Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Authors = Nong Gao

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8355 KiB  
Article
Transcriptome Analysis Reveals Mechanisms of Stripe Rust Response in Wheat Cultivar Anmai1350
by Feng Gao, Jingyi Zhu, Xin Xue, Hongqi Chen, Xiaojin Nong, Chunling Yang, Weimin Shen and Pengfei Gan
Int. J. Mol. Sci. 2025, 26(12), 5538; https://doi.org/10.3390/ijms26125538 - 10 Jun 2025
Viewed by 471
Abstract
Wheat (Triticum aestivum L.) is the world’s most indispensable staple crop and a vital source of food for human diet. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), constitutes a severe threat to wheat production and in [...] Read more.
Wheat (Triticum aestivum L.) is the world’s most indispensable staple crop and a vital source of food for human diet. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), constitutes a severe threat to wheat production and in severe cases, the crop fails completely. Anmai1350 (AM1350) is moderately resistant to leaf rust and powdery mildew, and highly susceptible to sheath blight and fusarium head blight. We found that the length and area of mycelium in AM1350 cells varied at different time points of Pst infection. To investigate the molecular mechanism of AM1350 resistance to Pst, we performed transcriptome sequencing (RNA-seq). In this study, we analyzed the transcriptomic changes of the seedling leaves of AM1350 at different stages of Pst infection at 0 h post-infection (hpi), 6 hpi, 24 hpi, 48 hpi, 72 hpi, and 120 hpi through RNA-seq. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) was used to validate RNA-seq data. It was determined that there were differences in the differentially expressed genes (DEGs) of AM1350, and the upregulation and downregulation of the DEGs changed with the time of infection. At different time points, there were varying degrees of enrichment in the response pathways of AM1350, such as the ”MAPK signaling pathway–plant”, the “plant–pathogen interaction” pathway and other pathways. After Pst infected AM1350, the reactive oxygen species (ROS) content gradually increases. The ROS is toxic to Pst, promotes the synthesis of phytoalexins, and inhibits the spread of Pst. As a result, AM1350 shows resistance to Pst race CYR34. The main objective of this study is to provide a better understanding for resistance mechanisms of wheat in response to Pst infections and to avoid production loss. Full article
(This article belongs to the Special Issue Plant–Microbe Interactions: 2nd Edition)
Show Figures

Figure 1

14 pages, 1839 KiB  
Article
Synergistic Bactericidal Efficiency of Slightly Acidic Electrolyzed Water–High-Pressure Parallel Processing on Escherichia coli in Freshly Cut Gastrodia elata Slices
by Qing Gao, Xin Nong, Tuanjian Lang, Yajin Liu, Shuxin Ye and Jinsong He
Foods 2025, 14(5), 790; https://doi.org/10.3390/foods14050790 - 25 Feb 2025
Viewed by 807
Abstract
The synergistic enhancement of bactericidal efficiencies on freshly cut Gastrodia elata slices by parallel processing using slightly acidic electrolyzed water (SAEW) and high-pressure (HP) technology was comprehensively investigated in this study. To this end, appropriate experimental conditions were determined through single-factor tests, which [...] Read more.
The synergistic enhancement of bactericidal efficiencies on freshly cut Gastrodia elata slices by parallel processing using slightly acidic electrolyzed water (SAEW) and high-pressure (HP) technology was comprehensively investigated in this study. To this end, appropriate experimental conditions were determined through single-factor tests, which were ACCs (available chlorine concentrations) of 30, 38, and 49 mg/L; pressures of 100, 150, and 200 MPa; treatment times of 5, 7.5, and 10 min; and material-to-liquid ratios of 1:1, 1:3, and 1:5. Under these conditions, single and parallel bactericidal tests were conducted, and the corresponding synergistic enhancement values ΔI were calculated. Subsequently, using the lethal rate of Escherichia coli (E. coli) as the response value, we fitted multiple quadratic regression equations for SAEW, HP, and SAEW–HP with respect to ACC, pressure, pressure application time, and material-to-liquid ratio. The multiple quadratic regression equation for the synergistic enhancement term ΔI was then obtained through calculation. By analyzing this equation, the synergistic enhancement range was determined. Finally, experimental points were randomly selected within the synergistic enhancement range for validation. The results demonstrate that there was a synergistic bactericidal efficiency of the SAEW–HP parallel treatment of freshly cut G. elata slices. The synergistic enhancement range was pressure (xp) ∈ [52.18, 359.58] MPa; concentration of available chlorine (xc) ∈ [28.71, 46.27] mg/L; time (xt) ∈ [2.34, 12.38] min; and the material-to-solvent ratio (xr) ∈ ø g/mL. The validation experiments confirmed that within the respective ranges of p, c, and t, the SAEW–HP parallel treatment of freshly cut G. elata slices exhibited a ‘1 + 1 > 2’ synergistic enhancement effect. These findings lay a theoretical foundation for the development of green bactericidal technologies for “adopting both minimum processing and dosage to achieve the optimal effect”. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

