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Abstract: In viticulture, winemakers and the industry demand grape bunches that have a reduced
degree of bunch compactness. The major aspect is that a loose bunch compactness reduces the
risk of severe Botrytis bunch-rot infections. Grapevine breeders focus hereby on several bunch-
architecture-related traits. For specific breeding approaches and breeding-research-related topics,
such as Quantitative Trait Locus (QTL) analysis or molecular marker development, the exact and
objective phenotyping of such traits is mandatory. In this study, a precise and high-throughput
3D phenotyping pipeline was applied to screen 1514 genotypes from three mapping populations
with different genetic backgrounds to investigate its applicability for QTL mapping approaches.
In the first step, the phenotypic data of one population containing 150 genotypes were collected
and analyzed with the 3D phenotyping pipeline. Additionally, corresponding reference data were
obtained. Phenotypic values and results of a QTL analysis were compared with each other. Strongly
positive correlations up to r = 0.93 between 3D and reference measurements could be detected
for several traits. The ten-times-faster 3D phenotyping pipeline revealed 20, and the reference
phenotyping methods revealed 22 QTLs. Eighteen of these QTLs were consistent between both
procedures. In the next step, screening was extended to four different mapping populations across
several seasons. In total, up to 1500 genotypes were screened during one season (>5000 grape
bunches in total). The data analysis revealed significant differences across years and populations.
Three bunch-architecture traits, including total berry volume, bunch width, and berry diameter,
explained the highest amount of variability in the phenotypic data. A QTL analysis was performed
on the phenotypic data of the involved populations to identify comparative genetic loci for bunch-
architecture traits. Between 20 and 26 stable and reproducible QTLs for the investigated populations
were detected. A common QTL for berry diameter could be identified for all populations. Our results
strongly conclude that this locus is co-located on chromosome 17 when mapped to the grapevine
reference genome. The results show that the implementation of the 3D phenotyping platform allows
for precise and extended screenings of different, genetic diverse mapping populations and thus
opens up the possibility to uncover the genomic architecture of this highly complex quantitative
grapevine trait.

Keywords: sensor-based phenotyping; plant phenomics; grapevine breeding; QTL analysis;
Vitis vinifera ssp. vinifera; grape bunch compactness; grape bunch architecture
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1. Introduction

The selection of grapevine (Vitis vinifera ssp. vinifera L.) clones and breeding mate-
rial that express a loose grape-bunch architecture is one of the major goals in wine- and
table-grape breeding [1–3]. Multiple studies have shown a close link between a compact,
dense bunch architecture and a higher susceptibility against the bunch-rot-inducing fungal
pathogen Botrytis cinerea (Botrytis) [4,5]. The Botrytis infection, causing gray mold or Botrytis
bunch rot, has a high potential of triggering economical damage due to a reduction of
yield and wine quality, especially if humid weather conditions occur during bloom and/or
harvest time [6,7]. In consequence, controlling Botrytis bunch rot (and other pathogens)
requires intense viticultural management procedures such as defoliation and plant pro-
tection [7,8]. Besides the compactness of grapes, smaller berries were recently associated
with a reduction in the risk for Botrytis bunch rot [5]. However, for Botrytis, no reports on
mapping successful defense-related genes are available yet. Therefore, alternative strategies
are applied in breeding programs [9,10]. Breeders hereby mainly focus on a loose bunch
architecture to strengthen the resilience of grape berries against Botrytis bunch rot [2,3,11].
Besides these phytosanitary aspects, a loose grape bunch architecture is additionally as-
sociated with positive effects on the berry ripening rate and berry compositions (see the
detailed overview of Tello and Ibanez, 2018 [7]). The compactness of a grape bunch depends
strongly on the synergy of two structure-defining traits: (1) berry characteristics, i.e., berry
number and size; and (2) stem-related traits, i.e., rachis length, pedicel length, and width of
the grape bunch [9,12,13]. The degree of bunch compactness is, thus, determined by the
interaction of individual bunch-architecture-related traits.

