Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,031)

Search Parameters:
Authors = Nan Zhang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 688 KiB  
Review
Mycoplasma Biofilms: Characteristics and Control Strategies
by Jingyi Liang, Baoyi Deng, Weihuo Li, Jingjing Qi, Yangshuo Li, Xueyan Wang, Ming Li, Hong Yang and Nan Zhang
Microorganisms 2025, 13(8), 1850; https://doi.org/10.3390/microorganisms13081850 (registering DOI) - 7 Aug 2025
Abstract
The Mycoplasmataceae are a family of bacteria that typically cause respiratory, arthritic, and genitourinary disease in humans. Mycoplasma spp. of animal origin are also the causative agents of porcine wheezing disease, chronic respiratory disease and arthritis in chickens and other conditions. These diseases [...] Read more.
The Mycoplasmataceae are a family of bacteria that typically cause respiratory, arthritic, and genitourinary disease in humans. Mycoplasma spp. of animal origin are also the causative agents of porcine wheezing disease, chronic respiratory disease and arthritis in chickens and other conditions. These diseases have a significant impact on public health and the economic development of livestock breeding. Clinical prevention and treatment of mycoplasma infections is primarily dependent on the use of antibiotics. However, inappropriate and excessive use of antimicrobials has enabled resistance development that has become a significant clinical concern. Mycoplasma are also robust biofilm producers, and this process is a major factor for the persistence of these infections, especially in conjunction with common antibiotic resistance mechanisms, including target gene mutations and the action of efflux pumps. A mycoplasma biofilm refers to a structured and stable microbial community formed by Mycoplasma spp. adhering to biological or non-biological surfaces under suitable conditions and secreting extracellular polymers (EPS) such as polysaccharides. This process allows the microorganisms to adapt to their surrounding environment and survive during the growth process. These biofilms render bacteria more resistant to antimicrobials than planktonic bacteria, resulting in biofilm-associated infections that are more challenging to eradicate and more likely to recur. The current study reviews progress from the fields of biofilm formation, structure and identification, correlations between biofilms and drug resistance and virulence as well as methods of biofilm prevention and control. Our aim was to provide a reference basis for the subsequent in-depth understanding of the research of mycoplasma biofilms. Full article
10 pages, 1346 KiB  
Article
Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications
by Shiyi He, Silong Zhang, Liang Chen, Yang Li, Fangbao Wang, Nan Zhang, Naizhe Zhao and Xiaoping Ouyang
Materials 2025, 18(15), 3691; https://doi.org/10.3390/ma18153691 - 6 Aug 2025
Abstract
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low [...] Read more.
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low luminous intensity and significant self-absorption. Therefore, an enhanced method was proposed to tune the wavelength of materials via coating perovskite quantum dot (QD) films. Three-layer samples based on GZO were primarily investigated and characterized. Radioluminescence (RL) spectra from each face of the samples, as well as their decay times, were obtained. Lower temperatures further enhanced the luminous intensity of the samples. Its overall luminous intensity increased by 2.7 times at 60 K compared to room temperature. The changes in the RL processes caused by perovskite QD and low temperatures were discussed using the light tuning and transporting model. In addition, an experiment under a pico-second electron beam was conducted to verify their pulse response and decay time. Accordingly, the samples were successfully applied in beam state monitoring of nanosecond pulsed proton beams, which indicates that GZO wafer coating with perovskite QD films has broad application prospects in pulsed radiation detection. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

