Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (883)

Search Parameters:
Authors = Qi Cheng

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1506 KiB  
Article
Do Forest Carbon Offset Projects Bring Biodiversity Conservation Co-Benefits? An Examination Based on Ecosystem Service Value
by Qi Wang, Yuan Hu, Rui Chen, Weizhong Zeng and Ying Cheng
Forests 2025, 16(8), 1274; https://doi.org/10.3390/f16081274 - 4 Aug 2025
Viewed by 179
Abstract
In the context of worsening climate change and biodiversity loss, forest carbon offset projects are viewed as important nature-based solutions to mitigate these trends. However, there is limited evidence on whether these projects provide net benefits for biodiversity conservation. This study uses a [...] Read more.
In the context of worsening climate change and biodiversity loss, forest carbon offset projects are viewed as important nature-based solutions to mitigate these trends. However, there is limited evidence on whether these projects provide net benefits for biodiversity conservation. This study uses a staggered difference-in-differences model with balanced panel data from 128 counties in Sichuan Province, China, spanning from 2000 to 2020, to examine whether these projects bring biodiversity conservation co-benefits. The results show that the implementation of forest carbon offset projects leads to a 55.1% decrease in the ecosystem service value of forest biodiversity, with the negative impact particularly pronounced in areas facing agricultural land use and livestock pressures. The dynamic effect tests indicate that the benefits of biodiversity conservation generally begin to decline significantly 5 years after project implementation. Additional analyses show that although projects certified under biodiversity conservation standards also exhibit negative effects, the magnitude of decline is substantially smaller compared to uncertified projects, and certified projects achieve greater carbon stock gains. Heterogeneity analysis demonstrates that projects employing native tree species show significant positive effects. Moreover, spatial econometric results demonstrate significant negative spillover effects within an 80 km radius surrounding the project sites, with the effect attenuating over distance. To maximize the potential of forest carbon offset projects in addressing both climate change and biodiversity loss, it is important to mitigate the negative impacts on biodiversity within and beyond project boundaries and to enhance the continuous monitoring of projects that have been certified for biodiversity conservation. Full article
Show Figures

Figure 1

18 pages, 3506 KiB  
Review
A Review of Spatial Positioning Methods Applied to Magnetic Climbing Robots
by Haolei Ru, Meiping Sheng, Jiahui Qi, Zhanghao Li, Lei Cheng, Jiahao Zhang, Jiangjian Xiao, Fei Gao, Baolei Wang and Qingwei Jia
Electronics 2025, 14(15), 3069; https://doi.org/10.3390/electronics14153069 - 31 Jul 2025
Viewed by 205
Abstract
Magnetic climbing robots hold significant value for operations in complex industrial environments, particularly for the inspection and maintenance of large-scale metal structures. High-precision spatial positioning is the foundation for enabling autonomous and intelligent operations in such environments. However, the existing literature lacks a [...] Read more.
Magnetic climbing robots hold significant value for operations in complex industrial environments, particularly for the inspection and maintenance of large-scale metal structures. High-precision spatial positioning is the foundation for enabling autonomous and intelligent operations in such environments. However, the existing literature lacks a systematic and comprehensive review of spatial positioning techniques tailored to magnetic climbing robots. This paper addresses this gap by categorizing and evaluating current spatial positioning approaches. Initially, single-sensor-based methods are analyzed with a focus on external sensor approaches. Then, multi-sensor fusion methods are explored to overcome the shortcomings of single-sensor-based approaches. Multi-sensor fusion methods include simultaneous localization and mapping (SLAM), integrated positioning systems, and multi-robot cooperative positioning. To address non-uniform noise and environmental interference, both analytical and learning-based reinforcement approaches are reviewed. Common analytical methods include Kalman-type filtering, particle filtering, and correlation filtering, while typical learning-based approaches involve deep reinforcement learning (DRL) and neural networks (NNs). Finally, challenges and future development trends are discussed. Multi-sensor fusion and lightweight design are the future trends in the advancement of spatial positioning technologies for magnetic climbing robots. Full article
(This article belongs to the Special Issue Advancements in Robotics: Perception, Manipulation, and Interaction)
Show Figures