The phenotyping of bunch architecture is mostly performed in the field and focuses
commonly on the visual rating of grape-bunch density. The International Organization of
Vine and Wine (OIV) published an optical descriptor for bunch density (OIV descriptor
204) [14]. This five-class system rates bunches according to the degree of compactness,
from a very loose (class 1) to a very dense (class 9) structure [14]. In general, such classifica-
tion data have several restrictions, as they are determined by subjectivity and are rather
superficial, as they do not give any detailed information on the single traits/characteristics
that affect bunch compactness [15–17]. Increasing the degree of detail and measuring
the sub-traits is laborious and expensive, as it requires trained employees. This often
limits the number of assessed samples per season and is recognized as the phenotypic
bottleneck [18]. Several studies showed the potential of two-dimensional (2D)-based or
three-dimensional (3D)-based sensor technologies to overcome the phenotyping bottleneck
for grape-bunch-architecture-related traits [17,19,20]. As a result, a substantially increased
number of phenotypic samples, together with a high precision of numeric data, are re-
quired to characterize single or multiple grape-bunch architecture-related traits. Sensor
technologies open the possibility for an effective and objective bunch-architecture screening
of grapevine populations with subsequent QTL analyses. The QTL analysis is a powerful
tool in breeding research to identify genetic regions contributing to the manifestation of a
trait. Positional, closely linked markers can later be used for an extended marker-assisted
selection (MAS) within early selection of breeding material [21,22]. In the last years, several
studies have targeted bunch-architecture-related traits, gaining insights into the relation-
ships between involved sub-traits and the underlying genetic architecture of grapevine,
as well as table, grapes [23–27]. Fanizza et al. determined the grape bunch weight, the
number of berries per bunch, and the berry weight within a table-grape population (‘Italia’
× ‘Big Perlon’) of 184 genotypes over three years [28]. The identified QTLs showed a high
variability over the three consecutive seasons. For instance, for the traits berry number
and berry weight, they could not find recurring regions. For bunch weight, however,
they could identify one consistent QTL on chromosome 5. In addition, Correa et al. mea-
sured rachis length and used the weight of 50 berries to approximate the total number of
berries of 137 genotypes of an experimental table-grape population of ‘Ruby Seedless’ ×
‘Sultanina’ [26]. Their analysis revealed 19 QTLs distributed on chromosomes 5, 8, 9, 14,
17, and 18 for the examined traits. Most of the mentioned studies used labor-intensive
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manual low-throughput methods for phenotyping, resulting in a low number of repli-
cates of the investigated plant material (less than 200 genotypes). So far, QTL mapping
is mainly conducted within relatively small population sizes of less than 190 offspring
individuals [21]. A high number of genotypes, together with dense marker information, are
needed for the validation of QTL mapping results for complex traits that are highly affected
by the environment. Therefore, an increased number of genotypes within populations
and different independent mapping populations are required [21,28,29]. To meet these
challenging demands, high-throughput phenotyping methods are crucial to overcome
this bottleneck by a substantial increase of the sample size and to facilitate phenomic
and genomic studies. Recently, only a few studies have applied sensor-based phenotypic
data for genetic analyses, which are mostly based on 2D-imaging methods for grape-
bunch phenotyping [20,23]. Richter et al. used RGB images to quantify berry-related traits
(e.g., the total number of berries and rachis-related traits) [23]. The QTL analysis revealed
about 30 QTLs with LODmax values of up to 11 explaining around 30% of phenotypic varia-
tion. On this basis, the applicability of a structured light-based 3D sensor was validated for
grape-bunch phenotyping [13]. The scanning procedure mentioned in Rist et al. [13] does
not require any invasive steps, thus resulting in an approximately ten-times-faster work-
flow in comparison to an automated image-based method [13]. In addition, an automated
software framework was developed and can be used to analyze resulting 3D point clouds
of whole grape bunches to extract all the individual traits needed for the phenotyping of
grape-bunch architecture [13,17]: berry number, mean berry diameter and volume, total
berry volume (total volume), bunch width, and bunch length. The testing panel included
samples from four different grapevine cultivars, as well as a subset of 41 genotypes of the
mapping population ‘Calardis Musqué’ (GF.GA-47-42) × ‘Villard Blanc’ (C × V) [13,30].
For the cultivar samples, a direct comparison of the 2D-related reference measurements
with the 3D-related data revealed high correlation coefficients up to r = 0.93 for berry
number and r = 0.83 for total volume [13].

Regarding the demand of high-throughput phenotyping methods, these novel tools
must be applicable generally on highly diverse material with a broad genetic background.
Furthermore, the sensor-based data should be usable for proper genetic analyses. The
present study addresses three major aspects: (I) The reliability of the 3D-based phenotypic
data in comparison to established 2D-based data was verified by phenotyping the core
population of C × V (respectively six bunches each of 150 genotypes), using both methods.
Furthermore, the phenotypic data recorded with both methods were applied for QTL
mapping and identified QTLs were compared for validation. (II) The phenotyping and QTL
analysis were expanded on three additional cross-populations (i.e., (1) an independently
crossed C × V population with 722 genotypes, (2) a ‘Dakapo’ × ‘Cabernet Sauvignon’
population with 347 genotypes, and (III) a ‘Riesling’ × ‘Sauvignon Blanc’ cross with
295 genotypes) in order to identify transferable QTLs. (III) The physical positions of
these QTLs on the Vitis vinifera reference genome PN40024 12X.v2 were compared to
identify coherence and general determining factors that are transferable between divergent
genetic backgrounds.

2. Materials and Methods
2.1. Plant Material

The study took place at the experimental vineyards at JKI Geilweilerhof (N49◦13.070,
E8◦02.790) in Siebeldingen, under the cool climate conditions of Germany. Four F1 mapping
populations were screened between 2016 and 2020.

(1) The grape bunches of 150 genotypes (n = 150) of the mapping population ‘Calardis
Musqué’ VIVC4549 (‘Bacchus Weiß‘ VIVC851 × ‘Seyval Blanc‘ VIVC11558) × ‘Villard
Blanc’ VIVC13081 (Seibel 6468 VIVC11181 × ‘Subereux‘ VIVC12031) (C × V_150) were
investigated over three consecutive seasons in 2016, 2017, and 2018. This population was
grafted on ‘SO4′ (VIVC11473) and planted in the year 2010 on two adjacent vineyards,
with four replicates per genotype. (2) An extended population of C × V, derived from an
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independent C× V cross, planted in 2014 with approximately 1000 genotypes (C× V_1000),
was screened in the season 2018. Almost 300 plants showed a reduced amount of fertility
or less than three representative bunches and thus were not considered for this study. The
remaining 722 genotypes (n = 722) were further analyzed. (3) A total of 347 genotypes
(n = 347) from a cross of ‘Dakapo’ VIVC14728 (‘Deckrot’ VIVC3482 × ‘Portugieser Blau’
VIVC9620) × ‘Cabernet Sauvignon’ VIVC1929 (‘Cabernet Franc’ VIVC1927 × ‘Sauvignon
Blanc’ VIVC10790) (D × C) that was planted in 2015 were phenotyped from 2018 to 2020.
(4) A total of 295 genotypes (n = 295) of a ‘Riesling Weiß’ VIVC10077 (Unknown× ‘Heunisch
Weiß’ VIVC5374) × ‘Sauvignon Blanc’ VIVC10790 (‘Traminer’ VIVC17636 × Unknown)
(R × S) cross, also planted in 2015, were phenotyped from 2018 to 2020.