16 pages, 540 KiB  
Article
Comparison of Dietary Inorganic and Small-Peptide Chelating Trace Minerals on Growth Performance, Immunity, Meat Quality, and Environmental Release in Litopenaeus vannamei
by Jingshen Chen, Nan Liu, Shumeng Wang, Hailong Wang, Kun Ouyang, Yuxuan Wang, Junyi Luo, Jiajie Sun, Qianyun Xi, Yuping Sun, Yongguo Si, Yongliang Zhang and Ting Chen
Animals 2025, 15(15), 2297; https://doi.org/10.3390/ani15152297 - 6 Aug 2025
Abstract
The present study evaluated the effect of adding 0% (control), 30%, 40% and 50% SPMs (small-peptide chelating trace minerals) to replace ITMs (inorganic trace minerals) in the diets of Litopenaeus vannamei; 720 shrimp were randomly assigned to four treatments (six replicates per [...] Read more.
The present study evaluated the effect of adding 0% (control), 30%, 40% and 50% SPMs (small-peptide chelating trace minerals) to replace ITMs (inorganic trace minerals) in the diets of Litopenaeus vannamei; 720 shrimp were randomly assigned to four treatments (six replicates per group, 30 shrimp per replicate) in a 42-day feeding trial. There were no significant differences (p > 0.05) among the control, 40% SPM and 50% SPM groups in terms of the survival rate, weight gain rate, specific growth rate, hepatosomatic index, condition factor, feed intake, feed conversion ratio, or protein efficiency ratio; however, protein efficiency ratio was reduced in the 30% SPM group (p < 0.05). Glucose, triglyceride, and aspartate aminotransferase levels in the hemolymph of the 30% SPM group were significantly increased (p < 0.05), while the glucose and aspartate aminotransferase levels were also significantly increased in the 40% SPM group (p < 0.05). In the 50% SPM group, the glucose and triglyceride levels were also significantly increased (p < 0.05). Hepatopancreatic alkaline phosphatase activity was elevated at 40% SPM, and alkaline phosphatase, acid phosphatase, glutathione peroxidase, and total antioxidant capacity activities were significantly increased in the 50% SPM group (p < 0.05). The moisture content and drip loss were reduced in both the 40% and 50% SPM groups (p < 0.05). Therefore, replacing 40–50% ITMs with SPMs can maintain growth performance while enhancing physiological functions. In conclusion, the results of this study demonstrate that the incorporation of 30–50% SPMs into one’s diet constitutes a viable alternative to 100% ITMs. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

21 pages, 4392 KiB  
Article
Visualization of Kinetic Parameters of a Droplet Nucleation Boiling on Smooth and Micro-Pillar Surfaces with Inclined Angles
by Yi-Nan Zhang, Guo-Qing Huang, Lu-Ming Zhao and Hong-Xia Chen
Energies 2025, 18(15), 4152; https://doi.org/10.3390/en18154152 - 5 Aug 2025
Abstract
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation [...] Read more.
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation density, bubble stable diameter, and droplet asymmetry, were recorded using two high-speed video cameras, and the corresponding evaporation performance was analyzed. Experimental results showed that the inclination angle had a significant influence on the evaporation of micro-pillar surfaces than smooth surfaces as well as a positive correlation between the enhancement performance of the micro-pillars and increasing inclination angles. This angular dependence arises from surface inclination-induced tail elongation and the corresponding asymmetry of droplets. With definition of the one-dimensional asymmetry factor (ε) and volume asymmetry factor (γ), it was proven that although the asymmetric thickness of the droplets reduces the nucleation density and bubble stable diameter, the droplet asymmetry significantly increased the heat exchange area, resulting in a 37% improvement in the evaporation rate of micro-pillar surfaces and about a 15% increase in its enhancement performance to smooth surfaces when the inclination angle increased from 0°to 60°. These results indicate that asymmetry causes changes in heat transfer conditions, specifically, a significant increase in the wetted area and deformation of the liquid film, which are the direct enhancement mechanisms of inclined micro-pillar surfaces. Full article
(This article belongs to the Special Issue Advancements in Heat Transfer and Fluid Flow for Energy Applications)
Show Figures