Figure 1

19 pages, 923 KiB  
Article
Coordinated Development and Spatiotemporal Evolution Trends of China’s Agricultural Trade and Production from the Perspective of Food Security
by Yueyuan Yang, Chunjie Qi, Yumeng Gu and Cheng Gui
Foods 2025, 14(14), 2538; https://doi.org/10.3390/foods14142538 - 20 Jul 2025
Viewed by 524
Abstract
Ensuring food security necessitates a high level of coordinated development between agricultural trade and production. Based on China’s provincial panel data from 2010 to 2023, this study constructs an evaluation index system for agricultural trade and production, employing an entropy-weighted TOPSIS model to [...] Read more.
Ensuring food security necessitates a high level of coordinated development between agricultural trade and production. Based on China’s provincial panel data from 2010 to 2023, this study constructs an evaluation index system for agricultural trade and production, employing an entropy-weighted TOPSIS model to measure their development levels. On this basis, a coupling coordination degree model and Moran’s I indices are used to analyze the coordinated development level’s temporal changes and spatial effects. The research finds that the development levels of China’s agricultural trade and production show an upward trend but currently still exhibit the pattern of higher levels in Eastern China and lower levels in Western China. The coupling coordination level between them demonstrates an increasing trend, yet the overall level remains relatively low, with an average value of only 0.445, consistently staying in a marginal disorder “running-in stage” and spatially presenting a distinct “east-high–west-low” stepped distribution pattern. Furthermore, from a spatial perspective, the Global Moran’s index decreased from 0.293 to 0.280. The coupling coordination degree of agricultural trade and production in China generally exhibits a positive spatial autocorrelation, but this effect has been weakening over time. Most provinces show spatial clustering characteristics of high–high and low–low agglomeration in local space, and this feature is relatively stable. Building on these insights, this study proposes a refinement of the coordination mechanisms between agricultural trade and production, alongside the implementation of differentiated regional coordinated development strategies, to promote the coupled and coordinated advancement of agricultural trade and production. Full article
(This article belongs to the Special Issue Global Food Insecurity: Challenges and Solutions)
Show Figures

Figure 1

18 pages, 886 KiB  
Review
Research Status and Prospect of Coal Spontaneous Combustion Source Location Determination Technology
by Yongfei Jin, Yixin Li, Wenyong Liu, Xiaona Yang, Xiaojiao Cheng, Chenyang Qi, Changsheng Li, Jing Hui and Lei Zhang
Processes 2025, 13(7), 2305; https://doi.org/10.3390/pr13072305 - 19 Jul 2025
Viewed by 348
Abstract
The spontaneous combustion disaster of coal not only causes a waste of resources but also affects the safe production of coal mines. In order to accurately detect the range and location of the spontaneous combustion source of coal, this paper studies and summarizes [...] Read more.
The spontaneous combustion disaster of coal not only causes a waste of resources but also affects the safe production of coal mines. In order to accurately detect the range and location of the spontaneous combustion source of coal, this paper studies and summarizes previous research results, and based on the principles and research and development progress of existing detection technologies such as the surface temperature measurement method, ground temperature measurement method, wellbore temperature measurement method, and infrared remote sensing detection method, it briefly reviews the application of various detection technologies in engineering practice at this stage and briefly explains the advantages and disadvantages of each application. Research shows that the existing technologies are generally limited by the interference of complex environmental conditions (such as temperature measurement deviations caused by atmospheric turbulence and the influence of rock layer structure on ground temperature conduction) and the implementation difficulties of geophysical methods in mining applications (such as the interference of stray currents in the ground by electromagnetic methods and the fast attenuation speed of waves detected by geological radar methods), resulting in the insufficient accuracy of fire source location and difficulties in identifying concealed fire sources. In response to the above bottlenecks, the ”air–ground integrated” fire source location determination technology that breaks through environmental constraints and the location determination method of a CSC fire source based on a multi-physics coupling mechanism are proposed. By significantly weakening the deficiency in obtaining parameters through a single detection method, a new direction is provided for the detection of coal spontaneous combustion fire sources in the future. Full article
Show Figures