Except for the C × V_150 population, the other populations were not grafted and
planted in a slope direction. All investigated populations were trained in a vertical shoot
positioning (VSP) trellis system (10 to 12 buds), with a plant density of 5000 vines per
hectare (2 × 1 m spacing). Treatment was applied according to local best-practice policies
for viticulture.

2.2. Sampling

In this study, the sampling of grape bunches was standardized over the investigated
populations. Six bunches per genotype for the C × V_150 population (three representative
bunches from each genotype per vineyard) and three grape bunches per genotype for the
other populations were used for this study (for instance, 4992 bunches from 1514 genotypes
in 2018). The samples were taken from the basal insertion of the first three central shoots of
the fruit cane. All bunches were cut directly at their connection with the shoots when they
reached the developmental stage of maturity (BBCH 89) [31]. Until further proceedings, all
grape bunches were stored at 4 ◦C (maximum of one week).

2.3. Three-Dimensional Data Acquisition and Analysis

The 3D data acquisition followed the established procedure, as described in detail by
Rist et al. and Mack et al. [13,32]. The bunches were fixed on a motorized hook, rotating
with 0.5 s−1 or 0.16 s−1 (depending on sample size and shape) in order to take 360◦ scans
of the bunches. The 3D scanner Artec Spider (Artec 3D, L-1466, Luxembourg) was used to
scan the complete structure of bunches. The scanning distance varied between 25 and 30 cm
(in adjustment to sample size and shape). After the scanning process, point clouds of the
samples were saved in polygon file format. In the laboratory, a standard ceiling illumination
was used. Point cloud analysis was performed with the ‘3D Bunch Tool’. The algorithm
analyzes segments and characterizes the point clouds in spherical regions (see Rist et al.
and Mack et al. [13,32] for a more detailed description of the procedure). Subsequently,
several important phenotypic parameters are extracted: the number of berries (BN), mean
berry diameter (Dia), mean berry volume (BV), total (berry) volume (TV), convex hull
volume (CVH), bunch width (W), and bunch length (L).

2.4. Two-Dimensional and Manual Data Acquisition

In order to compare the 3D phenotypic data to already established measurement
methods based on 2D Red–Green–Blue (RGB) images, extended reference measurements
were taken for the grapes of C × V_150. These manual measurements were taken in the
course of the work of Richter et al. [23]. For referencing the 3D-based phenotypic data,
the 2D ‘Berry Analysis Tool’ (BAT) was used. Therefore, all berries of individual bunches
had to be removed and placed on a perforated plate. Under standardized light conditions,
a picture was captured and subsequently analyzed with BAT [33]. With this tool, the
following traits can be acquired: the total number of berries per bunch (ref_BN), the single
berry diameter (ref_Dia) and volume (ref_BV), and the total berry volume (ref_TV). After
removing the berries, an image of the rachis, together with a size standard, was taken. The
rachis (Rac) and pedicel length (Ped) were measured with the ImageJ tool, according to
Richter et al. [23]. The manually measured bunch volume (MBV) was deduced by placing
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them in polyethylene bags, removing the air and submerging the bunches in a container of
water (according to Ferreira et al. [34]). The weight of the individual bunches was measured
manually on a digital scale. Then the compactness of all bunches was rated according to the
OIV 204 (OIV204) optical descriptor for bunch density (class 1: very loose structure; class 9:
very dense structure) [14]. Manual measurements in 2017 and 2018 were reduced to manual
weight measurements. For R × S, D × C and C × V_1000, only 3D-based measurements
were conducted.

2.5. Applied Genetic Maps

The integrated genetic maps used in this study were developed by using the mul-
tipoint maximum likelihood method in JoinMap® Version 4.1 software and resulted in
19 chromosomes (numbered and oriented) according to the PN40024 reference genome [35].
The map of C × V_150 is a revised version of the map published by Zyprian et al. [30], with
150 individuals and 394 SSR markers, a total size of 1621 centimorgan (cM), and 4.1 cM
average distance between markers. The map of C × V_1000 consists of data of 995 indi-
viduals of the extended population. The map is based on 210 SSR markers and has a total
length of 1396 cM and an average distance between markers of 6.6 cM (Schwandner et al.
unpublished). The DxC map includes 739 individuals evaluated with 270 SSR markers.
This resulted in a total map length of 1500 cM, with an average marker distance of 5.5 cM
(Schwander et al. unpublished). The RxC map consists of 285 SSR markers applied on
716 individuals, has a total length of 1592 cM, and an average marker distance of 5.6 cM
(Schwander et al. unpublished).

2.6. QTL Analysis

For the population C × V_150, R × S, and D × C, phenotypic data of three years
were recorded. QTL analyses were performed separately for every single season (year).
QTLs that occurred in at least two of the three seasons were considered as reproducible.
In such cases, QTLs were calculated with three-year mean values for each of the sub-
traits additionally. For C × V_1000, only one-year data were available (2018) and used
for the QTL analysis. The resulting QTLs of this population were considered to be
preliminary QTLs.

MapQTL6.0 [36] was used for the calculation of QTLs of all the measured phenotypic
traits. Interval mapping (IM) with one cM step size was performed. A permutation test with
1000 iterations (p < 0.05) was conducted to determine a chromosome-specific trait-linked
“logarithm of the odds” (LOD) threshold. QTL regions were defined as genetic regions
that exceed this calculated LOD threshold. For each QTL, the percentage of explained
phenotypic variance and the maximum LOD score (LODmax) and its genetic position
(LODmax position) were listed. In the case that a direct LODmax linked marker was available,
this marker name is additionally listed (Supplementary Tables S1 and S2).