Figure 1

17 pages, 4116 KiB  
Article
A Bifunctional Anti-PD-1/TGF-β Fusion Antibody Restores Antitumour Immunity and Remodels the Tumour Microenvironment
by Lidi Nan, Yuting Qin, Xiao Huang, Mingzhu Pan, Xiaomu Wang, Yanqing Lv, Annette Sorensen, Xiaoqiang Kang, Hong Ling and Juan Zhang
Int. J. Mol. Sci. 2025, 26(15), 7567; https://doi.org/10.3390/ijms26157567 - 5 Aug 2025
Abstract
Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target [...] Read more.
Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target PD-1 and TGF-β signalling have entered clinical trials and shown encouraging efficacy, but the mechanistic basis of their synergy is not fully understood. Here, we engineered 015s, a bifunctional fusion antibody that simultaneously targets murine PD-1 and TGF-β and evaluated its antitumour efficacy and mechanistic impact in pre-clinical models. Antibody 015s exhibited high affinity, dual target binding, and the effective inhibition of PD-1 and TGF-β signalling. In vivo, 015s significantly suppressed tumour growth compared with anti-mPD-1 or TGF-β receptor II (TGF-βRII) monotherapy. When combined with the CD24-targeted ADC, 015s produced even greater antitumour activity and achieved complete tumour regression. Mechanistic studies demonstrated that 015s significantly reduced tumour cell migration and invasion, reversed epithelial–mesenchymal transition (EMT), decreased microvascular density, and attenuated collagen deposition within the TME. Antibody 015s also decreased bioactive TGF-β1 and increased intratumoural IFN-γ, creating a more immunostimulatory milieu. These findings support further development of PD-1/TGF-β bifunctional antibodies for cancers with high TGF-β activity or limited response to immune checkpoint blockade. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

16 pages, 11908 KiB  
Article
A Quinary-Metallic High-Entropy Electrocatalyst with Driving of Cocktail Effect for Enhanced Oxygen Evolution Reaction
by Jing-Yi Lv, Zhi-Jie Zhang, Hao Zhang, Jun Nan, Zan Chen, Xin Liu, Fei Han, Yong-Ming Chai and Bin Dong
Catalysts 2025, 15(8), 744; https://doi.org/10.3390/catal15080744 - 5 Aug 2025
Viewed by 45
Abstract
The complex system of high-entropy materials makes it challenging to reveal the specific function of each site for oxygen evolution reaction (OER). Here, with nickel foam (NF) as the substrate, FeCoNiCrMo/NF is designed to be prepared by metal–organic frameworks (MOF) as a precursor [...] Read more.
The complex system of high-entropy materials makes it challenging to reveal the specific function of each site for oxygen evolution reaction (OER). Here, with nickel foam (NF) as the substrate, FeCoNiCrMo/NF is designed to be prepared by metal–organic frameworks (MOF) as a precursor under an argon atmosphere. XRD analysis confirms that it retains a partial MOF crystal structure (characteristic peak at 2θ = 11.8°) with amorphous carbon (peaks at 22° and 48°). SEM-EDS mapping and XPS demonstrate uniform distribution of Fe, Co, Ni, Cr, and Mo with a molar ratio of 27:24:30:11:9. Electrochemical test results show that FeCoNiCrMo/NF has excellent OER characteristics compared with other reference prepared samples. FeCoNiCrMo/NF has an overpotential of 285 mV at 100 mA cm−2 and performs continuously for 100 h without significant decline. The OER mechanism of FeCoNiCrMo/NF further reveal that Co and Ni are true active sites, and the dissolution of Cr and Mo promote the conversion of active sites into MOOH following the lattice oxygen mechanism (LOM). The precipitation–dissolution equilibrium of Fe also plays an important role in the OER process. The study of different reaction sites in complex systems points the way to designing efficient and robust catalysts. Full article
(This article belongs to the Special Issue Non-Novel Metal Electrocatalytic Materials for Clean Energy)
Show Figures