Figure 1

18 pages, 10798 KiB  
Article
Integrative Analysis of Transcriptomics and Metabolomics Provides Insights into Meat Quality Differences in Hu Sheep with Different Carcass Performance
by Xiaoxue Zhang, Liming Zhao, Huibin Tian, Zongwu Ma, Qi Zhang, Mengru Pu, Peiliang Cao, Deyin Zhang, Yukun Zhang, Yuan Zhao, Jiangbo Cheng, Quanzhong Xu, Dan Xu, Xiaobin Yang, Xiaolong Li, Weiwei Wu, Fadi Li and Weimin Wang
Foods 2025, 14(14), 2477; https://doi.org/10.3390/foods14142477 - 15 Jul 2025
Viewed by 325
Abstract
Meat quality is a critical determinant of consumer preference and economic value in the livestock industry. However, the relationship between carcass performance and meat quality remains poorly understood. In our study, we conducted an integrative analysis of transcriptomics and metabolomics to investigate the [...] Read more.
Meat quality is a critical determinant of consumer preference and economic value in the livestock industry. However, the relationship between carcass performance and meat quality remains poorly understood. In our study, we conducted an integrative analysis of transcriptomics and metabolomics to investigate the molecular mechanisms underlying meat quality differences in Hu sheep with high (HHS, n = 10) and low (LHS, n = 10) carcass performance. Phenotypic analysis revealed that the HHS group exhibited superior meat quality traits, including higher intramuscular fat (IMF) content (reflected in elevated marbling scores), along with lower shear force, drip loss, and cooking loss, compared to the LHS group. Transcriptomic analysis identified 376 differentially expressed genes (DEGs) enriched in pathways linked to lipid metabolism, such as the PPAR signaling pathway and long-chain fatty acid metabolic process. Weighted gene co-expression network analysis (WGCNA) revealed important modules and key genes (e.g., ELOVL6, PLIN1, and ARHGEF2) associated with meat quality traits. Metabolomic profiling identified 132 differentially accumulated metabolites (DAMs), with significant enrichment in amino acid metabolism pathways, including D-amino acid metabolism, arginine biosynthesis, and glycine, serine, and threonine metabolism. Integrative analysis of transcriptomic and metabolomic data highlighted six co-enriched pathways, such as the mTOR signaling pathway and amino acid metabolism, underscoring their role in regulating meat quality. These findings provide valuable insights into the genetic and metabolic networks driving meat quality variation and offer potential biomarkers for genetic selection and nutritional strategies to enhance both carcass yield and eating quality in Hu sheep. This research enhances knowledge of the molecular basis of meat quality and supports precision breeding in livestock production. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

20 pages, 9695 KiB  
Article
Numerical Investigation on Flow and Thermal Characteristics of Spray Evaporation Process in Boiler Desuperheater
by Jianqing Wang, Baoqing Liu, Bin Du, Kaifei Wu, Qi Lin, Bohai Liu and Minghui Cheng
Energies 2025, 18(14), 3734; https://doi.org/10.3390/en18143734 - 15 Jul 2025
Viewed by 209
Abstract
The spray evaporation process in the boiler desuperheater involves complex droplet behaviors and fluid–thermal coupling, and its temperature distribution characteristics greatly affect the performance and safety of industrial processes. To better understand the process characteristics and develop the optimal desuperheater design, computational fluid [...] Read more.
The spray evaporation process in the boiler desuperheater involves complex droplet behaviors and fluid–thermal coupling, and its temperature distribution characteristics greatly affect the performance and safety of industrial processes. To better understand the process characteristics and develop the optimal desuperheater design, computational fluid dynamics (CFDs) was applied to numerically investigate the flow and thermal characteristics. The Eulerian–Lagrangian approach was used to describe the two-phase flow characteristics. Both primary and secondary droplet breakup, the coupling effect of gas–liquid and stochastic collision and coalescence of droplets were considered in the model. The plain-orifice atomizer model was applied to simulate the atomization process. The numerical model was validated with the plant data. The spray tube structure was found to greatly affect the flow pattern, resulting in the uneven velocity distribution, significant temperature difference, and local reverse flow downstream of the orifices. The velocity and temperature distributions tend to be more uniform due to the complete evaporation and turbulent mixing. Smaller orifices are beneficial for generating smaller-sized droplets, thereby promoting the mass and heat transfer between the steam and droplets. Under the same operating conditions, the desuperheating range of cases with 21, 15, and 9 orifices is 33.7 K, 32.0 K, and 29.8 K, respectively, indicating that the desuperheater with more orifices (i.e., with smaller orifices) shows better desuperheating ability. Additionally, a venturi-type desuperheater was numerically studied and compared with the straight liner case. By contrast, discernible differences in velocity and temperature distribution characteristics can be observed in the venturi case. The desuperheating range of the venturi and straight liner cases is 38.1 K and 35.4 K, respectively. The velocity acceleration through the venturi throat facilitates the droplet breakup and improves mixing, thereby achieving better desuperheating ability and temperature uniformity. Based on the investigation of the spray evaporation process, the complex droplet behaviors and fluid–thermal coupling characteristics in an industrial boiler desuperheater under high temperature and high pressure can be better understood, and effective guidance for the process and design optimizations can be provided. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) for Heat Transfer Modeling)
Show Figures