2.7. Statistical Analysis

For validation of the 3D-derived phenotypic data, a direct comparison to all measured
2D image data, the manually measured grape-bunch parameter MBV, and the OIV 204 factor
was performed by correlation analysis (α = 0.05). Furthermore, direct correlation analyses
between TV and the manual bunch weight were performed on the data of 2016, 2017,
and 2018. An analysis of variance (ANOVA) was further used to compare 2D vs. 3D
measurement methods (α = 0.05). The results of the QTL analysis from 3D- and 2D-image-
related data, i.e., berry number (BN), bunch length vs. rachis (L), berry diameter (Dia),
berry volume (BV), and total volume (TV), were compared to each other. LODmax values,
LODmax position, and the QTL intervals of the matching QTL regions were evaluated by a
correlation analysis and comparison of mean values (for both, α = 0.05) (Supplementary
Figures S2 and S3).

An ANOVA was further performed on the phenotypic data of the different populations
to compare variability of seasons, as well as between populations (in this case, three-year
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mean values were used) (Supplementary Figures S4–S6). Subsequently, phenotypic data
from all populations were used for a principal component analysis (PCA). All statistical
analyses were performed with R version 3.5.2 [37]. The emmeans package [38] was used
for all ANOVA-based analyses. The ggplot2 [39], ggpubr [40], corrplot [41], and factoextra
packages [42] were used to create the visualizations.

2.8. Approximation of Physical QTL Positions

In order to find general QTL regions for bunch-architecture traits among the investi-
gated populations, the QTL positions were compared. The genetic maps that were used in
this study differ to a certain degree between populations concerning the mapped markers
and the marker saturation, making a direct comparison of QTL positions difficult. Thus,
the positions of the most proximal QTL flanking markers were transferred on the grapevine
reference genome PN40024 12X v2 [43] and further compared. The region was determined
by the flanking markers of the genetic region, limited by the chromosome-specific LOD
threshold (confidence interval).

3. Results
3.1. Direct Comparison between 3D, 2D, and Manually Measured Data of 150 Genotypes

To validate the reliability of 3D-based phenotypic data, in the first step, the 3D-
based phenotypic data were correlated with the 2D and manual measurement data of all
150 individuals of the C × V_150 population.

The correlation analysis between 3D and 2D phenotypic values showed correlations
ranging between r = 0.93 and r = 0.82 for the related traits (Figure 1a). The 2D data of the
pedicel length (Ped) had no respective 3D measured data for a direct comparison. An
indirect comparison with all other traits revealed only minor correlations (Figure 1a).
The manually measured bunch volume (MBV) showed a high correlation coefficient
with the TV and CVH (r = 0.95–0.87). The correlation of the phenotypic 3D data with
the optical descriptor OIV204 showed, on average, a lower correlation in comparison to
the comparable 2D data (Figure 1a). Furthermore, the correlations between manually
measured bunch weight and TV showed very high values, ranging between r = 0.96
and r = 0.97, over the three consecutive seasons (Figure 1b). A direct comparison of the
3D vs. corresponding 2D phenotypic data revealed significant differences between BN,
BV, and TV (Supplementary Figure S1). For the trait BV, the 3D data showed higher
values in comparison to 2D measured values and lower value ranges for the trait BN
(Supplementary Figure S1).

3.2. Comparison of Detected QTLs in CxV_150 Based on 3D and Corresponding 2D Data

After the correlation analysis, the data were used in a QTL mapping approach, and the
results were compared to each other. The 3D phenotypic data revealed 20 QTLs, whereas
the 2D phenotypic data resulted in 22 QTLs for bunch architecture, determining traits
in CxV_150 and explaining a phenotypic variance between 8.7% and 16.8% for the 3D
phenotypic trait data and between 8.1% and 17.1% for the 2D phenotypic data (Table 1 and
Supplementary Table S1). The 3D data showed two unique QTLs for L and BV, and the
2D and manually measured data showed a unique QTL for BN, L, and BV (Table 1 and
Supplementary Table S1).

Eighteen QTLs were matching between the two methods. Concerning these matching
QTL regions, correlation coefficients between r = 0.78 and r = 0.97 could be observed for
LODmax positions, LODmax values, and intervals of the matching QTLs (Supplementary
Figure S2). Furthermore, no significant differences were observed for these parameters
(Supplementary Figure S3).
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ref_BV, berry diameter = ref_Dia, and berry number = ref_BN), and OIV 204. The correlation coeffi-
cients are given for phenotypic measurements (3D, 2D, and manual) and OIV204 ratings from all 
individuals of the population C × V_150 (n = 150) (a). Results of correlation between 3D total volume 
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Figure 1. Assessment of 3D sensor data. Correlation plot of phenotypic 3D data (bunch length = L,
bunch width = W, convex hull volume = CVH, total volume = TV, berry volume = BV, berry
diameter = Dia, and berry number = BN). Reference measurements: manual measured bunch volume
(MBV), 2D image data, (rachis length = Rac, pedicel length = Ped, total volume = ref_TV, berry
volume = ref_BV, berry diameter = ref_Dia, and berry number = ref_BN), and OIV 204. The correla-
tion coefficients are given for phenotypic measurements (3D, 2D, and manual) and OIV204 ratings
from all individuals of the population C × V_150 (n = 150) (a). Results of correlation between 3D
total volume (TV) and Bunch Weight for the seasons 2016-2018 (b).

