One-Step Construction of 1,3,4-Oxadiazoles with Anticancer Activity from Tertiary Amines via a Sequential Copper(I)-Catalyzed Oxidative Ugi/aza-Wittig Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of 1,3,4-Oxadiazoles 4a–4y
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paraschivescu, C.C.; Matache, M.; Dobrota, C.; Nicolescu, A.; Maxim, C.; Deleanu, C.; Farcasanu, I.C.; Hadade, N.D. Unexpected Formation of N-(1-(2-Aryl-hydrazono)isoindolin-2-yl)benzamides and Their Conversion into 1,2-(Bis-1,3,4-oxadiazol-2-yl)benzenes. J. Org. Chem. 2013, 78, 2670–2679. [Google Scholar] [CrossRef]
- Hamciuc, C.; Hamciuc, E.; Homocianu, M.; Nicolescu, A.; Carja, I.D. Blue Light-Emitting Polyamide and Poly(amide-imide)s Containing 1,3,4-Oxadiazole Ring in the Side Chain. Dye. Pigment. 2015, 114, 110–123. [Google Scholar] [CrossRef]
- Rapolu, S.; Alla, M.; Bommena, V.R.; Murthy, R.; Jain, N.; Bommareddy, V.R.; Bommineni, M.R. Synthesis and Biological Screening of 5-(Alkyl(1H-Indol-3-yl))-2-(Substituted)-1,3,4-Oxadiazoles as Antiproliferative and Anti-Inflammatory Agents. Eur. J. Med. Chem. 2013, 66, 91–100. [Google Scholar] [CrossRef]
- Ma, J.C.; Chinnam, A.K.; Cheng, G.B.; Yang, H.W.; Zhang, J.H.; Shreeve, J.M. 1,3,4-Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level. Angew. Chem. Int. Ed. 2020, 60, 5497–5504. [Google Scholar] [CrossRef]
- Khalilullah, H.; Ahsan, M.J.; Hedaitullah, M.; Khan, S.; Ahmed, B. 1,3,4-Oxadiazole: A Biologically Active Scaffold. Mini Rev. Med. Chem. 2012, 12, 789–801. [Google Scholar] [CrossRef]
- Vaidya, A.; Pathak, D.; Shah, K. 1,3,4-oxadiazole and its Derivatives: A Review on Recent Progress in Anticancer Activities. Chem. Biol. Drug Des. 2021, 97, 572–591. [Google Scholar] [CrossRef]
- Ogata, M.; Atobe, H.; Kushida, H.; Yamamoto, K.J. In Vitro Sensitivity of Mycoplasmas Isolated from Various Animals and Sewage to Antibiotics and Nitrofurans. J. Antibiot. 1971, 24, 443–451. [Google Scholar] [CrossRef]
- Prosser, B.C.; Floor, B.J.; Klein, A.E.; Muhammad, N. Determinations of Tiodazosin and Levulinic Acid from Tablets by High-Performance Liquid Chromatography. J. Pharm. Sci. 1983, 72, 1168–1170. [Google Scholar] [CrossRef]
- Dong, L.W.; Sanna, L.; Bordoni, V.; Sheng, Z.T.; Xun, L.C.; Murineddu, G.; Pinna, G.A.; Kelvin, D.J.; Bagella, L.G. Target Identification of a Novel Unsymmetrical 1,3,4-Oxadiazole Derivative with Antiproliferative Properties. J. Cell Physiol. 2020, 236, 3789–3799. [Google Scholar]
- Shalini, B.; Partha, R.P.; Jagadish, S. 1,3,4-Oxadiazoles as Telomerase Inhibitor: Potential Anticancer Agents. Anti-Cancer Agents Med. Chem. 2017, 17, 1869–1883. [Google Scholar]
- Thomasco, L.M.; Gadwood, R.C.; Weaver, E.A.; Ochoada, J.M.; Ford, C.W.; Zurenko, G.E.; Hamel, J.C.; Stapert, D.; Moerman, J.K.; Schaadt, R.D.; et al. The Synthesis and Antibacterial Activity of 1,3,4-Thiadiazole Phenyl Oxazolidinone Analogues. Bioorg. Med. Chem. Lett. 2003, 13, 4193–4196. [Google Scholar] [CrossRef]