Figure 1

17 pages, 7852 KiB  
Article
Integrated Transcriptome and Microbiome Analyses Reveal Growth- and Stress-Response-Related Genes and Microbes in Mandarin Fish (Siniperca chuatsi)
by Fan Zhou, Wei Liu, Ming Qi, Qianrong Liang, Gaohua Yao, Cheng Ma, Xueyan Ding, Zaihang Yu, Xinyu Li and Zhanqi Wang
Fishes 2025, 10(7), 341; https://doi.org/10.3390/fishes10070341 - 10 Jul 2025
Viewed by 358
Abstract
Mandarin fish (Siniperca chuatsi) are known to exhibit distinct physiological and immunological adaptations to environmental stressors, but the underlying molecular and microbial mechanisms remain unclear. In this study, we integrated transcriptome and microbiome analyses to investigate adaptations across three geographically distinct [...] Read more.
Mandarin fish (Siniperca chuatsi) are known to exhibit distinct physiological and immunological adaptations to environmental stressors, but the underlying molecular and microbial mechanisms remain unclear. In this study, we integrated transcriptome and microbiome analyses to investigate adaptations across three geographically distinct mandarin fish groups: Guangdong (G), Qiupu (Q), and native Taihu (T). Liver RNA sequencing revealed 5339 differentially expressed genes (DEGs) between T and G and 1531 DEGs between T and Q. Functional enrichment analysis revealed group-specific responses. Specifically, DEGs from T vs. G were linked to small-molecule metabolism and innate immunity whereas the DEGs from T vs. Q were related to immune regulation and chromatin organization. The concurrent 16S rRNA sequencing of the intestinal microbiota identified 2680 amplicon sequence variants, with principal coordinate analysis showing distinct clustering (31.77% variance). Group T had higher Firmicutes abundance whereas groups G and Q had a higher relative abundance of Fusobacteriota. Correlation networks revealed key microbe–gene interactions, including positive links between Lactobacillus and immune genes in group T and negative associations with Romboutsia. These findings suggest that enhanced immune homeostasis and metabolic flexibility in group T may result from coordinated host gene expression and Lactobacillus-driven microbiome modulation. We provide new insights into the mechanisms of adaptation in mandarin fish and identify potential biomarkers for enhancing aquaculture resilience. Full article
(This article belongs to the Special Issue Fish Nutrition and Immunology)
Show Figures