Table 1. Detected QTLs from 3D and 2D reference phenotypic data of the population C × V_150.
Shown are the LODmax positions, LODmax values, and the explained phenotypic variance for the
detected QTLs of the respective phenotypic traits measured in the season 2016. BN = berry number,
L = bunch length/rachis length, Dia = berry diameter, BV = berry volume, and TV = total volume.

3D 2D

Chromosome
LODmax
Position

[cM]
LODmax

Phenotypic
Variation

[%]

LODmax
Position

[cM]
LODmax

Phenotypic
Variation

[%]

BN

4 - - - 2.3 3.01 9.1
8 19.5 3.8 11.3 19.5 3.8 11.2

10 69.3 3.6 10.7 69.3 4.8 14
17 50.3 3.7 11 37 4.3 12.7
18 13.6 5.9 16.8 14.6 5.6 16.2

L

1 35.3 3.3 9.8 - - -
2 - - - 19.7 2.8 8.3
4 - - - 34.6 4 11.8
8 38.1 3.5 10.4 22.2 3.5 10.4
9 26.4 4.4 12.8 21.5 4.1 11.9

15 - - - 4 3.7 10.9
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Table 1. Cont.

3D 2D

Chromosome
LODmax
Position

[cM]
LODmax

Phenotypic
Variation

[%]

LODmax
Position

[cM]
LODmax

Phenotypic
Variation

[%]

Dia

6 30.2 3 8.9 30.2 3 9.1
12 59.5 4.3 12.7 59.5 4.8 14.1
17 7.3 3.4 10.2 17.4 5.1 14.9
18 21.5 3 9 21.5 3.7 11.1

BV

6 30.2 2.9 8.7 30.2 2.7 8.1
8 0 3.1 9.3 - - -

12 58.8 4.6 13.4 59.5 4.6 13.5
17 7.3 4.3 12.6 17.4 5 14.6
18 21.5 3.6 10.7 21.5 3.6 10.7

TV

7 79.4 3 8.9 79.4 3.2 9.6
10 67.3 3.2 9.4 66.3 4.4 13.2
17 49.5 4.1 12 37 5.1 15.1
18 14.6 5.6 16.1 14.6 5.9 17.1

3.3. High-Throughput 3D Phenotyping of Different Populations

The 3D-phenotyping pipeline was applied in a breeding-research-related frame-
work to test the practical implementation for high-throughput phenotyping. Therefore,
different mapping populations were screened throughout various seasons. The com-
parison between the 3D data from three consecutive seasons of C × V_150, R × S, and
D × C showed significant differences in at least two years for every investigated trait
(Supplementary Figures S4–S6). In a next step, the phenotypic variation between the
populations was investigated. For this analysis, data of C × V_1000 (derived from the
season 2018) were included, and a PCA was performed on the phenotypic values. A
moderate population-specific pattern was observed between C × V_150 and the two
populations D × C and R × S (Figure 2). The C × V_1000 population spanned over all
populations (Figure 2). Dimension 1 (Dim1) explained 76.3% of the total variance, with
TV (20.5%), W (19.5%), L (17.3%), and BN (15.6%) as the main contributors. Dimension
2 (Dim2) explained 18.5% of the total variance, with BV (33.6%), Dia (32,9%), and BN
(22.4%) as the main contributors.

An ANOVA was performed over the phenotypic values of the populations. Signif-
icant differences were found between all investigated populations (Figure 3). Highest
phenotypic-value ranges for all investigated traits were observed for the C × V_150 pop-
ulation (Figure 3). R × S and D × C showed the lowest phenotypic-value ranges for
the measured traits (Figure 3). For both populations, the traits Dia and BV showed no
significant differences (Figure 3b,c).

3.4. QTL Analysis for the Investigated Populations

A QTL analysis was conducted with the phenotypic data recorded across all seasons
and for each population. Seasonal differences could be observed between the populations
(data not shown). For the sake of simplicity, only the LOD curves/preliminary QTL for
the trait BN on chromosome 18 are reported as an example. On this chromosome, Richter
et al. found a QTL for BN in C × V_150 [23]. For our experiments, C × V_150 and D × C
showed a putative QTL with significant LOD values in one season, whereas R × S showed
a QTL occurring in all three recorded seasons (Figure 4a and Supplementary Table S2). To
reduce seasonal uncertainty and to streamline the analysis, further QTLs were calculated
by using phenotypic mean values from the traits that show significant LOD values in at
least two seasons. The resulting QTLs were considered to be reproducible (Supplementary
Table S2). Here, C × V_150 showed 26 QTLs, D × C showed 20 QTLs, and R × S showed
20 QTLs in total (Supplementary Table S2). Table 2 lists only QTLs that occur in at least
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two populations on the same chromosome. In total, 31 reproducible QTLs with LODmax
values up to 20.06 distributed over 12 chromosomes could be detected for the populations
R × S, D × C, and C × V_150. Out of the 29 QTLs, only the QTL for Dia occurred in
all populations on the same chromosome, whereas 11 QTLs occurred in two populations
(note that only multiyear QTLs are considered). Additionally, to validate the results of the
C × V_150 population, preliminary QTLs from the 2018 data of the extended population
C × V_1000 were also included for a direct comparison between these two populations
(Table 2). Between both populations, 15 QTLs/preliminary QTLs were identified on the
same chromosomes (Table 2). Note that the preliminary QTLs of C× V_1000 were excluded
from this point on.
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Traits for PCA1 are TV, W, L, and BN; PCA2 traits are BV, Dia, and BN.
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Figure 3. ANOVA results for the phenotypic values of the investigated populations. Distribution
of the phenotypic values for C × V_1000 (red, n = 722), C × V_150 (green, n = 150), D × C (cyan,
n = 347), and R × S (purple, n = 295). Berry number = BN (a), berry diameter = Dia, (b) berry
volume = BV (c), total volume = TV (d), bunch width = W (e), and bunch length = L (f). Groups
that are indicated by the same letter do not differ at an alpha of 0.05 (Tukey’s test). Note that
phenotypic data of the C × V_1000 population were one-year data from 2018. Datapoints from
further populations are mean values from the respective three consecutive seasons.

The positions of the QTLs for Dia observed in all three populations (highlighted in
Table 2) were then further investigated. The physical positions of mapped linked markers in
the reference genome PN40024 12X.v2 were used to approximate the physical positions of
the QTLs (preliminary QTLs of C × V_1000 were not considered). The linked marker of all
three QTLs for Dia on chromosome 17 from the investigated populations were co-localized
on the reference genome PN40024 12X.v2 (Figure 4b).
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Figure 4. Positions and LODmax of (preliminary) QTLs for the trait BN in different mapping
populations. (a) and physical position of the trait Dia based on the reference genome PN40024 12X.v2
(b). (a) Genetic maps of chromosome 18 from the populations R × S, D × C, and C × V_150 with the
respective LOD profiles for the QTLof the trait BN. BN—berry number; colored boxes—LOD profiles
for the respective seasons (green—2016; blue—2017; purple—2018; and red—mean); and dashed
line—LOD specific threshold. (b) Physical position of QTLs (Dia) from investigated populations:
shown is the genomic region on chromosome 17 with the approximated position of the QTLs for
the trait Dia based on the reference genome PN40024 12X v2. Boxes show the chromosome specific
confidence interval limited range on chromosome 17. Dia—mean berry diameter (b).
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Table 2. Overview of QTLs derived from the investigated populations. Shown are only QTLs
with their respective LODmax values, occurring in at least two populations and located on the
same chromosomes. QTLs occurring in all investigated populations on the same chromosome are
highlighted (light blue background). Note that the QTLs listed for C × V_1000 are considered as
preliminary QTLs, as they are based on one-year data only. Berry number = BN, berry diameter = Dia,
berry volume = BV, total volume = TV, convex hull volume = CVH, bunch width = W, and bunch
length = L.

LODmax

Chromosome Trait R × S D × C C × V_150 C × V_1000

1
L 2.92 4.57

BN 3.82 7.26

2
BV 4.38 4.88
Dia 4.35 9.65 4.32
W 4.16 2.76

3
Dia 3.44 4.51
BV 3.4 4.65

4
BN 6.09 4.15

CVH 3.83 3

6
Dia 3.77 5.28
BV 3.46 5.16

7 W 5.49 3.64

8

L 4.49 4.97 4.84
BV 3.47 3.33 3.8
BN 3.24 3.05 4.15

CVH 3.97 3.95
TV 3.15 3.61 3.12

9 CVH 3.79 2.9
11 Dia 6.1 3.26
14 W 4.92 4.13

17

CVH 3.44 2.63 11.55
Dia 4 13.18 6.39 12.7
TV 3.07 14.47
BV 5.11 7.13 14.88
W 3.62 4.24 12.24

18

BN 18.93
TV 15.1 4.68
W 15.67 5.75
L 20.06 4.56 3.12

4. Discussion

In this study, an automated 3D-based phenotyping pipeline was applied for screen-
ing multiple mapping populations and tested for its feasibility to study grape-bunch-
architecture-determining traits for a high number of samples. The performance of the
obtained 3D phenotypic data was assessed by three different approaches: (i) validation of
the phenotypic precision of 3D sensor data by comparison to corresponding reference data
within an entire mapping population; (ii) comparison of QTLs obtained from both 3D and
reference phenotypic data; and (iii) screening and comparative QTL analysis with up to
1500 genotypes of several mapping populations for the assessment of seasonal effects and
identification of general determining factors.

4.1. Three-Dimensional-Based Approach Enables Phenotypic Studies with High Throughput
and Precision

The 3D-based phenotyping has been proven to be a reliable method for the modern
plant phenotyping of many different species [44]. The data gathered from 3D sensors can
be used to measure plant and fruit parameters with high accuracies and correlations in
comparison to ground-truth data [45–48]. For grape-bunch-related 3D phenotyping, Tello
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et al. compared bunch-volume estimations derived from a 2D image analysis with 3D scan
data of grape bunches. Both methods reached correlations of approximately r = 0.95 in
comparison to ground-truth measurements [49]. Hacking et al. scanned 21 grape bunches
in the lab and compared 2D-image- and 3D-scan-derived bunch weight with actual bunch
weight [50]. They obtained correlations of r2 = 0.89 and 0.95 for the 2D-based and 3D-based
data, respectively. Those results are in accordance with the correlations between 3D, 2D,
and manual volume measurements observed in this study. A subset of the data, recorded
in 2016, was already used for referencing the proposed 3D phenotyping method [13]. It
is notable that this subset only represented a fraction of the phenotypic highly diverse
mapping population C × V_150 [13,17,23]. The reference data set that was used within this
study includes the whole mapping population of 150 genotypes (i.e., 900 grape bunches or
six bunches per genotype). Despite the strongly increased number of reference data, the
high correlations reported in Rist et al. could be confirmed in this study [13]. Additionally,
the field of application could be extended to the grape-bunch weight—one of the most
important yield traits in viticulture [51]. Based on the observed very high correlation
between the TV and grape-bunch weight (Figure 1), one can conclude that the 3D-based
approach is also suitable for the proper estimation of this trait. In the present study, this
comparison was additionally used as an indirect quality control for the 3D sensor data,
as the TV is approximated by the total number of detected berries per bunch and their
corresponding volumes. Taken together, the results verified the reliability of the 3D method
for measuring bunch-architecture-determining traits.