22 pages, 6298 KiB  
Article
Research on Urban Street Spatial Quality Based on Street View Image Segmentation
by Liying Gao, Xingchao Xiang, Wenjian Chen, Riqin Nong, Qilin Zhang, Xuan Chen and Yixing Chen
Sustainability 2024, 16(16), 7184; https://doi.org/10.3390/su16167184 - 21 Aug 2024
Cited by 5 | Viewed by 2150
Abstract
Assessing the quality of urban street space can provide suggestions for urban planning and construction management. Big data collection and machine learning provide more efficient evaluation methods than traditional survey methods. This study intended to quantify the urban street spatial quality based on [...] Read more.
Assessing the quality of urban street space can provide suggestions for urban planning and construction management. Big data collection and machine learning provide more efficient evaluation methods than traditional survey methods. This study intended to quantify the urban street spatial quality based on street view image segmentation. A case study was conducted in the Second Ring Road of Changsha City, China. Firstly, the road network information was obtained through OpenStreetMap, and the longitude and latitude of the observation points were obtained using ArcGIS 10.2 software. Then, corresponding street view images of the observation points were obtained from Baidu Maps, and a semantic segmentation software was used to obtain the pixel occupancy ratio of 150 land cover categories in each image. This study selected six evaluation indicators to assess the street space quality, including the sky visibility index, green visual index, interface enclosure index, public–facility convenience index, traffic recognition, and motorization degree. Through statistical analysis of objects related to each evaluation indicator, scores of each evaluation indicator for observation points were obtained. The scores of each indicator are mapped onto the map in ArcGIS for data visualization and analysis. The final value of street space quality was obtained by weighing each indicator score according to the selected weight, achieving qualitative research on street space quality. The results showed that the street space quality in the downtown area of Changsha is relatively high. Still, the level of green visual index, interface enclosure, public–facility convenience index, and motorization degree is relatively low. In the commercial area east of the river, improvements are needed in pedestrian perception. In other areas, enhancements are required in community public facilities and traffic signage. Full article
Show Figures

Figure 1

24 pages, 20390 KiB  
Article
A New and Robust Index for Water Body Extraction from Sentinel-2 Imagery
by Zhenfeng Su, Longwei Xiang, Holger Steffen, Lulu Jia, Fan Deng, Wenliang Wang, Keyu Hu, Jingjing Guo, Aile Nong, Haifu Cui and Peng Gao
Remote Sens. 2024, 16(15), 2749; https://doi.org/10.3390/rs16152749 - 27 Jul 2024
Cited by 4 | Viewed by 5450
Abstract
Land surface water is a key part in the global ecosystem balance and hydrological cycle. Remote sensing has become an effective tool for its spatio-temporal monitoring. However, remote sensing results exemplified in so-called water indices are subject to several limitations. This paper proposes [...] Read more.
Land surface water is a key part in the global ecosystem balance and hydrological cycle. Remote sensing has become an effective tool for its spatio-temporal monitoring. However, remote sensing results exemplified in so-called water indices are subject to several limitations. This paper proposes a new and effective water index called the Sentinel Multi-Band Water Index (SMBWI) to extract water bodies in complex environments from Sentinel-2 satellite imagery. Individual tests explore the effectiveness of the SMBWI in eliminating interference of various special interfering cover features. The Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA) method and confusion matrix along with the derived accuracy evaluation indicators are used to provide a threshold reference when extracting water bodies and evaluate the accuracy of the water body extraction results, respectively. The SMBWI and eight other commonly used water indices are qualitatively and quantitatively compared through vision and accuracy evaluation indicators, respectively. Here, the SMBWI is proven to be the most effective at suppressing interference of buildings and their shadows, cultivated lands, vegetation, clouds and their shadows, alpine terrain with bare ground and glaciers when extracting water bodies. The overall accuracy in all tests was consistently greater than 96.5%. The SMBWI is proven to have a high ability to identify mixed pixels of water and non-water, with the lowest total error among nine water indices. Most notably, better results are obtained when extracting water bodies under interfering environments of cover features. Therefore, we propose that our novel and robust water index, the SMBWI, is ready to be used for mapping land surface water with high accuracy. Full article
(This article belongs to the Special Issue Remote Sensing for Surface Water Monitoring)
Show Figures

Figure 1

19 pages, 15195 KiB  
Article
Color and Luminance Separated Enhancement for Low-Light Images with Brightness Guidance
by Feng Zhang, Xinran Liu, Changxin Gao and Nong Sang
Sensors 2024, 24(9), 2711; https://doi.org/10.3390/s24092711 - 24 Apr 2024
Cited by 2 | Viewed by 2328
Abstract
Existing retinex-based low-light image enhancement strategies focus heavily on crafting complex networks for Retinex decomposition but often result in imprecise estimations. To overcome the limitations of previous methods, we introduce a straightforward yet effective strategy for Retinex decomposition, dividing images into colormaps and [...] Read more.
Existing retinex-based low-light image enhancement strategies focus heavily on crafting complex networks for Retinex decomposition but often result in imprecise estimations. To overcome the limitations of previous methods, we introduce a straightforward yet effective strategy for Retinex decomposition, dividing images into colormaps and graymaps as new estimations for reflectance and illumination maps. The enhancement of these maps is separately conducted using a diffusion model for improved restoration. Furthermore, we address the dual challenge of perturbation removal and brightness adjustment in illumination maps by incorporating brightness guidance. This guidance aids in precisely adjusting the brightness while eliminating disturbances, ensuring a more effective enhancement process. Extensive quantitative and qualitative experimental analyses demonstrate that our proposed method improves the performance by approximately 4.4% on the LOL dataset compared to other state-of-the-art diffusion-based methods, while also validating the model’s generalizability across multiple real-world datasets. Full article
Show Figures

Figure 1

11 pages, 2175 KiB  
Article
Mapping of a Major-Effect Quantitative Trait Locus for Seed Dormancy in Wheat
by Yu Gao, Linyi Qiao, Chao Mei, Lina Nong, Qiqi Li, Xiaojun Zhang, Rui Li, Wei Gao, Fang Chen, Lifang Chang, Shuwei Zhang, Huijuan Guo, Tianling Cheng, Huiqin Wen, Zhijian Chang and Xin Li
Int. J. Mol. Sci. 2024, 25(7), 3681; https://doi.org/10.3390/ijms25073681 - 26 Mar 2024
Viewed by 1559
Abstract
The excavation and utilization of dormancy loci in breeding are effective endeavors for enhancing the resistance to pre-harvest sprouting (PHS) of wheat varieties. CH1539 is a wheat breeding line with high-level seed dormancy. To clarify the dormant loci carried by CH1539 and obtain [...] Read more.
The excavation and utilization of dormancy loci in breeding are effective endeavors for enhancing the resistance to pre-harvest sprouting (PHS) of wheat varieties. CH1539 is a wheat breeding line with high-level seed dormancy. To clarify the dormant loci carried by CH1539 and obtain linked molecular markers, in this study, a recombinant inbred line (RIL) population derived from the cross of weak dormant SY95-71 and strong dormant CH1539 was genotyped using the Wheat17K single-nucleotide polymorphism (SNP) array, and a high-density genetic map covering 21 chromosomes and consisting of 2437 SNP markers was constructed. Then, the germination percentage (GP) and germination index (GI) of the seeds from each RIL were estimated. Two QTLs for GP on chromosomes 5A and 6B, and four QTLs for GI on chromosomes 5A, 6B, 6D and 7A were identified. Among them, the QTL on chromosomes 6B controlling both GP and GI, temporarily named QGp/Gi.sxau-6B, is a major QTL for seed dormancy with the maximum phenotypic variance explained of 17.66~34.11%. One PCR-based diagnostic marker Ger6B-3 for QGp/Gi.sxau-6B was developed, and the genetic effect of QGp/Gi.sxau-6B on the RIL population and a set of wheat germplasm comprising 97 accessions was successfully confirmed. QGp/Gi.sxau-6B located in the 28.7~30.9 Mbp physical position is different from all the known dormancy loci on chromosomes 6B, and within the interval, there are 30 high-confidence annotated genes. Our results revealed a novel QTL QGp/Gi.sxau-6B whose CH1539 allele had a strong and broad effect on seed dormancy, which will be useful in further PHS-resistant wheat breeding. Full article
(This article belongs to the Special Issue Molecular Genetics and Breeding Mechanisms in Crops: 2nd Edition)
Show Figures

Figure 1

14 pages, 1670 KiB  
Article
One-Step Construction of 1,3,4-Oxadiazoles with Anticancer Activity from Tertiary Amines via a Sequential Copper(I)-Catalyzed Oxidative Ugi/aza-Wittig Reaction
by Mei Sun, Nong-Qi Mao, Sheng-Long Wang, Xin-Ming Han, Gang Yao, Ping Xue, Chong-Yang Zeng, Yu-Ting Liu, Kai Chen, Xiao-Qing Gao and Jun Xiong
Molecules 2024, 29(6), 1253; https://doi.org/10.3390/molecules29061253 - 12 Mar 2024
Cited by 1 | Viewed by 2005
Abstract
An unparalleled copper(I)-catalyzed synthesis of 1,3,4-oxadiazoles from tertiary amines in one step has been described. The one-pot reactions involving (N-isocyanimine)triphenylphosphorane, tertiary amines, and carboxylic acids resulted in the formation of 1,3,4-oxadiazoles in moderate to good yields through a consecutive oxidative Ugi/aza-Wittig reaction, enabling [...] Read more.
An unparalleled copper(I)-catalyzed synthesis of 1,3,4-oxadiazoles from tertiary amines in one step has been described. The one-pot reactions involving (N-isocyanimine)triphenylphosphorane, tertiary amines, and carboxylic acids resulted in the formation of 1,3,4-oxadiazoles in moderate to good yields through a consecutive oxidative Ugi/aza-Wittig reaction, enabling the direct functionalization of sp3 C-H bonds adjacent to the nitrogen atom. This method offered several notable advantages, including ligands-free, exceptional productivity and a high functional group tolerance. The preliminary biological evaluation demonstrated that compound 4f inhibited hepatoma cells efficiently, suggesting potentially broad applications of the approach for synthesis and medicinal chemistry. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

21 pages, 3859 KiB  
Article
Microstructures and Hardening Mechanisms of a 316L Stainless Steel/Inconel 718 Interface Additively Manufactured by Multi-Material Selective Laser Melting
by Shahir Mohd Yusuf, Nurainaa Mazlan, Nur Hidayah Musa, Xiao Zhao, Ying Chen, Shoufeng Yang, Nur Azmah Nordin, Saiful Amri Mazlan and Nong Gao
Metals 2023, 13(2), 400; https://doi.org/10.3390/met13020400 - 15 Feb 2023
Cited by 13 | Viewed by 3572
Abstract
For the first time, the interfacial microstructures and hardening mechanisms of a multi-material (MM) 316L stainless steel/Inconel 718 (316L SS/IN 718) interface fabricated by a novel multi-material selective laser melting (MM SLM) additive manufacturing (AM) system have been investigated in this study. MM [...] Read more.
For the first time, the interfacial microstructures and hardening mechanisms of a multi-material (MM) 316L stainless steel/Inconel 718 (316L SS/IN 718) interface fabricated by a novel multi-material selective laser melting (MM SLM) additive manufacturing (AM) system have been investigated in this study. MM 316L SS/IN 718 parts were successfully built with high densification levels (>99%) and low porosity content (average: ~0.81%). Microscopy analysis indicates that the interfacial microstructures are characterised by dense dislocation tangling networks, NbC and TiC, and very small amounts of Laves phase (<2 wt. %). In addition, equiaxed grains (average: 45 ± 3 μm) are attained in the interfacial region, whereas both individual IN 718 and 316L SS regions exhibit show columnar grains with average sizes of 55 ± 5 μm and 85 ± 3 μm, respectively. Vickers microhardness (HV) and nanoindentation measurements exhibit that the hardness values of the interfacial region are between those of the individual material regions. A strengthening model is built to assess the contribution of intrinsic strength, solid solution, precipitations, dislocations, and grain boundaries to the overall interfacial hardness of the as-built MM alloy. Full article
Show Figures

Figure 1

21 pages, 485 KiB  
Review
Rapid Eye Movement Sleep during Early Life: A Comprehensive Narrative Review
by Hai-Lin Chen, Jin-Xian Gao, Yu-Nong Chen, Jun-Fan Xie, Yu-Ping Xie, Karen Spruyt, Jian-Sheng Lin, Yu-Feng Shao and Yi-Ping Hou
Int. J. Environ. Res. Public Health 2022, 19(20), 13101; https://doi.org/10.3390/ijerph192013101 - 12 Oct 2022
Cited by 9 | Viewed by 4003
Abstract
The ontogenetic sleep hypothesis suggested that rapid eye movement (REM) sleep is ontogenetically primitive. Namely, REM sleep plays an imperative role in the maturation of the central nervous system. In coincidence with a rapidly developing brain during the early period of life, a [...] Read more.
The ontogenetic sleep hypothesis suggested that rapid eye movement (REM) sleep is ontogenetically primitive. Namely, REM sleep plays an imperative role in the maturation of the central nervous system. In coincidence with a rapidly developing brain during the early period of life, a remarkably large amount of REM sleep has been identified in numerous behavioral and polysomnographic studies across species. The abundant REM sleep appears to serve to optimize a cerebral state suitable for homeostasis and inherent neuronal activities favorable to brain maturation, ranging from neuronal differentiation, migration, and myelination to synaptic formation and elimination. Progressively more studies in Mammalia have provided the underlying mechanisms involved in some REM sleep-related disorders (e.g., narcolepsy, autism, attention deficit hyperactivity disorder (ADHD)). We summarize the remarkable alterations of polysomnographic, behavioral, and physiological characteristics in humans and Mammalia. Through a comprehensive review, we offer a hybrid of animal and human findings, demonstrating that early-life REM sleep disturbances constitute a common feature of many neurodevelopmental disorders. Our review may assist and promote investigations of the underlying mechanisms, functions, and neurodevelopmental diseases involved in REM sleep during early life. Full article
(This article belongs to the Collection Sleep in Children)
19 pages, 4535 KiB  
Article
Genome-Wide DNA Methylation and Gene Expression Profiling Characterizes Molecular Subtypes of Esophagus Squamous Cell Carcinoma for Predicting Patient Survival and Immunotherapy Efficacy
by Yulong Zheng, Qiqi Gao, Xingyun Su, Cheng Xiao, Bo Yu, Shenglin Huang, Yifeng Sun, Sheng Wu, Yixin Wo, Qinghua Xu, Nong Xu and Hui Yu
Cancers 2022, 14(20), 4970; https://doi.org/10.3390/cancers14204970 - 11 Oct 2022
Cited by 9 | Viewed by 3006
Abstract
Background: Immunotherapy is recently being used to treat esophageal squamous cell carcinoma (ESCC); however, response and survival benefits are limited to a subset of patients. A better understanding of the molecular heterogeneity and tumor immune microenvironment in ESCC is needed for improving disease [...] Read more.
Background: Immunotherapy is recently being used to treat esophageal squamous cell carcinoma (ESCC); however, response and survival benefits are limited to a subset of patients. A better understanding of the molecular heterogeneity and tumor immune microenvironment in ESCC is needed for improving disease management. Methods: Based on the DNA methylation and gene expression profiles of ESCC patients, we identify molecular subtypes of patients and construct a predictive model for subtype classification. The clinical value of molecular subtypes for the prediction of immunotherapy efficacy is assessed in an independent validation cohort of Chinese ESCC patients who receive immunotherapy. Results: We identify two molecular subtypes of ESCC (S1 and S2) that are associated with distinct immune-related pathways, tumor microenvironment and clinical outcomes. Accordingly, S2 subtype patients had a poorer prognosis. A 15-gene expression signature is developed to classify molecular subtypes with an overall accuracy of 94.7% (89/94, 95% CI: 0.880–0.983). The response rate of immunotherapy is significantly higher in the S1 subtype than in the S2 subtype patients (68.75% vs. 25%, p = 0.028). Finally, potential target drugs, including mitoxantrone, are identified for treating patients of the S2 subtype. Conclusions: Our findings demonstrated that the identified molecular subtypes constitute a promising prognostic and predictive biomarker to guide the clinical care of ESCC patients. Full article
Show Figures