Figure 1

23 pages, 5584 KiB  
Article
Machine Learning and Deep Learning Hybrid Approach Based on Muscle Imaging Features for Diagnosis of Esophageal Cancer
by Yuan Hong, Hanlin Wang, Qi Zhang, Peng Zhang, Kang Cheng, Guodong Cao, Renquan Zhang and Bo Chen
Diagnostics 2025, 15(14), 1730; https://doi.org/10.3390/diagnostics15141730 - 8 Jul 2025
Viewed by 422
Abstract
Background: The rapid advancement of radiomics and artificial intelligence (AI) technology has provided novel tools for the diagnosis of esophageal cancer. This study innovatively combines muscle imaging features with conventional esophageal imaging features to construct deep learning diagnostic models. Methods: This [...] Read more.
Background: The rapid advancement of radiomics and artificial intelligence (AI) technology has provided novel tools for the diagnosis of esophageal cancer. This study innovatively combines muscle imaging features with conventional esophageal imaging features to construct deep learning diagnostic models. Methods: This retrospective study included 1066 patients undergoing radical esophagectomy. Preoperative computed tomography (CT) images covering esophageal, stomach, and muscle (bilateral iliopsoas and erector spinae) regions were segmented automatically with manual adjustments. Diagnostic models were developed using deep learning (2D and 3D neural networks) and traditional machine learning (11 algorithms with PyRadiomics-derived features). Multimodal features underwent Principal Component Analysis (PCA) for dimension reduction and were fused for final analysis. Results: Comparative analysis of 1066 patients’ CT imaging revealed the muscle-based model outperformed the esophageal plus stomach model in predicting N2 staging (0.63 ± 0.11 vs. 0.52 ± 0.11, p = 0.03). Subsequently, multimodal fusion models were established for predicting pathological subtypes, T staging, and N staging. The logistic regression (LR) fusion model showed optimal performance in predicting pathological subtypes, achieving accuracy (ACC) of 0.919 in the training set and 0.884 in the validation set. For predicting T staging, the support vector machine (SVM) model demonstrated the highest accuracy, with training and validation accuracies of 0.909 and 0.907, respectively. The multilayer perceptron (MLP) fusion model achieved the best performance among all models tested for N staging prediction, although the accuracy remained moderate (ACC = 0.704 in the training set and 0.685 in the validation set), indicating potential for further optimization. Fusion models significantly outperformed single-modality models. Conclusions: Based on CT imaging data from 1066 patients, this study systematically constructed predictive models for pathological subtypes, T staging, and N staging of esophageal cancer. Comparative analysis of models using esophageal, esophageal plus stomach, and muscle modalities demonstrated that muscle imaging features contribute to diagnostic accuracy. Multimodal fusion models consistently showed superior performance. Full article
Show Figures

Figure 1

14 pages, 4026 KiB  
Article
Grain Refinement Caused by Dynamic Recrystallization Under Pulsed-Wave Laser Multi-Layer Cyclic Thermal Load
by Manping Cheng, Xi Zou, Yuan Zhu, Tengfei Chang, Qi Cao, Houlai Ju, Jiawei Ning, Yang Ding and Lijun Qiang
Coatings 2025, 15(7), 788; https://doi.org/10.3390/coatings15070788 - 3 Jul 2025
Viewed by 336
Abstract
In the Direct Energy Deposition (DED) process, the deposited material experiences intricate thermo-mechanical processes. Subsequent thermal cycling can trigger Dynamic Recrystallization (DRX) under suitable conditions, with specific strain and temperature parameters facilitating grain refinement and homogenization. While prior research has examined the impact [...] Read more.
In the Direct Energy Deposition (DED) process, the deposited material experiences intricate thermo-mechanical processes. Subsequent thermal cycling can trigger Dynamic Recrystallization (DRX) under suitable conditions, with specific strain and temperature parameters facilitating grain refinement and homogenization. While prior research has examined the impact of thermal cycling in continuous wave (CW) lasers on DRX in 316 L stainless steel deposits, this study delves into the effects of pulsed wave (PW) laser thermal cycling on DRX. Here, the thermo-mechanical response to PW cyclic thermal loading is empirically assessed, and the evolution of microstructure, grain morphology, geometric dislocation density (GND), and misorientation map during PW DED of 316 L stainless steel is scrutinized. Findings reveal that DRX is activated between the 8th and 44th thermal cycles, with temperatures fluctuating in the range of 680 K–750 K–640 K and grains evolving within a 5.6%–6.2%–5.2% strain range. After 90 thermal cycles, the grain microstructure undergoes significant alteration. Throughout the thermal cycling, dynamic recovery (DRV) occurs, marked by sub-grain formation and low-angle grain boundaries (LAGBs). Continuous dynamic recrystallization (CDRX) accompanies discontinuous dynamic recrystallization (DDRX), with LAGBs progressively converting into high-angle grain boundaries (HAGBs). Elevated temperatures and accumulated strain drive dislocation movement and entanglement, augmenting GND. The study also probes the influence of frequency and duty cycle on grain microstructure, finding that low pulse frequency spurs CDRX, high pulse frequency favors DRV, and the duty cycle has minimal impact on grain microstructure under PW cyclic thermal load. Full article
Show Figures