Graphical abstract

10 pages, 1588 KiB  
Article
385 nm AlGaN Near-Ultraviolet Micro Light-Emitting Diode Arrays with WPE 30.18% Realized Using an AlN-Inserted Hole Spreading Enhancement S Electron Blocking Layer
by Qi Nan, Shuhan Zhang, Jiahao Yao, Yun Zhang, Hui Ding, Qian Fan, Xianfeng Ni and Xing Gu
Coatings 2025, 15(8), 910; https://doi.org/10.3390/coatings15080910 - 3 Aug 2025
Viewed by 168
Abstract
In this work, we demonstrate high-efficiency 385 nm AlGaN-based near-ultraviolet micro light emitting diode (NUV-Micro LED) arrays. The epi structure is prepared using a novel AlN-inserted superlattice electrical blocking layer which enhances hole spreading in the p-type region significantly. The NUV-Micro LED arrays [...] Read more.
In this work, we demonstrate high-efficiency 385 nm AlGaN-based near-ultraviolet micro light emitting diode (NUV-Micro LED) arrays. The epi structure is prepared using a novel AlN-inserted superlattice electrical blocking layer which enhances hole spreading in the p-type region significantly. The NUV-Micro LED arrays in this work comprise 228 chips in parallel with wavelengths at 385 nm, and each single chip size is 15 × 30 μm2. Compared with conventional bulk AlGaN-based EBL structures, the NUV-Micro LED arrays that implemented the new hole spreading enhanced superlattice electrical blocking layer (HSESL-EBL) structure proposed in this work had a remarkable increase in light output power (LOP) at current density, increasing the range down from 0.02 A/cm2 to as high as 97 A/cm2. The array’s light output power is increased up to 1540% at the lowest current density 0.02 A/cm2, and up to 58% at the highest current density 97 A/cm2, measured under room temperature (RT); consequently, the WPE is increased from 13.4% to a maximum of 30.18%. This AlN-inserted HESEL-EBL design significantly enhances both the lateral expansion efficiency and the hole injection efficiency into the multi quantum well (MQW) in the arrays, improving the concentration distribution of the holes in MQW while maintaining good suppression of electron leakage. The array’s efficiency droop has also been greatly reduced. Full article
Show Figures

Figure 1

18 pages, 3091 KiB  
Article
Construction of Typical Scenarios for Multiple Renewable Energy Plant Outputs Considering Spatiotemporal Correlations
by Yuyue Zhang, Yan Wen, Nan Wang, Zhenhua Yuan, Lina Zhang and Runjia Sun
Symmetry 2025, 17(8), 1226; https://doi.org/10.3390/sym17081226 - 3 Aug 2025
Viewed by 193
Abstract
A high-quality set of typical scenarios is significant for power grid planning. Existing construction methods for typical scenarios do not account for the spatiotemporal correlations among renewable energy plant outputs, failing to adequately reflect the distribution characteristics of original scenarios. To address the [...] Read more.
A high-quality set of typical scenarios is significant for power grid planning. Existing construction methods for typical scenarios do not account for the spatiotemporal correlations among renewable energy plant outputs, failing to adequately reflect the distribution characteristics of original scenarios. To address the issues mentioned above, this paper proposes a construction method for typical scenarios considering spatiotemporal correlations, providing high-quality typical scenarios for power grid planning. Firstly, a symmetric spatial correlation matrix and a temporal autocorrelation matrix are defined, achieving quantitative representation of spatiotemporal correlations. Then, distributional differences between typical and original scenarios are quantified from multiple dimensions, and a scenario reduction model considering spatiotemporal correlations is established. Finally, the genetic algorithm is improved by incorporating adaptive parameter adjustment and an elitism strategy, which can efficiently obtain high-quality typical scenarios. A case study involving five wind farms and fourteen photovoltaic plants in Belgium is presented. The rate of error between spatial correlation matrices of original and typical scenario sets is lower than 2.6%, and the rate of error between temporal autocorrelations is lower than 2.8%. Simulation results demonstrate that typical scenarios can capture the spatiotemporal correlations of original scenarios. Full article
(This article belongs to the Special Issue New Power System and Symmetry)
Show Figures

Figure 1

12 pages, 8945 KiB  
Article
Effect of Si Addition on Microstructure and Mechanical Properties of SiC Ceramic Fabricated by Direct LPBF with CVI Technology
by Yipu Wang, Pei Wang, Liqun Li, Jian Zhang, Yulei Zhang, Jin Peng, Xingxing Wang, Nan Kang, Mohamed El Mansori and Konda Gokuldoss Prashanth
Appl. Sci. 2025, 15(15), 8585; https://doi.org/10.3390/app15158585 - 1 Aug 2025
Viewed by 172
Abstract
In this paper, SiC and Si/SiC ceramics were fabricated using direct laser powder bed fusion with chemical vapor infiltration. Their microstructure, mechanical properties and the impacts of silicon addition were analyzed. The incorporation of silicon led to an increase in the relative density [...] Read more.
In this paper, SiC and Si/SiC ceramics were fabricated using direct laser powder bed fusion with chemical vapor infiltration. Their microstructure, mechanical properties and the impacts of silicon addition were analyzed. The incorporation of silicon led to an increase in the relative density of the silicon carbide ceramics from 76.4% to 78.3% and the compression strength increased from 39 ± 13 MPa to 90 ± 8 MPa after laser powder bed fusion with chemical vapor infiltration. The melting and re-solidification of silicon allows the silicon to encapsulate the silicon carbide grains, changing the microstructure and the failure mechanism of the silicon carbide ceramics, resulting in a small amount of silicon residue. In the LPBF-CVI SiC ceramic specimen, the LPBF-formed SiC exhibits a microhardness of 24.2 ± 1.0 GPa. In LPBF-CVI Si/SiC, the spherical dual-phase structure displays a moderately increased hardness (25.9 ± 4.4 GPa), and the CVI-formed SiC exhibits a hardness of 55.3 ± 9.3 GPa. Full article
Show Figures

Figure 1

17 pages, 1884 KiB  
Article
Modification of Spanish Mackerel (Scomberomorus niphonius) Surimi Gels by Three Anionic Polysaccharides
by Zhu-Jun Zhang, Fan-Yu Kong, Lin-Da Zhang, Miao-Miao Luo, Yin-Yin Lv, Ce Wang, Bin Lai, Li-Chao Zhang, Jia-Nan Yan and Hai-Tao Wu
Foods 2025, 14(15), 2671; https://doi.org/10.3390/foods14152671 - 29 Jul 2025
Viewed by 252
Abstract
This study investigated the gel performance of Spanish mackerel surimi gels (SMSGs) modified by three anionic polysaccharides: κ-carrageenan (KC), ι-carrageenan (IC), and gellan gum (GG). By incorporating polysaccharides, SMSGs showed a 24.9–103.4% improvement in gel and textural properties, in which KC and IC [...] Read more.
This study investigated the gel performance of Spanish mackerel surimi gels (SMSGs) modified by three anionic polysaccharides: κ-carrageenan (KC), ι-carrageenan (IC), and gellan gum (GG). By incorporating polysaccharides, SMSGs showed a 24.9–103.4% improvement in gel and textural properties, in which KC and IC had more improvement effects than GG. Moreover, polysaccharides led to a 10.7–13.1% increment in WHC, a shortened water migration from 61.34 to 52.43–55.93 ms in T22, and enhanced thermal stability of SMSGs. The content of α-helix in SMSGs reduced markedly accompanied by a concurrent enhancement of β-sheet and β-turn by adding polysaccharides, where β-sheet and β-turn are positively correlated with hardness being favorable for gelling. The microstructure of SMSGs/polysaccharides showed a homogeneous network mainly due to hydrophobic interactions and disulfide bonds in SMSG-based gels. This study will demonstrate the effectiveness of KC, IC, and GG in improving the texture and functionality as well as expanding the application of surimi products. Full article
(This article belongs to the Special Issue Applications of Hydrocolloids for Food Product Development)
Show Figures

Figure 1

23 pages, 5330 KiB  
Article
Explainable Reinforcement Learning for the Initial Design Optimization of Compressors Inspired by the Black-Winged Kite
by Mingming Zhang, Zhuang Miao, Xi Nan, Ning Ma and Ruoyang Liu
Biomimetics 2025, 10(8), 497; https://doi.org/10.3390/biomimetics10080497 - 29 Jul 2025
Viewed by 402
Abstract
Although artificial intelligence methods such as reinforcement learning (RL) show potential in optimizing the design of compressors, there are still two major challenges remaining: limited design variables and insufficient model explainability. For the initial design of compressors, this paper proposes a technical approach [...] Read more.
Although artificial intelligence methods such as reinforcement learning (RL) show potential in optimizing the design of compressors, there are still two major challenges remaining: limited design variables and insufficient model explainability. For the initial design of compressors, this paper proposes a technical approach that incorporates deep reinforcement learning and decision tree distillation to enhance both the optimization capability and explainability. First, a pre-selection platform for the initial design scheme of the compressors is constructed based on the Deep Deterministic Policy Gradient (DDPG) algorithm. The optimization space is significantly enlarged by expanding the co-design of 25 key variables (e.g., the inlet airflow angle, the reaction, the load coefficient, etc.). Then, the initial design of six-stage axial compressors is successfully completed, with the axial efficiency increasing to 84.65% at the design speed and the surge margin extending to 10.75%. The design scheme is closer to the actual needs of engineering. Secondly, Shapley Additive Explanations (SHAP) analysis is utilized to reveal the influence of the mechanism of the key design parameters on the performance of the compressors in order to enhance the model explainability. Finally, the decision tree inspired by the black-winged kite (BKA) algorithm takes the interpretable design rules and transforms the data-driven intelligent optimization into explicit engineering experience. Through experimental validation, this method significantly improves the transparency of the design process while maintaining the high performance of the DDPG algorithm. The extracted design rules not only have clear physical meanings but also can effectively guide the initial design of the compressors, providing a new idea with both optimization capability and explainability for its intelligent design. Full article
(This article belongs to the Special Issue Advances in Biological and Bio-Inspired Algorithms)
Show Figures

Figure 1

20 pages, 17080 KiB  
Article
Exercise Ameliorates Dopaminergic Neurodegeneration in Parkinson’s Disease Mice by Suppressing Microglia-Regulated Neuroinflammation Through Irisin/AMPK/Sirt1 Pathway
by Bin Wang, Nan Li, Yuanxin Wang, Xin Tian, Junjie Lin, Xin Zhang, Haocheng Xu, Yu Sun and Renqing Zhao
Biology 2025, 14(8), 955; https://doi.org/10.3390/biology14080955 - 29 Jul 2025
Viewed by 385
Abstract
Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson’s disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the [...] Read more.
Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson’s disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the role of irisin signaling in mediating these effects. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we found that a 10-week treadmill exercise regimen significantly enhanced motor function, reduced dopaminergic neuron loss, attenuated neuronal apoptosis, and alleviated neuroinflammation. Exercise also shifted microglia from a pro-inflammatory to an anti-inflammatory phenotype. Notably, levels of irisin, phosphorylated AMP-activated protein kinase (p-AMPK), and sirtuin 1 (Sirt1), which were decreased in the PD brain, were significantly increased following exercise. These beneficial effects were abolished by blocking the irisin receptor with cyclic arginine–glycine–aspartic acid–tyrosine–lysine (cycloRGDyk). Our results indicate that exercise promotes neuroprotection in PD by modulating microglial activation and the AMPK/Sirt1 pathway through irisin signaling, offering new insights into exercise-based therapeutic approaches for PD. Full article
Show Figures

Figure 1

13 pages, 2070 KiB  
Article
Optimizing Row Spacing and Seeding Rate for Yield and Quality of Alfalfa in Saline–Alkali Soils
by Jiaqi Shi, Nan Xie, Lifeng Zhang, Xuan Pan, Yanling Wang, Zhongkuan Liu, Zhenyu Liu, Jianfei Zhi, Wenli Qin, Wei Feng, Guotong Sun and Hexing Yu
Agronomy 2025, 15(8), 1828; https://doi.org/10.3390/agronomy15081828 - 28 Jul 2025
Viewed by 305
Abstract
To elucidate the photosynthetic physiological mechanisms influencing alfalfa (Medicago sativa L.) yield and quality under varying planting densities, the cultivar ‘Zhongmu No.1’ was used as experimental material. The effects of different row spacing (R1, R2, R3) and seeding rate (S1, S2, S3, [...] Read more.
To elucidate the photosynthetic physiological mechanisms influencing alfalfa (Medicago sativa L.) yield and quality under varying planting densities, the cultivar ‘Zhongmu No.1’ was used as experimental material. The effects of different row spacing (R1, R2, R3) and seeding rate (S1, S2, S3, S4, S5) combinations on chlorophyll content (ChlM), nitrogen flavonol index (NFI), chlorophyll fluorescence parameters, forage quality, and hay yield were systematically analyzed. Results showed that alfalfa under R1S3 treatment achieved peak values for ChIM, NFI, EE, and hay yield, whereas R1S4 treatment yielded the highest Fv/Fm and CP content. Redundancy analysis further indicated that yield was most strongly associated with ChlM, NFI, Y (II), and qP. Y (II), and qP significantly influenced alfalfa forage quality, exerting negative effects on ADF and NDF, while demonstrating positive effects on CP and EE. In conclusion, narrow row spacing (15 cm) with moderate seeding rates (22.5–30 kg·hm−2) optimizes photosynthetic performance while concurrently enhancing both productivity and forage quality in alfalfa cultivated, establishing a theoretical foundation for photosynthetic regulation in high-quality and high-yield alfalfa cultivation. Full article
Show Figures