Figure 1

12 pages, 3723 KiB  
Article
Influence of High-Pressure Torsion on the Microstructure and Microhardness of Additively Manufactured 316L Stainless Steel
by Shahir Mohd Yusuf, Ying Chen and Nong Gao
Metals 2021, 11(10), 1553; https://doi.org/10.3390/met11101553 - 29 Sep 2021
Cited by 6 | Viewed by 3106
Abstract
High-pressure torsion (HPT) is known as an effective severe plastic deformation (SPD) technique to produce bulk ultrafine-grained (UFG) metals and alloys by the application of combined compressive force and torsional shear strains on thin disk samples. In this study, the microstructures and microhardness [...] Read more.
High-pressure torsion (HPT) is known as an effective severe plastic deformation (SPD) technique to produce bulk ultrafine-grained (UFG) metals and alloys by the application of combined compressive force and torsional shear strains on thin disk samples. In this study, the microstructures and microhardness evolution of an additively manufactured (AM) 316L stainless steel (316L SS) processed through 5 HPT revolutions are evaluated at the central disk area, where the effective shear strains are relatively low compared to the peripheral regions. Scanning electron microscopy (SEM) analysis showed that the cellular network sub-structures in AM 316L SS were destroyed after 5 HPT revolutions. Transmission electron microscopy (TEM) observations revealed non-equilibrium ultrafine grained (UFG) microstructures (average grain size: ~115 nm) after 5 revolutions. Furthermore, energy dispersive x-ray spectroscopy (EDX) analysis suggested that spherical Cr-based nano-silicates are also found in the as-received condition, which are retained even after HPT processing. Vickers microhardness (HV) measurements indicated significant increase in average hardness values from ~220 HV before HPT processing to ~560 HV after 5 revolutions. Quantitative X-ray diffraction (XRD) patterns exhibit a considerable increase in dislocation density from ~0.7 × 1013 m−2 to ~1.04 × 1015 m−2. The super-high average hardness increment after 5 HPT revolutions is predicted to be attributed to the UFG grain refinement, significant increase in dislocation densities and the presence of the Cr-based nano-silicates, according to the model established based on the linear additive theory. Full article
Show Figures

Figure 1

18 pages, 3125 KiB  
Article
Comparison between Virgin and Recycled 316L SS and AlSi10Mg Powders Used for Laser Powder Bed Fusion Additive Manufacturing
by Shahir Mohd Yusuf, Edmund Choo and Nong Gao
Metals 2020, 10(12), 1625; https://doi.org/10.3390/met10121625 - 3 Dec 2020
Cited by 43 | Viewed by 6473
Abstract
In this study, the comparison of properties between fresh (virgin) and used (recycled) 316L stainless steel (316L SS) and AlSi10Mg powders for the laser powder bed fusion additive manufacturing (L-PBF AM) process has been investigated in detail. Scanning electron microscopy (SEM), electron-dispersive X-ray [...] Read more.
In this study, the comparison of properties between fresh (virgin) and used (recycled) 316L stainless steel (316L SS) and AlSi10Mg powders for the laser powder bed fusion additive manufacturing (L-PBF AM) process has been investigated in detail. Scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) techniques are used to determine and evaluate the evolution of morphology, particle size distribution (PSD), circularity, chemical composition, and phase (crystal structure) in the virgin and recycled powders of both materials. The results indicate that both recycled powders increase the average particle sizes and shift the PSD to higher values, compared with their virgin powders. The recycled 316L SS powder particles largely retain their spherical and near-spherical morphologies, whereas more irregularly shaped morphologies are observed for the recycled AlSi10Mg counterpart. The average circularity of recycled 316L SS powder only reduces by ~2%, but decreases ~17% for the recycled AlSi10Mg powder. EDX analysis confirms that both recycled powders retain their alloy-specific chemical compositions, but with increased oxygen content. XRD spectra peak analysis suggests that there are no phase change and no presence of any undesired precipitates in both recycled powders. Based on qualitative comparative analysis between the current results and from various available literature, the reuse of both recycled powders is acceptable up to 30 times, but re-evaluation through physical and chemical characterizations of the powders is advised, if they are to be subjected for further reuse. Full article
(This article belongs to the Special Issue Additive Manufacturing Research and Applications)
Show Figures

Figure 1

35 pages, 3638 KiB  
Review
Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry
by Shahir Mohd Yusuf, Samuel Cutler and Nong Gao
Metals 2019, 9(12), 1286; https://doi.org/10.3390/met9121286 - 29 Nov 2019
Cited by 252 | Viewed by 35173
Abstract
Metal additive manufacturing (AM) has matured from its infancy in the research stage to the fabrication of a wide range of commercial functional applications. In particular, at present, metal AM is now popular in the aerospace industry to build and repair various components [...] Read more.
Metal additive manufacturing (AM) has matured from its infancy in the research stage to the fabrication of a wide range of commercial functional applications. In particular, at present, metal AM is now popular in the aerospace industry to build and repair various components for commercial and military aircraft, as well as outer space vehicles. Firstly, this review describes the categories of AM technologies that are commonly used to fabricate metallic parts. Then, the evolution of metal AM used in the aerospace industry from just prototyping to the manufacturing of propulsion systems and structural components is also highlighted. In addition, current outstanding issues that prevent metal AM from entering mass production in the aerospace industry are discussed, including the development of standards and qualifications, sustainability, and supply chain development. Full article
(This article belongs to the Special Issue Additive Manufacturing of Metals with Lasers)
Show Figures

Figure 1

10 pages, 5263 KiB  
Article
Microstructures and Hardness Prediction of an Ultrafine-Grained Al-2024 Alloy
by Ying Chen, Yuanchen Tang, Houan Zhang, Nan Hu, Nong Gao and Marco J. Starink
Metals 2019, 9(11), 1182; https://doi.org/10.3390/met9111182 - 1 Nov 2019
Cited by 10 | Viewed by 3948
Abstract
High-pressure torsion (HPT) is a high efficiency processing method for fabricating bulk ultrafine-grained metallic materials. This work investigates microstructures and evaluates the corresponding strengthening components in the center of HPT disks, where effective shear strains are very low. An Al-4.63Cu-1.51Mg (wt. %) alloy [...] Read more.
High-pressure torsion (HPT) is a high efficiency processing method for fabricating bulk ultrafine-grained metallic materials. This work investigates microstructures and evaluates the corresponding strengthening components in the center of HPT disks, where effective shear strains are very low. An Al-4.63Cu-1.51Mg (wt. %) alloy was processed by HPT for 5 rotations. Non-equilibrium grain and sub-grain boundaries were observed using scanning transmission electron microscopy in the center area of HPT disks. Solute co-cluster segregation at grain boundaries was found by energy dispersive spectrometry. Quantitative analysis of X-ray diffraction patterns showed that the average microstrain, crystalline size, and dislocation density were (1.32 ± 0.07) × 10−3, 61.9 ± 1.4 nm, and (2.58 ± 0.07) × 1014 m−2, respectively. The ultra-high average hardness increment was predicted on multiple mechanisms due to ultra-high dislocation densities, grain refinement, and co-cluster–defect complexes. Full article
(This article belongs to the Special Issue Advances in Ultrafine-Grained Metals Research)
Show Figures

Figure 1

20 pages, 10529 KiB  
Article
Superpixel-Based Temporally Aligned Representation for Video-Based Person Re-Identification
by Changxin Gao, Jin Wang, Leyuan Liu, Jin-Gang Yu and Nong Sang
Sensors 2019, 19(18), 3861; https://doi.org/10.3390/s19183861 - 6 Sep 2019
Cited by 5 | Viewed by 3112
Abstract
Most existing person re-identification methods focus on matching still person images across non-overlapping camera views. Despite their excellent performance in some circumstances, these methods still suffer from occlusion and the changes of pose, viewpoint or lighting. Video-based re-id is a natural way to [...] Read more.
Most existing person re-identification methods focus on matching still person images across non-overlapping camera views. Despite their excellent performance in some circumstances, these methods still suffer from occlusion and the changes of pose, viewpoint or lighting. Video-based re-id is a natural way to overcome these problems, by exploiting space–time information from videos. One of the most challenging problems in video-based person re-identification is temporal alignment, in addition to spatial alignment. To address the problem, we propose an effective superpixel-based temporally aligned representation for video-based person re-identification, which represents a video sequence only using one walking cycle. Particularly, we first build a candidate set of walking cycles by extracting motion information at superpixel level, which is more robust than that at the pixel level. Then, from the candidate set, we propose an effective criterion to select the walking cycle most matching the intrinsic periodicity property of walking persons. Finally, we propose a temporally aligned pooling scheme to describe the video data in the selected walking cycle. In addition, to characterize the individual still images in the cycle, we propose a superpixel-based representation to improve spatial alignment. Extensive experimental results on three public datasets demonstrate the effectiveness of the proposed method compared with the state-of-the-art approaches. Full article
(This article belongs to the Special Issue Biometric Systems)
Show Figures

Figure 1

Back to TopTop