Figure 1

34 pages, 1378 KiB  
Article
Transferable Modulation of Cognitive Control: The Cross-Task Role of Conflict Adaptation in Thematic Roles Assignment in Chinese
by Jiefei Luo, Qi Cheng, Mengfang Zhang and Yan Wu
Behav. Sci. 2025, 15(7), 899; https://doi.org/10.3390/bs15070899 - 2 Jul 2025
Viewed by 381
Abstract
Conflict adaptation reflects the dynamic modulation of information processing by the cognitive control system following conflict detection. A central question in language processing research concerns whether control elicited by non-linguistic tasks generalizes across tasks to influence higher-order processes such as sentence comprehension. The [...] Read more.
Conflict adaptation reflects the dynamic modulation of information processing by the cognitive control system following conflict detection. A central question in language processing research concerns whether control elicited by non-linguistic tasks generalizes across tasks to influence higher-order processes such as sentence comprehension. The present study employed color-word Stroop tasks of varying complexity and, in conjunction with eye-tracking technology, examined their cross-task regulatory effects of conflict adaptation on thematic role assignment in Chinese. Across two experiments, participants read sentences containing either congruent or conflicting thematic roles following Stroop trials with congruent or incongruent stimuli. The temporal dynamics of syntactic processing were captured via eye movement measures. Results indicated that both conflict tasks triggered cross-task conflict adaptation, as evidenced by accelerated syntactic processing and reduced regression behaviors when thematically incongruent sentences followed conflict trials. Notably, the more complex color-word Stroop task imposed greater demands on cognitive control resources and elicited earlier cognitive adaptation effects during comprehension. Theoretically, these findings extend conflict monitoring theory to the domain of language processing, demonstrating that cognitive control mechanisms contribute to real-time syntactic parsing. Methodologically, the use of eye-tracking to examine thematic role assignment provides fine-grained empirical evidence for the interaction between domain-general control and language-specific processing. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

17 pages, 2390 KiB  
Article
Surrogate Model of Hydraulic Actuator for Active Motion Compensation Hydraulic Crane
by Lin Xu, Hongyu Nie, Xiangyang Cheng, Qi Wei, Hongyu Chen and Jianfeng Tao
Electronics 2025, 14(13), 2678; https://doi.org/10.3390/electronics14132678 - 2 Jul 2025
Viewed by 320
Abstract
Offshore cranes equipped with active motion compensation (AMC) systems play a vital role in marine engineering tasks such as offshore wind turbine maintenance, subsea operations, and dynamic load positioning under wave-induced disturbances. These systems rely on complex hydraulic actuators whose strongly nonlinear dynamics—often [...] Read more.
Offshore cranes equipped with active motion compensation (AMC) systems play a vital role in marine engineering tasks such as offshore wind turbine maintenance, subsea operations, and dynamic load positioning under wave-induced disturbances. These systems rely on complex hydraulic actuators whose strongly nonlinear dynamics—often described by differential-algebraic equations (DAEs)—impose significant computational burdens, particularly in real-time applications like hardware-in-the-loop (HIL) simulation, digital twins, and model predictive control. To address this bottleneck, we propose a neural network-based surrogate model that approximates the actuator dynamics with high accuracy and low computational cost. By approximately reducing the original DAE model, we obtain a lower-dimensional ordinary differential equations (ODEs) representation, which serves as the foundation for training. The surrogate model includes three hidden layers, demonstrating strong fitting capabilities for the highly nonlinear characteristics of hydraulic systems. Bayesian regularization is adopted to train the surrogate model, effectively preventing overfitting. Simulation experiments verify that the surrogate model reduces the solving time by 95.33%, and the absolute pressure errors for chambers p1 and p2 are controlled within 0.1001 MPa and 0.0093 MPa, respectively. This efficient and scalable surrogate modeling framework possesses significant potential for integrating high-fidelity hydraulic actuator models into real-time digital and control systems for offshore applications. Full article
Show Figures