Figure 1

16 pages, 2491 KiB  
Article
High-Yield Production of PCV2 Cap Protein: Baculovirus Vector Construction and Cultivation Process Optimization
by Long Cheng, Denglong Xie, Wei Ji, Xiaohong Ye, Fangheng Yu, Xiaohui Yang, Nan Gao, Yan Zhang, Shu Zhu and Yongqi Zhou
Vaccines 2025, 13(8), 801; https://doi.org/10.3390/vaccines13080801 - 28 Jul 2025
Viewed by 335
Abstract
Background/Objectives: Porcine circovirus type 2 (PCV2) infection causes porcine circovirus disease (PCVD), a global immunosuppressive disease in pigs. Its clinical manifestations include post-weaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS), which cause significant economic losses to the swine industry. [...] Read more.
Background/Objectives: Porcine circovirus type 2 (PCV2) infection causes porcine circovirus disease (PCVD), a global immunosuppressive disease in pigs. Its clinical manifestations include post-weaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS), which cause significant economic losses to the swine industry. The Cap protein, which is the major protective antigen of PCV2, can self-assemble to form virus-like particles (VLPs) in the insect baculovirus expression system. Few studies have compared the expression of Cap proteins in different baculovirus expression systems. Methods: In this study, we compared two commonly commercialized baculovirus construction systems with the Cap protein expression in various insect cells. Results: The results demonstrate that the flashBAC system expressed the Cap protein at higher levels than the Bac-to-Bac system. Notably, when expressing four copies of the Cap protein, the flashBAC system achieved the highest protein yield in High Five cells, where it reached 432 μg/mL at 5 days post-infection (dpi) with 27 °C cultivation. Animal experiments confirmed that the purified Cap protein effectively induced specific antibody production in mice and swine. Conclusions: This study provides critical data for optimizing the production of the PCV2 Cap protein, which is of great significance for reducing the production cost of PCV2 vaccines and improving the industrial production efficiency. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

14 pages, 1663 KiB  
Article
Carbon Dioxide Absorption by Polyethylene Glycol Dimethyl Ether Modified by 2-methylimidazole
by Yan Wu, Zicheng Wang, Hui Yu, Bin Ding, Ke Fei, Xueli Ma, Baoshen Xu, Yonghu Zhang, Xiaoning Fu, Bowen Ding and Nan Li
Separations 2025, 12(8), 198; https://doi.org/10.3390/separations12080198 - 28 Jul 2025
Viewed by 253
Abstract
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); [...] Read more.
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); however, its limited application range is caused by its poor absorption of CO2 at low pressures. In this work, the CO2 absorption of NHD was enhanced by combining NHD with a novel chemical absorbent 2-methylimidazole (2-mIm)-ethylene glycol (EG) solution to improve CO2 absorption. Viscosity and CO2 solubility were examined in various compositions. The CO2 solubility in the mixed solution was found to be at maximum when the mass fractions of NHD, 2-mIm, and EG were 20%, 40%, and 40%, respectively. In comparison to pure NHD, the solubility of CO2 in this mixed solution at 30 °C and 0.5 MPa increased by 161.2%, and the desorption heat was less than 30 kJ/mol. The complex solution exhibits high selectivity and favorable regeneration performance in the short term. However, it is more sensitive to moisture content. The results of this study can provide important data to support the construction of new low-energy solvent systems and the development of novel CO2 capture processes. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

Back to TopTop