4.2. Three-Dimensional vs. Two-Dimensional QTL Comparison

The detection of a QTL for a quantitative trait such as bunch architecture depends on
several different factors. One factor is the range of phenotypic variability for the trait(s) of
interest within the investigated population. For the C × V_150 population, a few studies
already demonstrated this variability and segregation for several, traits including bunch-
architecture-related traits [2,13,17,23,30,33]. In this study, the high correlation between 3D
and reference data is also reflected in the results of the QTL-comparison. The 3D data
revealed 20 QTLS, and the 2D data revealed 22 QTLs, with 18 consistent QTLs between
the two investigated methods. It is noteworthy that the comparison between the 3D bunch
length and measured 2D rachis length is indirect. In the 3D scans, the measured value
is a product of the rachis itself, the number of berries attached to this structure, and the
experimental procedure (bunch fixed on a hook). This differs from the 2D measurements
of the rachis, where all berries had been removed, which also has an impact on shape.
Nevertheless, the data revealed two consistent QTLs for both traits in CxV_150 (Table 1
and Supplementary Table S1). Although the phenotypic values were derived from slightly
different measurement methods, they show a higher correlation (r = 0.82), and this might
explain the concordance of QTLs for 3D-measured bunch length and 2D-measured bunch
length. Regarding the outcome of the QTL analysis with 18 matching QTLs between the
two methods, the 3D-data-derived LODmax values showed lower correlations and tended
to have lower LODmax values in comparison to the reference data. The direct comparison
of the ANOVA results of the phenotypic data also indicates this (Supplementary Figure
S1). Here, the 3D data showed lower mean values for the majority of the compared
phenotypic parameters. The results suggest that QTLs with lower LODmax values might
not be detected by the 3D method. Correctional terms/models could be used to correct
measurement uncertainties and prevent this loss of information. Future studies could
address performance tests and validate potential correctional terms. Nevertheless, all the
18 matching QTLs found by 3D and 2D ground-truth measurements showed no greater
difference in interval length and LODmax position (correlation of r = 0.97 and r = 0.96,
respectively; see Supplementary Figure S2b,c). Regarding the amount of time that can be
saved by applying this method and the mentioned results, the 3D phenotyping pipeline is
highly valuable in the context of genetic investigations.
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4.3. Sample Size of Investigated Populations

For genetic studies, one major restrictive factor is the number of samples that can
be phenotyped by classical, often laborious, manual methods [18,52]. In this study, the
application of the sensor overcame this phenotypic bottleneck, as it allowed for screenings
of several populations of different sizes in one season, simultaneously, in a short amount of
time and with a standardized procedure. In the season of 2018, the population C × V_150,
with 150 individuals, was analyzed. This population is rather small, whereas the addition-
ally screened mapping populations had a much higher number of genotypes, i.e., D × C
(n = 342), R × S (n = 295), and the extended C × V_1000 population (n = 722). Thus, the
number of screened genotypes add up to over 1500, and the screening rate could be im-
proved by the factor of 10 in comparison to the 2D-based referencing methods used in this
study [13,23,33]. One additional important advantage of the non-invasive 3D pipeline is the
opportunity of subsequent investigations of, for example, phenotyping of the grape berry
skin or conducting infection tests with Botrytis cinerea or insect pests such as Drosophila
suzukii [5,53]. For both research topics, information about the grape-bunch architecture is
essential, and intact, unharmed grapes and berries are needed. Focusing on the outcome
of the QTL analyses, we can see that, for C × V_150 compared to C × V_1000, both pop-
ulations result from independent crosses of the same parental varieties, and thus, they
have the same genetic background. In C × V_1000, an approximately three-times-higher
number of preliminary QTLs were detected, and the phenotypic variability that can be
explained by a single one-year/preliminary QTL decreases by about 50% on average. There
are different possible explanations for these results. On the one hand, both populations
differ in age (C × V_150 planted in 2010; C × V_1000 in 2014), which might have an impact
in phenotypic expression of the measured parameter. In a recent study, it was shown
for the grape variety ‘Zinfandel’ that age can have an impact on the timing of different
phenological events [54]. The soil properties are different for both populations (C × V_150,
clayey-loam soil with higher upper-soil moisture; C × V_1000, higher sand proportion and
lower upper-soil moisture (data not shown)). Additionally, C × V_1000 was planted in the
slope direction, and the genotypes were not grafted on a rootstock, whereas C × V_150
was grafted. These factors can have an impact on water and nutrient uptake, thus affecting
bunch-architecture-related traits such as the berry number and berry size [7]. On the other
hand, it is widely accepted that an increased numbers of genotypes can lead to an increase
in statistical power of the QTL analysis. This sharpens the detection of a QTL and the
estimation of its effect [55]. The comparison of the QTLs resulting from C × V_150 together
with D × C and R × S supports this. Here, the populations showed a similar number of
QTLs, but D × C and R × S showed higher LOD values for certain QTLs (e.g., BN and
Dia). Additionally, a higher number of samples can reduce the number of false-positive
QTLs [26,55,56]. The several preliminary QTLs from C × V_1000 that occur on the same
chromosome as reliable three-year QTLs of C × V_150 are an indication of this. Multi-year
phenotyping, mapping of additional molecular markers, and alignment of the genetic
maps could improve the identification of reliable QTLs occurring both in C × V_150 and
C × V_1000 and facilitate the comparison to other populations.

Further, QTL analyses should also consider environmental parameters such as soil
properties and management, as both influence the phenotypic behavior of grape traits [57]
(Bendel et al., in preparation).

4.4. Seasonal Effect

The sensor was applied on several populations over three seasons. This allowed
the comparison of phenotypic variations over these years. All investigated populations
showed differences in phenotypic data and in the outcome of the QTL results throughout
the seasons. For bunch-architecture-related traits, it is widely recognized that the sea-
sonal/environmental effect can be very strong (overview is given in References [58,59]).
This results in phenotypic differences, the presence or absence of a QTL, and a certain
amount of variability in the position of a QTL over the seasons [23]. The present study
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resulted in similar observations as those described in the literature. For instance, the trait
berry number (BN) explained a major amount of measured phenotypic variance within the
PCA analysis. The formation of berries per bunch underlies several complex processes. In
temperate climates, these processes are extending over two consecutive seasons and are
affected by the interaction of various environmental signals and gene networks from the
formation of flowers to fruit set to the final number of berries per bunch [7,60–62]. This
makes the detection of stable and reproducible genomic regions (QTLs or SNPs) affecting
the trait difficult [28,60]. Exemplarily, this study focused on chromosome 18 and the result-
ing QTL for BN. In the populations C × V_150 and D × C, only a putative one-year QTL
was observed, indicating a stronger environmental effect on this trait for both populations
(Supplementary Table S2; Figure 4a). It is noteworthy that the QTL for BN on chromosome
18 in C × V_150, as reported in Richter et al. [23], could only be reproduced in the season of
2016. Additionally, no QTL for the BN in the season of 2018 for the extended C × V_1000
population could be detected [23]. This implies that the BN is under a much stronger
environmental influence for C × V. On the other hand, the genetic map of C × V_150 used
in this study differs from the map of Richter et al. [23]. A reanalysis of the phenotypic
data with the same map version could bring further clarification on the stability of the
mentioned QTL. On the contrary, for R × S, a promising QTL over all investigated sea-
sons was detected. Our results suggest that there is a certain and detectable amount of
environmental impact on these traits, but this impact is variety dependent [28]. Altogether,
our results indicate that high-throughput screening allows us to identify and distinguish
between populations that are under less environmental influence for such highly (envi-
ronmentally) affected traits. Such knowledge can be further used in breeding to select
appropriate breeding material for loose bunch architecture and to clarify further research
questions. Furthermore, the effect of different environments on grape-bunch architecture
can be investigated by such an objective sensor-based approach.

4.5. Comparison of QTL Positions

For the comparison of QTL positions, only one trait (Dia) revealed a QTL on the same
chromosome among all populations. Our results show that all QTL intervals are co-located
according to the physical mapping on the reference genome PN40024 on Chr. 17. Dia
correlates strongly with BV and can be associated with berry size, which impacts the weight
of the berries (Figure 1). It is apparent that berry-size/berry-weight-related traits were
important selection targets during the domestication process [63]. Our results imply that
this region might be conserved among different populations/and genetic backgrounds.
Other studies also report about genomic regions associated with berry size. In the study
of Doligez et al., for instance, QTLs for berry weight were identified in several grapevine
mapping populations, as well as on chromosome 17 near the marker VVIN73 [64]. The
group of Guo et al. performed a genome-wide association analysis on a diverse panel
of 179 grapevine genotypes [65]. They identified an SNP on chromosome 17 related to
berry weight. In recent years, several studies have identified meaningful QTL regions,
SNP positions, and possible candidate genes that influence bunch-architecture-related
traits [5,9,23,25,58,60,64,66]. The results in the present study and the findings of the men-
tioned studies indicate that genetic regions, affecting bunch-architecture-related traits, are
conserved within a broader genetic background, and the proposed 3D phenotyping method
is feasible for the rapid and precise screening of phenotypic material. The genetic maps of
the investigated populations share the majority of markers, but they also (with a certain
amount) have different mapped markers and differ in marker saturation. For some of
the detected QTLs, this led to a difficult determination of the exact intervals. An aligned,
denser, and more homogeneous marker saturation for the genetic maps of the investigated
populations would increase the precision for the proposed QTL regions and improve the
comparability of the QTLs in different populations. Another approach could be the use
of these data in a meta-QTL analysis. Delfino et al. identified 17 meta-QTLs related to
veraison on the basis of 43 different QTL studies [67]. Finally, fine mapping of promising
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genetic regions is necessary to identify candidate genes, as well as to develop a set of new
molecular markers selecting for looser grape bunches and validate them by applying the
3D-based phenotyping method.

5. Conclusions

This study applied a novel 3D-based phenotyping pipeline for high-throughput phe-
notyping of bunch-architecture-related traits in different mapping populations for QTL
analysis. Based on the 3D analysis of approximately 5000 different grape bunches, it was
shown that this phenotyping pipeline is reliable to use for grapevine bunches in order
to conduct phenotypic studies with high precision. The major benefit of this approach is
the reduced amount of time that is needed to assess multiple phenotypic parameters in
one simple working step, enabling phenotyping of a 10-times-increased sample size at
the same time within one season and without long-term experience, as it is needed for
visual scorings. The application of the sensor system on different mapping populations
and subsequent QTL analysis led to comparable QTL regions that are associated with
bunch-architecture-related traits. These results show the high-standard value of the novel
sensor system for breeding/research purposes. The use of the sensor-based phenotyping
pipeline over multiple years and multiple populations or genetic repositories all over the
world would offer a much clearer picture of the genetic structure of bunch-architecture-
related traits. Moreover, the combination of the phenotypic data with high-density genetic
maps (e.g., SNP-based) and fitting the involvement of environmental parameter to the
phenotypic behavior would enable much higher precision for determining genetic regions
and, much more important, the identification and verification of promising candidate
genes. This information could be used for further genetic analyses and the development of
informative molecular markers, and it could therefore benefit breeders in order to select
breeding material regarding, for example, loose bunch architecture.
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