Figure 1

18 pages, 7709 KiB  
Article
Orientation Controllable RCS Enhancement Electromagnetic Surface to Improve the Road Barriers Detectability for Autonomous Driving Radar
by Yanbin Chen, Tong Wang, Qi Liu, Haochen Wang and Cheng Jin
Sensors 2025, 25(13), 4048; https://doi.org/10.3390/s25134048 - 29 Jun 2025
Cited by 1 | Viewed by 322
Abstract
An orientation controllable radar cross section (RCS) enhancement surface is presented in this paper, which can be used to improve the road pile detectability of on-board microwave radar for autonomous driving system. In addition, the RCS enhancement orientation can be controlled in a [...] Read more.
An orientation controllable radar cross section (RCS) enhancement surface is presented in this paper, which can be used to improve the road pile detectability of on-board microwave radar for autonomous driving system. In addition, the RCS enhancement orientation can be controlled in a specified direction without interfering with other microwave systems. We first designed a modified one-dimensional VanAtta array with adjustable phase for retrodirective backtracking the incoming electromagnetic waves, which can achieve wide-angle RCS enhancement. Then, we arranged the one-dimensional VanAtta array in another dimension forming a two-dimensional array, enabling adjustable orientation RCS enhancement due to the controllable phase of the reflected electromagnetic waves. We designed, manufactured, and tested a 4 × 8 array to validate the theory and assess the design’s feasibility. Finally, six orientation controllable VanAtta arrays were mounted on the outside surface of a cylinder road barrier, and measurements demonstrated that RCS enhancement of over 10 dB have been achieved compared to the same pile with perfect electric conductor surface. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

23 pages, 5097 KiB  
Article
Experimental and Restoring Force Model of Precast Shear Walls with Steel Sleeve and Corrugated Metallic Duct Hybrid Connections
by Yuqing Han, Yongjun Qin, Wentong Cheng and Qi Chen
Buildings 2025, 15(13), 2178; https://doi.org/10.3390/buildings15132178 - 22 Jun 2025
Viewed by 488
Abstract
This study proposes a novel hybrid connection method for precast concrete shear walls, where the edge walls are connected using grouting splice sleeves and the middle walls are connected using grouted corrugated metallic ducts. To investigate the effects of connection type and axial [...] Read more.
This study proposes a novel hybrid connection method for precast concrete shear walls, where the edge walls are connected using grouting splice sleeves and the middle walls are connected using grouted corrugated metallic ducts. To investigate the effects of connection type and axial compression ratio on structural performance, five shear wall specimens were tested under low-cycle reversed loading, with detailed analysis of their failure modes and hysteretic behavior. Based on experimental results and theoretical derivation, a restoring force model incorporating connection type was developed. The results demonstrate that hybrid-connected specimens exhibit significantly improved load-bearing capacity, ductility, and seismic performance compared to those with only grouted corrugated metallic duct connections. A higher axial compression ratio enhances structural strength but also accelerates damage progression, particularly after peak loading. A three-line skeleton curve model was established to describe the load, displacement, and stiffness relationships at key characteristic points, and unloading stiffness expressions for different loading stages were proposed. The calculated skeleton and hysteresis curves align well with the experimental results, accurately capturing the cyclic behavior of the hybrid-connected precast shear walls. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

