could be used further to develop multispectral systems. Full article
(This article belongs to the Special Issue Plant Phenotyping for Disease Detection)
Show Figures

Graphical abstract

13 pages, 2309 KiB  
Article
RNA-Seq Time Series of Vitis vinifera Bud Development Reveals Correlation of Expression Patterns with the Local Temperature Profile
by Boas Pucker, Anna Schwandner, Sarah Becker, Ludger Hausmann, Prisca Viehöver, Reinhard Töpfer, Bernd Weisshaar and Daniela Holtgräwe
Plants 2020, 9(11), 1548; https://doi.org/10.3390/plants9111548 - 12 Nov 2020
Cited by 8 | Viewed by 6643
Abstract
Plants display sophisticated mechanisms to tolerate challenging environmental conditions and need to manage their ontogenesis in parallel. Here, we set out to generate an RNA-Seq time series dataset throughout grapevine (Vitis vinifera) early bud development. The expression of the developmental regulator [...] Read more.
Plants display sophisticated mechanisms to tolerate challenging environmental conditions and need to manage their ontogenesis in parallel. Here, we set out to generate an RNA-Seq time series dataset throughout grapevine (Vitis vinifera) early bud development. The expression of the developmental regulator VviAP1 served as an indicator of the progression of development. We investigated the impact of changing temperatures on gene expression levels during the time series and detected a correlation between increased temperatures and a high expression level of genes encoding heat-shock proteins. The dataset also allowed the exemplary investigation of expression patterns of genes from three transcription factor (TF) gene families, namely MADS-box, WRKY, and R2R3-MYB genes. Inspection of the expression profiles from all three TF gene families indicated that a switch in the developmental program takes place in July which coincides with increased expression of the bud dormancy marker gene VviDRM1. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

20 pages, 2973 KiB  
Article
Color Intensity of the Red-Fleshed Berry Phenotype of Vitis vinifera Teinturier Grapes Varies Due to a 408 bp Duplication in the Promoter of VvmybA1
by Franco Röckel, Carina Moock, Ulrike Braun, Florian Schwander, Peter Cousins, Erika Maul, Reinhard Töpfer and Ludger Hausmann
Genes 2020, 11(8), 891; https://doi.org/10.3390/genes11080891 - 5 Aug 2020
Cited by 30 | Viewed by 5663
Abstract
Grapevine (Vitis vinifera) teinturier cultivars are characterized by their typical reddish leaves and red-fleshed berries due to ectopic anthocyanin formation. Wines of these varieties have economic importance as they can be used for blending to enhance the color of red wines. [...] Read more.
Grapevine (Vitis vinifera) teinturier cultivars are characterized by their typical reddish leaves and red-fleshed berries due to ectopic anthocyanin formation. Wines of these varieties have economic importance as they can be used for blending to enhance the color of red wines. The unique and heritable mutation has been known for a long time but the underlying genetic mechanism still is not yet understood. Here we describe the association of the red-fleshed berry phenotype with a 408 bp repetitive DNA element in the promoter of the VvmybA1 gene (grapevine color enhancer, GCE). Three different clones of ‘Teinturier’ were discovered with two, three and five allelic GCE repeats (MybA1t2, MybA1t3 and MybA1t5). All three clones are periclinal chimeras; these clones share the same L1 layer, but have distinct L2 layers with different quantities of GCE repeats. Quantitative real time PCR and HPLC analysis of leaf and berry samples showed that the GCE repeat number strongly correlates with an increase of the expression of VvmybA1 itself and the VvUFGT gene regulated by it and the anthocyanin content. A model is proposed based on autoregulation of VvmybA1t to explain the red phenotype which is similar to that of red-fleshed apples. This study presents results about the generation and modes of action of three MybA1t alleles responsible for the red-fleshed berry phenotype of teinturier grapevines. Full article
(This article belongs to the Special Issue Genetics and Diversity of Grapevine)
Show Figures

Figure 1

26 pages, 2643 KiB  
Article
Detection of Grapevine Leafroll-Associated Virus 1 and 3 in White and Red Grapevine Cultivars Using Hyperspectral Imaging
by Nele Bendel, Anna Kicherer, Andreas Backhaus, Janine Köckerling, Michael Maixner, Elvira Bleser, Hans-Christian Klück, Udo Seiffert, Ralf T. Voegele and Reinhard Töpfer
Remote Sens. 2020, 12(10), 1693; https://doi.org/10.3390/rs12101693 - 25 May 2020
Cited by 40 | Viewed by 6949
Abstract
Grapevine leafroll disease (GLD) is considered one of the most widespread grapevine virus diseases, causing severe economic losses worldwide. To date, six grapevine leafroll-associated viruses (GLRaVs) are known as causal agents of the disease, of which GLRaV-1 and -3 induce the strongest symptoms. [...] Read more.
Grapevine leafroll disease (GLD) is considered one of the most widespread grapevine virus diseases, causing severe economic losses worldwide. To date, six grapevine leafroll-associated viruses (GLRaVs) are known as causal agents of the disease, of which GLRaV-1 and -3 induce the strongest symptoms. Due to the lack of efficient curative treatments in the vineyard, identification of infected plants and subsequent uprooting is crucial to reduce the spread of this disease. Ground-based hyperspectral imaging (400–2500 nm) was used in this study in order to identify white and red grapevine plants infected with GLRaV-1 or -3. Disease detection models have been successfully developed for greenhouse plants discriminating symptomatic, asymptomatic, and healthy plants. Furthermore, field tests conducted over three consecutive years showed high detection rates for symptomatic white and red cultivars, respectively. The most important detection wavelengths were used to simulate a multispectral system that achieved classification accuracies comparable to the hyperspectral approach. Although differentiation of asymptomatic and healthy field-grown grapevines showed promising results further investigations are needed to improve classification accuracy. Symptoms caused by GLRaV-1 and -3 could be differentiated. Full article
Show Figures

Graphical abstract

22 pages, 3566 KiB  
Article
Combination of an Automated 3D Field Phenotyping Workflow and Predictive Modelling for High-Throughput and Non-Invasive Phenotyping of Grape Bunches
by Florian Rist, Doreen Gabriel, Jennifer Mack, Volker Steinhage, Reinhard Töpfer and Katja Herzog
Remote Sens. 2019, 11(24), 2953; https://doi.org/10.3390/rs11242953 - 10 Dec 2019
Cited by 23 | Viewed by 4379
Abstract
In grapevine breeding, loose grape bunch architecture is one of the most important selection traits, contributing to an increased resilience towards Botrytis bunch rot. Grape bunch architecture is mainly influenced by the berry number, berry size, the total berry volume, and bunch width [...] Read more.
In grapevine breeding, loose grape bunch architecture is one of the most important selection traits, contributing to an increased resilience towards Botrytis bunch rot. Grape bunch architecture is mainly influenced by the berry number, berry size, the total berry volume, and bunch width and length. For an objective, precise, and high-throughput assessment of these architectural traits, the 3D imaging sensor Artec® Spider was applied to gather dense point clouds of the visible side of grape bunches directly in the field. Data acquisition in the field is much faster and non-destructive in comparison to lab applications but results in incomplete point clouds and, thus, mostly incomplete phenotypic values. Therefore, lab scans of whole bunches (360°) were used as ground truth. We observed strong correlations between field and lab data but also shifts in mean and max values, especially for the berry number and total berry volume. For this reason, the present study is focused on the training and validation of different predictive regression models using 3D data from approximately 2000 different grape bunches in order to predict incomplete bunch traits from field data. Modeling concepts included simple linear regression and machine learning-based approaches. The support vector machine was the best and most robust regression model, predicting the phenotypic traits with an R2 of 0.70–0.91. As a breeding orientated proof-of-concept, we additionally performed a Quantitative Trait Loci (QTL)-analysis with both the field modeled and lab data. All types of data resulted in joint QTL regions, indicating that this innovative, fast, and non-destructive phenotyping method is also applicable for molecular marker development and grapevine breeding research. Full article
(This article belongs to the Special Issue Advanced Imaging for Plant Phenotyping)
Show Figures

Graphical abstract

Back to TopTop