- Kashid, B.B.; Salunkhe, P.H.; Dongare, B.B.; More, K.R.; Khedkar, V.A.; Ghanwat, A.A. Synthesis of Novel of 2,5-Disubstituted 1,3,4-Oxadiazole Derivatives and Their in Vitro Anti-Inflammatory, Anti-Oxidant Evaluation, and Molecular Docking Study. Bioorg. Med. Chem. Lett. 2020, 30, 127136. [Google Scholar] [CrossRef]
- Gao, Q.H.; Liu, S.; Wu, X.; Zhang, J.J.; Wu, A.X. Direct Annulation of Hydrazides to 1,3,4-Oxadiazoles via Oxidative C(CO)–C(Methyl) Bond Cleavage of Methyl Ketones. Org. Lett. 2015, 17, 2960–2963. [Google Scholar] [CrossRef]
- Wang, Q.; Mgimpatsang, K.C.; Konstantinidou, M.; Shishkina, S.V.; Dömling, A. 1,3,4-Oxadiazoles by Ugi-Tetrazole and Huisgen Reaction. Org. Lett. 2019, 21, 7320–7323. [Google Scholar] [CrossRef]
- Zhang, X.X.; He, J.J.; Cao, S. Facile Synthesis of Unsymmetrical 2,5-Disubstituted 1,3,4-Oxadiazoles by the Cyclization of Gem-Difluoroalkenes with Acyl Hydrazides. Asian J. Org. Chem. 2019, 8, 279–282. [Google Scholar] [CrossRef]
- Matheau-Raven, D.; Boulter, E.; Rogova, T.; Dixon, D.J. A Three-Component Ugi-Type Reaction of N-Carbamoyl Imines Enables a Broad Scope Primary α-Amino 1,3,4-Oxadiazole Synthesis. Org. Lett. 2021, 23, 8209–8213. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.Y. Palladium-Catalyzed Aminocarbonylation Reaction to Access 1,3,4-Oxadiazoles using Chloroform as the Carbon Monoxide Source. Adv. Synth. Catal. 2015, 357, 3469–3473. [Google Scholar]
- Wang, S.C.; Wang, K.; Kong, X.F.; Zhang, S.H.; Jiang, G.B.; Ji, F.H. DMF as Methine Source: Copper-Catalyzed Direct Annulation of Hydrazides to 1,3,4-Oxadiazoles. Adv. Synth. Catal. 2019, 361, 3986–3990. [Google Scholar] [CrossRef]
- Matheau-Raven, D.; Dixon, D.J. A One-Pot Synthesis-Functionalization Strategy for Streamlined Access to 2,5-Disubstituted 1,3,4-Oxadiazoles from Carboxylic Acids. J. Org. Chem. 2022, 87, 12498–12505. [Google Scholar] [CrossRef]
- Chen, Z.; Rong, M.Y.; Nie, J.; Zhu, X.F.; Shi, B.F.; Ma, J.A. Catalytic alkylation of unactivated C(sp3)-H bonds for C(sp3)-C(sp3) bond formation. Chem. Soc. Rev. 2019, 48, 4921–4942. [Google Scholar] [CrossRef]
- Li, Z.P.; Li, C.J. CuBr-Catalyzed Efficient Alkynylation of sp3 C-H Bonds Adjacent to a Nitrogen Atom. J. Am. Chem. Soc. 2004, 126, 11810–11811. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.P.; Li, C.J. CuBr-Catalyzed Direct Indolation of Tetrahydroisoquinolines via Cross-Dehydrogenative Coupling between sp3 C-H and sp2 C-H Bonds. J. Am. Chem. Soc. 2005, 127, 6968–6969. [Google Scholar] [CrossRef]
- Suga, T.; Iizuka, S.; Akiyama, T. Versatile and Highly Efficient Oxidative C(sp3)-H Bond Functionalization of Tetrahydroisoquinoline Promoted by Bifunctional Diethyl Azodicarboxylate (DEAD): Scope and Mechanistic Insights. Org. Chem. Front. 2016, 3, 1259–1264. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, D.D.; Zhao, X.F.; Niu, J.L.; Song, M.P. Cobalt-Catalyzed C(sp3)–H Bond Functionalization to Access Indole Derivatives. Org. Chem. Front. 2020, 9, 3723–3729. [Google Scholar] [CrossRef]
- Li, B.J.; Shi, Z.J. From C(sp2)–H to C(sp3)–H: Systematic studies on transition metal-catalyzed oxidative C–C formation. Chem. Soc. Rev. 2012, 41, 5588–5598. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, I.; Segundo, M.S.; Correa, A. Iron-Catalyzed C(sp3)−H Functionalization of N,N-Dimethylanilines with Isocyanides. Chem. Commun. 2018, 54, 1627–1630. [Google Scholar] [CrossRef] [PubMed]
- Ruijter, E.; Scheffelaar, R.; Orru, R.V.A. Multicomponent Reaction Design in the Quest for Molecular Complexity and Diversity. Angew. Chem. Int. Ed. 2011, 50, 6234–6246. [Google Scholar] [CrossRef] [PubMed]
- Gulevich, A.V.; Zhdanko, A.G.; Orru, R.V.A.; Nenajdenko, V.G. Isocyanoacetate Derivatives: Synthesis, Reactivity, and Application. Chem. Rev. 2010, 110, 5235–5331. [Google Scholar] [CrossRef]
- Zhang, B.D.; Kurpiewska, K.; Dömling, A. Highly Stereoselective Ugi/Pictet-Spengler Sequence. J. Org. Chem. 2022, 87, 7085–7096. [Google Scholar] [CrossRef]
- Tomaino, E.; Capecchi, E.; Ubertini, V.; Piccinino, D.; Bizzarri, B.M.; Saladino, R. Synthesis of Benzoxazines by Heterogeneous Multicomponent Biochemo Multienzymes Cascade Reaction. J. Org. Chem. 2024, 89, 2343–2350. [Google Scholar] [CrossRef]
- Zhao, P.; Yu, Z.C.; Wang, L.F.; Zhou, Y.; Wu, Y.D.; Ma, Y.M.; Wu, A.X. I2-Promoted in Situ Cyclization–Rethiolation Reaction: Synthesis of 2-Aliphatic- or Aromatic-Substituted Indolizines. J. Org. Chem. 2022, 87, 15197–15209. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.Y.; Pan, H.L.; Kong, H.H.; Ding, M.W. One-pot and divergent synthesis of polysubstituted quinolin-2(1H)-ones and oxireno[2,3-c]quinolin-2(1aH,3H,7bH)-ones via sequential Ugi/Knoevenagel condensation/hydrolysis and Ugi/Corey–Chaykovsky epoxidation reactions. Org. Chem. Front. 2022, 9, 5983–5988. [Google Scholar] [CrossRef]
- Song, G.T.; Qu, C.H.; Lei, J.; Yan, W.; Tang, D.Y.; Li, H.Y.; Chen, Z.Z.; Xu, Z.G. A Decarboxylative C(sp3)-N Bond Forming Reaction to Construct 4-Imidazolidinones via Post-Ugi Cascade Sequence in One Pot. Adv. Synth. Catal. 2020, 362, 4084–4091. [Google Scholar] [CrossRef]
- Jiang, G.X.; Chen, J.; Huang, J.S.; Che, C.M. Highly Efficient Oxidation of Amines to Imines by Singlet Oxygen and Its Application in Ugi-Type Reactions. Org. Lett. 2009, 11, 4568–4571. [Google Scholar] [CrossRef]
- Singh, K.; Kaur, A.; Mithu, V.S.; Sharma, S. Metal-Free Organocatalytic Oxidative Ugi Reaction Promoted by Hypervalent Iodine. J. Org. Chem. 2017, 82, 5285–5293. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.P.; Uematsu, A.; Kumazawa, S.; Yamamoto, Y.; Kodama, S.; Nomoto, A.; Ueshima, M.; Ogawa, A. 2,4,6-Trihydroxybenzoic Acid-Catalyzed Oxidative Ugi Reactions with Molecular Oxygen via Homo- and Cross-Coupling of Amines. J. Org. Chem. 2019, 84, 11562–11571. [Google Scholar] [CrossRef] [PubMed]
- Ngouansavanh, T.; Zhu, J.P. IBX-Mediated Oxidative Ugi-Type Multicomponent Reactions: Application to the N and C1 Functionalization of Tetrahydroisoquinoline. Angew. Chem. Int. Ed. 2007, 46, 5775–5778. [Google Scholar] [CrossRef]
- Ye, X.; Xie, C.S.; Pan, Y.Y.; Han, L.H.; Xie, T. Copper-Catalyzed Synthesis of α-Amino Imides from Tertiary Amines: Ugi-Type Three-Component Assemblies Involving Direct Functionalization of sp3 C-Hs Adjacent to Nitrogen Atoms. Org. Lett. 2010, 12, 4240–4243. [Google Scholar] [CrossRef]
- Wang, J.K.; Sun, Y.L.; Wang, G.J.; Zhen, L. DEAD-Promoted Oxidative Ugi-Type Reaction Including an Unprecedented Ugi Amidation Assisted by Dicarboxylic Acids. Eur. J. Org. Chem. 2017, 2017, 6338–6348. [Google Scholar] [CrossRef]
- Ye, X.; Xie, C.S.; Huang, R.; Liu, J.H. Direct Synthesis of α-Amino Amides from N-Alkyl Amines by the Copper-Catalyzed Oxidative Ugi-Type Reaction. Synlett 2012, 23, 409–412. [Google Scholar] [CrossRef]
- Wang, J.K.; Sun, Y.L.; Jiang, M.H.; Hu, T.Y.; Zhao, Y.J.; Li, X.; Wang, G.J.; Hao, K.; Zhen, L. Iminium Ion and N-hydroxyimide as the Surrogate Components in DEAD-Promoted Oxidative Ugi Variant. J. Org. Chem. 2018, 83, 13121–13131. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Feng, G.F. Visible Light Mediated sp3 C-H Bond Functionalization of N-Aryl-1,2,3,4-tetrahydroisoquinolines via Ugi-Type Three-Component Reaction. Org. Biomol. Chem. 2015, 13, 4260–4265. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; He, H.T.; Yang, H.Y.; Zeng, Z.G.; Zhong, C.R.; Shi, H.; Ouyang, M.L.; Tao, Y.Y.; Pang, Y.L.; Zhang, Y.H.; et al. Synthesis of 4-Tetrazolyl-Substituted 3,4-Dihydroquinazoline Derivatives with Anticancer Activity via a One-Pot Sequential Ugi-Azide/Palladium-Catalyzed Azide-Isocyanide Cross-Coupling/Cyclization Reaction. J. Org. Chem. 2022, 87, 9488–9496. [Google Scholar] [CrossRef]
- Xiong, J.; Min, Q.; Yao, G.; Zhang, J.A.; Yu, H.F.; Ding, M.W. New Facile Synthesis of 3,4-Dihydroquinazoline-2(1H)-thiones by a Sequential Ugi-Azide/Staudinger/Aza-Wittig/Cyclization Reaction. Synlett 2019, 30, 1053–1056. [Google Scholar] [CrossRef]
- Xiong, J.; Feng, Q.X.; Mu, Z.Y.; Yao, G.; Zhang, J.A.; He, H.T.; Pang, Y.L. Efficient Synthesis of 4H-3,1-Benzoxazine Derivatives via One-Pot Sequential Passerini-Azide/Palladium-Catalyzed Azide–Isocyanide Coupling/Cyclization Reaction. Synlett 2020, 31, 1003–1006. [Google Scholar] [CrossRef]
- Xiong, J.; Wei, X.; Wan, Y.C.; Ding, M.W. One-pot and regioselective synthesis of polysubstituted 3,4-dihydroquinazolines and 4,5-dihydro-3H-1,4-benzodiazepin-3-ones by sequential Ugi/Staudinger/aza-Wittig reaction. Tetrahedron 2019, 75, 1072–1078. [Google Scholar] [CrossRef]
- Xiong, J.; Wei, X.; Yan, Y.M.; Ding, M.W. One-pot and regioselective synthesis of 3,4-dihydroquinazolines by Sequential Ugi/Staudinger/aza-Wittig reaction starting from functionalized isocyanides. Tetrahedron 2017, 73, 5720–5724. [Google Scholar] [CrossRef]
- Zhong, C.R.; Zhang, Y.H.; Yao, G.; Zhu, H.L.; Hu, Y.D.; Zeng, Z.G.; Liao, C.Z.; He, H.T.; Luo, Y.T.; Xiong, J. Synthesis of Imidazo[1,2-a]pyridine-Fused 1,3-Benzodiazepine Derivatives with Anticancer Activity via a One-Pot Cascade GBB-3CR/Pd(II)-Catalyzed Azide-Isocyanide Coupling/Cyclization Process. J. Org. Chem. 2023, 88, 13125–13134. [Google Scholar] [CrossRef]
- Bio, M.M.; Javadi, G.; Song, Z.J. An Improved Synthesis of N-Isocyanoiminotriphenylphosphorane and Its Use in the Preparation of Diazoketones. Synthesis 2005, 1, 19–21. [Google Scholar]
Entry | Catalyst (mol%) | L (mol%) | Solvent | Oxidant | Temp (°C) | Yield of 4a (%) a |
---|---|---|---|---|---|---|
1 | CuCl (10) | 2,2′-bipyridyl (10) | CH3CN | TBHP | 60 | 79 |
2 | CuBr2 (10) | 2,2′-bipyridyl (10) | CH3CN | TBHP | 60 | 65 |
3 | CuI (10) | 2,2′-bipyridyl (10) | CH3CN | TBHP | 60 | 72 |
4 | CuBr (10) | 2,2′-bipyridyl (10) | CH3CN | TBHP | 60 | 68 |
5 | CuCl (10) | - | CH3CN | TBHP | 60 | 81 |
6 b | CuCl (10) | - | CH3CN | TBHP | 60 | 66 |
7 | CuCl (10) | - | PhMe | TBHP | 60 | 38 |
8 | CuCl (10) | - | MeOH | TBHP | 60 | 24 |
9 | CuCl (10) | - | THF | TBHP | 60 | 32 |
10 | CuCl (10) | - | CH2Cl2 | TBHP | 60 | 69 |
11 | CuCl (10) | - | 1,4-dioxane | TBHP | 60 | 45 |
12 c | CuCl (10) | - | CH3CN | BOP | 60 | 65 |
13 d | CuCl (10) | - | CH3CN | DTBP | 60 | 52 |
14 e | CuCl (10) | - | CH3CN | TBPB | 60 | 38 |
15 | CuCl (10) | - | CH3CN | TBHP | 25 | 58 |
16 | CuCl (10) | - | CH3CN | TBHP | 40 | 69 |
17 | CuCl (10) | - | CH3CN | TBHP | 80 | 67 |
18 | CuCl (5) | - | CH3CN | TBHP | 60 | 69 |
19 f | CuCl (10) | - | CH3CN | TBHP | 60 | 80 |
20 g | CuCl (10) | - | CH3CN | TBHP | 60 | 77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Mao, N.-Q.; Wang, S.-L.; Han, X.-M.; Yao, G.; Xue, P.; Zeng, C.-Y.; Liu, Y.-T.; Chen, K.; Gao, X.-Q.; et al. One-Step Construction of 1,3,4-Oxadiazoles with Anticancer Activity from Tertiary Amines via a Sequential Copper(I)-Catalyzed Oxidative Ugi/aza-Wittig Reaction. Molecules 2024, 29, 1253. https://doi.org/10.3390/molecules29061253
Sun M, Mao N-Q, Wang S-L, Han X-M, Yao G, Xue P, Zeng C-Y, Liu Y-T, Chen K, Gao X-Q, et al. One-Step Construction of 1,3,4-Oxadiazoles with Anticancer Activity from Tertiary Amines via a Sequential Copper(I)-Catalyzed Oxidative Ugi/aza-Wittig Reaction. Molecules. 2024; 29(6):1253. https://doi.org/10.3390/molecules29061253
Chicago/Turabian StyleSun, Mei, Nong-Qi Mao, Sheng-Long Wang, Xin-Ming Han, Gang Yao, Ping Xue, Chong-Yang Zeng, Yu-Ting Liu, Kai Chen, Xiao-Qing Gao, and et al. 2024. "One-Step Construction of 1,3,4-Oxadiazoles with Anticancer Activity from Tertiary Amines via a Sequential Copper(I)-Catalyzed Oxidative Ugi/aza-Wittig Reaction" Molecules 29, no. 6: 1253. https://doi.org/10.3390/molecules29061253
APA StyleSun, M., Mao, N. -Q., Wang, S. -L., Han, X. -M., Yao, G., Xue, P., Zeng, C. -Y., Liu, Y. -T., Chen, K., Gao, X. -Q., & Xiong, J. (2024). One-Step Construction of 1,3,4-Oxadiazoles with Anticancer Activity from Tertiary Amines via a Sequential Copper(I)-Catalyzed Oxidative Ugi/aza-Wittig Reaction. Molecules, 29(6), 1253. https://doi.org/10.3390/molecules29061253