26 pages, 17971 KiB  
Article
Can the Coordinated Development of Land Urbanization and Population Urbanization Promote Carbon Emission Efficiency? A Multi-Scale Heterogeneity Analysis in China
by Hanlong Gu, Qi Liu, Ming Cheng, Chongyang Huan, Bingyi Wang and Jiaqian Wu
Land 2025, 14(7), 1317; https://doi.org/10.3390/land14071317 - 20 Jun 2025
Viewed by 349
Abstract
Coordinating development of land urbanization and population urbanization (CDLUPU) to enhance carbon emission efficiency (CEE) is a critical challenge for developing countries experiencing accelerated urbanization. The coupled coordination model and super efficiency SBM are employed to estimate the levels of CDLUPU [...] Read more.
Coordinating development of land urbanization and population urbanization (CDLUPU) to enhance carbon emission efficiency (CEE) is a critical challenge for developing countries experiencing accelerated urbanization. The coupled coordination model and super efficiency SBM are employed to estimate the levels of CDLUPU and CEE across 276 prefecture-level cities from 2010 to 2021. Furthermore, we utilize kernel density estimation and Spatial Durbin Model (SDM) to explore the spatio-temporal distribution characteristics and spatial effects. The results indicate that CDLUPU levels exhibited a sustained upward trend with diminishing regional disparities, whereas CEE displayed a pattern of initial growth followed by decline. Spatial analyses revealed a consistent gradient structure for both CDLUPU and CEE, characterized by radiation decay from southeastern coastal hubs toward interior hinterlands. CDLUPU exerts a significant positive direct impact and spatial spillover effect and indicates that the spillover effects on peripheral regions are substantially stronger than local effects. Regional heterogeneity analysis reveals that CDLUPU negatively affects CEE in eastern China, the Yangtze River Delta (YRD) is more pronounced, but it positively impacts central and western China, as well as Beijing–Tianjin–Hebei (BTH) and Chengdu–Chongqing (CY). Regarding indirect effects, eastern China shows significant positive impact on CEE, and similarly in the YRD. However, central China exhibits a negative effect, whereas BTH shows the opposite trend. Western China and CY show statistically insignificant results. This study offers policy insights for China to coordinate new urbanization strategy and achieve the “dual carbon goal”. Full article
Show Figures

Figure 1

19 pages, 3432 KiB  
Article
The Improvement Effects of Intercropping Systems on Saline-Alkali Soils and Their Impact on Microbial Communities
by Yan-Jun Wang, Gao-Xiang Qi, Na-Na Wang, Hong-Yun Dong, Yan Zhang, Han Lu, Ying Li, Hong-Cheng Wang, Xin-Hua Li and Hong-Yuan Liu
Microorganisms 2025, 13(7), 1436; https://doi.org/10.3390/microorganisms13071436 - 20 Jun 2025
Viewed by 433
Abstract
Saline-alkali soil has poor fertility and low organic matter content, which are key factors that limit agricultural productivity. Intercropping systems can enhance biodiversity in farmlands, thereby increasing the organic matter content. During this process, soil microorganisms respond to environmental changes. Therefore, we conducted [...] Read more.
Saline-alkali soil has poor fertility and low organic matter content, which are key factors that limit agricultural productivity. Intercropping systems can enhance biodiversity in farmlands, thereby increasing the organic matter content. During this process, soil microorganisms respond to environmental changes. Therefore, we conducted a three-year intercropping enhancement experiment using saline-alkali soil. To avoid nutrient and microbial differences caused by the varying nutrient demands of different crop types, we systematically sampled the tillage layer of the soil (0–20 cm) from the subsequent crop (wheat season) in the intercropping systems. We found that compared to the control group, the three intercropping systems significantly increased the nutrient content in saline-alkali soil, including total nitrogen, total phosphorus, total potassium, organic matter, available nitrogen, and available potassium. Notably, there were significant increases in total nitrogen, organic matter, and available potassium. The intercropping systems had varying effects on the alpha and beta diversities of soil bacteria and fungi. Specifically, the effect of intercropping on fungal alpha diversity was significantly greater than that on bacterial alpha diversity, whereas its effect on bacterial beta diversity was greater than that on fungal beta diversity. Additionally, intercropping influenced microbial community composition, increasing the abundance of Acidobacteria and Gemmatimonadetes and decreasing the abundance of Actinobacteria. It also increased the abundance of Ascomycota and Mortierella and decreased the abundance of Basidiomycota. Total nitrogen and soil organic matter were identified as the primary environmental factors that significantly affected bacterial community composition; however, they had no significant impact on fungal communities. Intercropping had different effects on the fungal and bacterial networks. It increased the stability and complexity of the bacterial network. However, although it improved the stability of the fungal network, intercropping reduced its complexity. In summary, intercropping with leguminous plants is an effective way to enhance soil nutrients, particularly organic matter, in saline-alkali soils. Simultaneously, intercropping affects the soil microbial community structure of subsequent crops; however, the responses of bacteria and fungi to intercropping are significantly different. The results of this study provide data support for improving saline-alkali land through planting systems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop