Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Authors = Mohamed A. Farag

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8413 KiB  
Article
Ellagic Acid Alleviates Imidacloprid-Induced Thyroid Dysfunction via PI3K/Akt/mTOR-Mediated Autophagy
by Amina A. Farag, Mahmoud Mostafa, Reham M. Abdelfatah, Alshimaa Ezzat ELdahshan, Samar Fawzy Gad, Shimaa K. Mohamed, Mona K. Alawam, Aya Aly Elzeer, Nesma S. Ismail, Sally Elsharkawey, Haneen A. Al-Mazroua, Hatun A. Alomar, Wedad S. Sarawi and Heba S. Youssef
Toxics 2025, 13(5), 355; https://doi.org/10.3390/toxics13050355 - 29 Apr 2025
Viewed by 740
Abstract
Imidacloprid (IMI) is a widely used insecticide known for its high selectivity toward insects. Ellagic acid (EA) is a plant-derived polyphenolic compound recognized for its therapeutic potential and favorable safety profile in the treatment of various diseases. This study aimed to evaluate the [...] Read more.
Imidacloprid (IMI) is a widely used insecticide known for its high selectivity toward insects. Ellagic acid (EA) is a plant-derived polyphenolic compound recognized for its therapeutic potential and favorable safety profile in the treatment of various diseases. This study aimed to evaluate the therapeutic effects of EA, formulated as novasomes (NOV), against IMI-induced thyroid dysfunction and to investigate the underlying mechanisms. Rats were divided into four equal groups: control, EA-NOV, IMI, and IMI + EA-NOV. Thyroid function was assessed by measuring free triiodothyronine (T3), free thyroxine (T4), and thyroid-stimulating hormone (TSH) levels. Thyroid tissues were examined to evaluate histopathological alterations, as well as to assess the oxidative/antioxidant pathway (Nrf2, SOD, TAC, MDA), inflammatory pathway (IL-1β, TNF-α, NF-κB), apoptotic pathway (Bcl, BAX), and autophagy pathway (PI3K/Akt/mTOR, P53, Beclin-1). Exposure to IMI resulted in impaired thyroid function, the upregulated gene expression of the PI3K/Akt/mTOR pathway, and downregulated P53 expression. Additionally, immunohistochemical staining revealed Beclin-1-mediated autophagy, alongside increased apoptosis, oxidative stress, and elevated levels of inflammatory cytokines. Conversely, EA improved thyroid function and ameliorated histopathological alterations by enhancing autophagy-inducing pathways. Additionally, the alleviation of oxidative stress was evidenced by the increased immunohistochemical staining of Nrf2, which promoted the synthesis and activity of antioxidant enzymes and reduced apoptotic and inflammatory markers. This study proposes the use of EA as a potential protective, naturally occurring phytoceutical against IMI-induced thyroid dysfunction, primarily through the modulation of PI3K/Akt/mTOR-mediated autophagy. Full article
(This article belongs to the Special Issue Exposure to Endocrine Disruptors and Risk of Metabolic Diseases)
Show Figures

Graphical abstract

32 pages, 5944 KiB  
Review
Emerging Technologies for Precision Crop Management Towards Agriculture 5.0: A Comprehensive Overview
by Mohamed Farag Taha, Hanping Mao, Zhao Zhang, Gamal Elmasry, Mohamed A. Awad, Alwaseela Abdalla, Samar Mousa, Abdallah Elshawadfy Elwakeel and Osama Elsherbiny
Agriculture 2025, 15(6), 582; https://doi.org/10.3390/agriculture15060582 - 9 Mar 2025
Cited by 16 | Viewed by 5127
Abstract
Agriculture 5.0 (Ag5.0) represents a groundbreaking shift in agricultural practices, addressing the global food security challenge by integrating cutting-edge technologies such as artificial intelligence (AI), machine learning (ML), robotics, and big data analytics. To adopt the transition to Ag5.0, this paper comprehensively reviews [...] Read more.
Agriculture 5.0 (Ag5.0) represents a groundbreaking shift in agricultural practices, addressing the global food security challenge by integrating cutting-edge technologies such as artificial intelligence (AI), machine learning (ML), robotics, and big data analytics. To adopt the transition to Ag5.0, this paper comprehensively reviews the role of AI, machine learning (ML) and other emerging technologies to overcome current and future crop management challenges. Crop management has progressed significantly from early agricultural methods to the advanced capabilities of Ag5.0, marking a notable leap in precision agriculture. Emerging technologies such as collaborative robots, 6G, digital twins, the Internet of Things (IoT), blockchain, cloud computing, and quantum technologies are central to this evolution. The paper also highlights how machine learning and modern agricultural tools are improving the way we perceive, analyze, and manage crop growth. Additionally, it explores real-world case studies showcasing the application of machine learning and deep learning in crop monitoring. Innovations in smart sensors, AI-based robotics, and advanced communication systems are driving the next phase of agricultural digitalization and decision-making. The paper addresses the opportunities and challenges that come with adopting Ag5.0, emphasizing the transformative potential of these technologies in improving agricultural productivity and tackling global food security issues. Finally, as Agriculture 5.0 is the future of agriculture, we highlight future trends and research needs such as multidisciplinary approaches, regional adaptation, and advancements in AI and robotics. Ag5.0 represents a paradigm shift towards precision crop management, fostering sustainable, data-driven farming systems that optimize productivity while minimizing environmental impact. Full article
(This article belongs to the Special Issue Computational, AI and IT Solutions Helping Agriculture)
Show Figures

Figure 1

15 pages, 1304 KiB  
Article
Analysis of Potential Genes, Oxidative, Metabolic, and Hormonal Markers Associated with Postpartum Disorder Susceptibility in Barki Sheep (Ovis aries)
by Asmaa Darwish, Ali J. Mohamed, Salah H. Faraj, Ahmed El-Sayed, Mansour A. Alghamdi, Ahmed M. Sallam, Attia Eissa, Belal F. Farag, Yasser Kamel, Eman M. Embaby and Ahmed Ateya
Vet. Sci. 2025, 12(3), 219; https://doi.org/10.3390/vetsci12030219 - 2 Mar 2025
Viewed by 1059
Abstract
This study purpose was to determine the gene expression as well as serum profile of acute phase proteins (APPs) and hormonal indicators linked to Barki sheep’s susceptibility to postpartum issues. Three equal-sized groups (each with fifty ewes) were created from the blood of [...] Read more.
This study purpose was to determine the gene expression as well as serum profile of acute phase proteins (APPs) and hormonal indicators linked to Barki sheep’s susceptibility to postpartum issues. Three equal-sized groups (each with fifty ewes) were created from the blood of 150 adult Barki ewes: the control group (CG), the inflammatory postpartum disorders group (IPG), and the non-inflammatory postpartum disorders group (NIPG). The expression levels of the oxidative stress (PGC-1αSIRT1GCLCGCLM, and EPAS1) and metabolic (FBXL12KPNA7, and LRRK1) genes were significantly higher in postpartum disorders sheep than in resistant ones. Ewes with inflammatory postpartum illnesses showed significantly higher levels of the examined markers than did the non-inflammatory and control groups. The serum profile analysis also revealed that the levels of Fb, Cp, Hp, SAA, cortisol, TIBC, UIBC, and ferritin were significantly higher in the IPG than in the NIPG and CG. Serum insulin, iron, transferrin, and Tf Sat.% levels, however, were all markedly lower. On the basis of the variance in the genes being studied and the modulation in the serum indicators being studied, it should be possible to monitor the health status in postpartum problems of sheep. Full article
(This article belongs to the Section Veterinary Internal Medicine)
Show Figures

Figure 1

38 pages, 7743 KiB  
Article
Forecasting Blue and Green Water Footprint of Wheat Based on Single, Hybrid, and Stacking Ensemble Machine Learning Algorithms Under Diverse Agro-Climatic Conditions in Nile Delta, Egypt
by Ashrakat A. Lotfy, Mohamed E. Abuarab, Eslam Farag, Bilal Derardja, Roula Khadra, Ahmed A. Abdelmoneim and Ali Mokhtar
Remote Sens. 2024, 16(22), 4224; https://doi.org/10.3390/rs16224224 - 13 Nov 2024
Cited by 1 | Viewed by 1332
Abstract
The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations in the Nile Delta regarding the estimation of the blue and green water footprint (BWFP and GWFP) for wheat. [...] Read more.
The aim of this research is to develop and compare single, hybrid, and stacking ensemble machine learning models under spatial and temporal climate variations in the Nile Delta regarding the estimation of the blue and green water footprint (BWFP and GWFP) for wheat. Thus, four single machine learning models (XGB, RF, LASSO, and CatBoost) and eight hybrid machine learning models (XGB-RF, XGB-LASSO, XGB-CatBoost, RF-LASSO, CatBoost-LASSO, CatBoost-RF, XGB-RF-LASSO, and XGB-CatBoost-LASSO) were used, along with stacking ensembles, with five scenarios including climate and crop parameters and remote sensing-based indices. The highest R2 value for predicting wheat BWFP was achieved with XGB-LASSO under scenario 4 at 100%, while the minimum was 0.16 with LASSO under scenario 3 (remote sensing indices). To predict wheat GWFP, the highest R2 value of 100% was achieved with RF-LASSO across scenario 1 (all parameters), scenario 2 (climate parameters), scenario 4 (Peeff, Tmax, Tmin, and SA), and scenario 5 (Peeff and Tmax). The lowest value was recorded with LASSO and scenario 3. The use of individual and hybrid machine learning models showed high efficiency in predicting the blue and green water footprint of wheat, with high ratings according to statistical performance standards. However, the hybrid programs, whether binary or triple, outperformed both the single models and stacking ensemble. Full article
Show Figures

Figure 1

22 pages, 18013 KiB  
Article
Role of IRE1α/XBP1/CHOP/NLRP3 Signalling Pathway in Neonicotinoid Imidacloprid-Induced Pancreatic Dysfunction in Rats and Antagonism of Lycopene: In Vivo and Molecular Docking Simulation Approaches
by Walaa Bayoumie El Gazzar, Heba Bayoumi, Heba S. Youssef, Tayseer A. Ibrahim, Reham M. Abdelfatah, Noha M. Gamil, Mervat K. Iskandar, Amal M. Abdel-Kareim, Shaymaa M. Abdelrahman, Mohammed A. Gebba, Mona Atya Mohamed, Maha M. Mokhtar, Tayseir G. Kharboush, Nervana M. Bayoumy, Hatun A. Alomar and Amina A. Farag
Toxics 2024, 12(7), 445; https://doi.org/10.3390/toxics12070445 - 21 Jun 2024
Cited by 3 | Viewed by 5395
Abstract
Imidacloprid (IMI) is a commonly used new-generation pesticide that has numerous harmful effects on non-targeted organisms, including animals. This study analysed both the adverse effects on the pancreas following oral consumption of imidacloprid neonicotinoids (45 mg/kg daily for 30 days) and the potential [...] Read more.
Imidacloprid (IMI) is a commonly used new-generation pesticide that has numerous harmful effects on non-targeted organisms, including animals. This study analysed both the adverse effects on the pancreas following oral consumption of imidacloprid neonicotinoids (45 mg/kg daily for 30 days) and the potential protective effects of lycopene (LYC) administration (10 mg/kg/day for 30 days) with IMI exposure in male Sprague–Dawley rats. The apoptotic, pyroptotic, inflammatory, oxidative stress, and endoplasmic reticulum stress biomarkers were evaluated, along with the histopathological alterations. Upon IMI administration, noticeable changes were observed in pancreatic histopathology. Additionally, elevated oxidative/endoplasmic reticulum-associated stress biomarkers, inflammatory, pyroptotic, and apoptotic biomarkers were also observed following IMI administration. LYC effectively reversed these alterations by reducing oxidative stress markers (e.g., MDA) and enhancing antioxidant enzymes (SOD, CAT). It downregulated ER stress markers (IRE1α, XBP1, CHOP), decreased pro-inflammatory cytokines (TNF-α, IL-1β), and suppressed pyroptotic (NLRP3, caspase-1) along with apoptotic markers (Bax, cleaved caspase-3). It also improved the histopathological and ultrastructure alterations brought on by IMI toxicity. Full article
(This article belongs to the Special Issue Drug and Pesticides-Induced Oxidative Stress and Apoptosis)
Show Figures

Figure 1

17 pages, 16280 KiB  
Article
Validating Brain Tumor Reporting and Data System (BT-RADS) as a Diagnostic Tool for Glioma Follow-Up after Surgery
by Yassir Edrees Almalki, Mohammad Abd Alkhalik Basha, Maha Ibrahim Metwally, Nesma Adel Zeed, Mohamad Gamal Nada, Sharifa Khalid Alduraibi, Ahmed A. Morsy, Rawda Balata, Ahmed Z. Al Attar, Mona M. Amer, Mohamed Abd El-Aziz Mohamed Farag, Sameh Abdelaziz Aly, Ahmed M. Abdelkhalik Basha and Enas Mahmoud Hamed
Biomedicines 2024, 12(4), 887; https://doi.org/10.3390/biomedicines12040887 - 17 Apr 2024
Cited by 2 | Viewed by 1996
Abstract
Gliomas are a type of brain tumor that requires accurate monitoring for progression following surgery. The Brain Tumor Reporting and Data System (BT-RADS) has emerged as a potential tool for improving diagnostic accuracy and reducing the need for repeated operations. This prospective multicenter [...] Read more.
Gliomas are a type of brain tumor that requires accurate monitoring for progression following surgery. The Brain Tumor Reporting and Data System (BT-RADS) has emerged as a potential tool for improving diagnostic accuracy and reducing the need for repeated operations. This prospective multicenter study aimed to evaluate the diagnostic accuracy and reliability of BT-RADS in predicting tumor progression (TP) in postoperative glioma patients and evaluate its acceptance in clinical practice. The study enrolled patients with a history of partial or complete resection of high-grade glioma. All patients underwent two consecutive follow-up brain MRI examinations. Five neuroradiologists independently evaluated the MRI examinations using the BT-RADS. The diagnostic accuracy of the BT-RADS for predicting TP was calculated using histopathology after reoperation and clinical and imaging follow-up as reference standards. Reliability based on inter-reader agreement (IRA) was assessed using kappa statistics. Reader acceptance was evaluated using a short survey. The final analysis included 73 patients (male, 67.1%; female, 32.9%; mean age, 43.2 ± 12.9 years; age range, 31–67 years); 47.9% showed TP, and 52.1% showed no TP. According to readers, TP was observed in 25–41.7% of BT-3a, 61.5–88.9% of BT-3b, 75–90.9% of BT-3c, and 91.7–100% of BT-RADS-4. Considering >BT-RADS-3a as a cutoff value for TP, the sensitivity, specificity, and accuracy of the BT-RADS were 68.6–85.7%, 84.2–92.1%, and 78.1–86.3%, respectively, according to the reader. The overall IRA was good (κ = 0.75) for the final BT-RADS classification and very good for detecting new lesions (κ = 0.89). The readers completely agreed with the statement “the application of the BT-RADS should be encouraged” (score = 25). The BT-RADS has good diagnostic accuracy and reliability for predicting TP in postoperative glioma patients. However, BT-RADS 3 needs further improvements to increase its diagnostic accuracy. Full article
Show Figures

Figure 1

30 pages, 1967 KiB  
Article
HCEL: Hybrid Clustering Approach for Extending WBAN Lifetime
by Heba Helal, Farag Sallabi, Mohamed A. Sharaf, Saad Harous, Mohammad Hayajneh and Heba Khater
Mathematics 2024, 12(7), 1067; https://doi.org/10.3390/math12071067 - 2 Apr 2024
Cited by 6 | Viewed by 1696
Abstract
Wireless body area networks (WBANs) have emerged as a promising solution for addressing challenges faced by elderly individuals, limited medical facilities, and various chronic medical conditions. WBANs consist of wearable sensing and computing devices interconnected through wireless communication channels, enabling the collection and [...] Read more.
Wireless body area networks (WBANs) have emerged as a promising solution for addressing challenges faced by elderly individuals, limited medical facilities, and various chronic medical conditions. WBANs consist of wearable sensing and computing devices interconnected through wireless communication channels, enabling the collection and transmission of vital physiological data. However, the energy constraints of the battery-powered sensor nodes in WBANs pose a significant challenge to ensuring long-term operational efficiency. Two-hop routing protocols have been suggested to extend the stability period and maximize the network’s lifetime. These protocols select appropriate parent nodes or forwarders with a maximum of two hops to relay data from sensor nodes to the sink. While numerous energy-efficient routing solutions have been proposed for WBANs, reliability has often been overlooked. Our paper introduces an energy-efficient routing protocol called a Hybrid Clustering Approach for Extending WBAN Lifetime (HCEL) to address these limitations. HCEL leverages a utility function to select parent nodes based on residual energy (RE), proximity to the sink node, and the received signal strength indicator (RSSI). The parent node selection process also incorporates an energy threshold value and a constrained number of serving nodes. The main goal is to extend the overall lifetime of all nodes within the network. Through extensive simulations, the study shows that HCEL outperforms both Stable Increased Throughput Multihop Protocol for Link Efficiency (SIMPLE) and Energy-Efficient Reliable Routing Scheme (ERRS) protocols in several key performance metrics. The specific findings of our article highlight the superior performance of HCEL in terms of increased network stability, extended network lifetime, reduced energy consumption, improved data throughput, minimized delays, and improved link reliability. Full article
Show Figures

Figure 1

3 pages, 2426 KiB  
Correction
Correction: Ammar et al. Protective Effects of Naringenin from Citrus sinensis (var. Valencia) Peels against CCl4-Induced Hepatic and Renal Injuries in Rats Assessed by Metabolomics, Histological and Biochemical Analyses. Nutrients 2022, 14, 841
by Naglaa M. Ammar, Heba A. Hassan, Heba M. I. Abdallah, Sherif M. Afifi, Abdelbaset M. Elgamal, Abdel Razik H. Farrag, Abd El-Nasser G. El-Gendy, Mohamed A. Farag and Abdelsamed I. Elshamy
Nutrients 2024, 16(3), 394; https://doi.org/10.3390/nu16030394 - 30 Jan 2024
Cited by 1 | Viewed by 1150
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Food Bioactive Compounds and Chronic Liver Diseases)
Show Figures

Figure 2

30 pages, 18265 KiB  
Article
Oncogenic Potential of Replication Factor C Subunit 4: Correlations with Tumor Progression and Assessment of Potential Inhibitors
by Muhammad Alaa Eldeen, Farag Mamdouh, Waleed K. Abdulsahib, Refaat A. Eid, Ahmad A. Alhanshani, Ayed A. Shati, Youssef A. Alqahtani, Mohammed A. Alshehri, Mohamed Samir A. Zaki, Mohamed A. Soltan and Ahmed E. Noreldin
Pharmaceuticals 2024, 17(2), 152; https://doi.org/10.3390/ph17020152 - 23 Jan 2024
Cited by 4 | Viewed by 2631
Abstract
Replication Factor C Subunit 4 (RFC4), an oncogene implicated in many human cancers, has yet to be extensively studied in many cancer types to determine its expression patterns and tumor tissue function. Various bioinformatics tools were used to analyze RFC4 as a potential [...] Read more.
Replication Factor C Subunit 4 (RFC4), an oncogene implicated in many human cancers, has yet to be extensively studied in many cancer types to determine its expression patterns and tumor tissue function. Various bioinformatics tools were used to analyze RFC4 as a potential oncogene and therapeutic target across many cancers. We first examined RFC4 expression levels in several human tumor types to determine relationships with tumor grade, stage, metastasis, and patient survival. We also examined RFC4’s genetic changes, epigenetic methylation, and effect on tumor microenvironment (TME) immune cell infiltration. We also analyzed RFC4’s connections with immunological checkpoints to identify potential molecular pathways involved in carcinogenesis. Our findings show that RFC4 is upregulated in several tumor types and associated with poor prognoses in many human cancers. This study shows that RFC4 significantly affects the tumor immunological microenvironment, specifically immune cell populations. Finally, we screened for RFC4-inhibiting pharmacological compounds with anti-cancer potential. This study fully elucidates RFC4’s carcinogenic activities, emphasizing its potential as a prognostic biomarker and a target for anti-cancer therapy. Full article
(This article belongs to the Special Issue Small Molecules in Targeted Cancer Therapy and Diagnosis)
Show Figures

Figure 1

22 pages, 10114 KiB  
Article
Biocide Syntheses Bee Venom-Conjugated ZnO@αFe2O3 Nanoflowers as an Advanced Platform Targeting Multidrug-Resistant Fecal Coliform Bacteria Biofilm Isolated from Treated Wastewater
by Mohamed Sharaf, Eman Jassim Mohammed, Eman M. Farahat, Amani A. Alrehaili, Abdulsalam Alkhudhayri, Ahmed Mohamed Ali, Abdullah A. Zahra, Shadi A. Zakai, Amr Elkelish, Maha AlHarbi and Mai Farag Saad
Microbiol. Res. 2023, 14(4), 1489-1510; https://doi.org/10.3390/microbiolres14040102 - 27 Sep 2023
Cited by 3 | Viewed by 2303
Abstract
This study targeted developing a novel Zinc oxide with alpha hematite nanoflowers (NFs)-loaded bee venom (Bv) (Bv-ZnO@αFe2O3 NFs) as a bio-natural product from bees to combine both the advantages of combination magnetic properties and the antimicrobial and anti-biofilm properties on [...] Read more.
This study targeted developing a novel Zinc oxide with alpha hematite nanoflowers (NFs)-loaded bee venom (Bv) (Bv-ZnO@αFe2O3 NFs) as a bio-natural product from bees to combine both the advantages of combination magnetic properties and the antimicrobial and anti-biofilm properties on isolated coliform bacteria from the effluent of wastewater treatment plants. About 24 isolates of treated wastewater isolates were multidrug resistant (MDR). The phylogenetic grouping of Escherichia coli (E. coli) and Klebsiella pneumonia (K. pneumonia) showed that the largest group was Group A, followed by Group B2 and Group B1. Fourier transform infrared (FTIR), The X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive X-ray analysis (SEM− EDX) validated the coating operation’s contact with Bv onto ZnO@αFe2O3 NFs. According to high-resolution transmission electron microscopy (TEM) and selected area electron diffraction (SAED), pattern analyses for prepared nanoformulations exhibited a spherical shape of αFe2O3 (~9–15 nm), and floral needle shapes with uniform distribution of size with aggregation of ZnOαFe2O3 and Bv-ZnO@αFe2O3 NFs around (~100–200 nm). The toxicity of Bv-ZnO@αFe2O3 NFs was comparable up to 125 µg mL−1, when it reached 64.79% (IC50, 107.18 µg mL−1). The antibacterial activity showed different zones of inhibition against different isolates. The biofilm inhibitory activity of NPs and NFs showed a highly significant reduction (p < 0.001) in treated biofilms with ZnO@αFe2O3 and Bv-ZnO@αFe2O3. In essence, ZnO@αFe2O3 and Bv-ZnO@αFe2O3 NFs are promising antimicrobials for inhibiting the growth and biofilm of MDR E. coli and K. pneumonia isolates, thereby, biocontrol of wastewater. Full article
Show Figures

Figure 1

24 pages, 36252 KiB  
Article
Green Synthesis and Molecular Docking Study of Some New Thiazoles Using Terephthalohydrazide Chitosan Hydrogel as Ecofriendly Biopolymeric Catalyst
by Jehan Y. Al-Humaidi, Sobhi M. Gomha, Nahed A. Abd El-Ghany, Basant Farag, Magdi E. A. Zaki, Tariq Z. Abolibda and Nadia A. Mohamed
Catalysts 2023, 13(9), 1311; https://doi.org/10.3390/catal13091311 - 20 Sep 2023
Cited by 26 | Viewed by 2947
Abstract
Terephthalohydrazide chitosan hydrogel (TCs) was prepared and investigated as an ecofriendly biopolymeric catalyst for synthesis of some novel thiazole and thiadiazole derivatives. Thus, TCs was used as a promising ecofriendly basic biocatalyst for preparation of three new series of thiazoles and two thiadiazoles [...] Read more.
Terephthalohydrazide chitosan hydrogel (TCs) was prepared and investigated as an ecofriendly biopolymeric catalyst for synthesis of some novel thiazole and thiadiazole derivatives. Thus, TCs was used as a promising ecofriendly basic biocatalyst for preparation of three new series of thiazoles and two thiadiazoles derivatives via reacting 2-(2-oxo-1,2-diphenylethylidene) hydrazine-1-carbothio-amide with various hydrazonoyl chlorides and α-haloketones under mild ultrasonic irradiation. Also, their yield% was estimated using chitosan and TCs in a comparative study. The procedure being employed has the advantages of mild reaction conditions, quick reaction durations, and high reaction yields. It also benefits from the catalyst’s capacity to be reused several times without significantly losing potency. The chemical structures of the newly prepared compounds were confirmed by IR, MS, and 1H-NMR. Docking analyses of the synthesized compounds’ binding modes revealed promising binding scores against the various amino acids of the selected protein (PDB Code—1JIJ). SwissADME’s online tool is then used to analyze the physiochemical and pharmacokinetic characteristics of the most significant substances. The majority of novel compounds showed zero violation from Lipinski’s rule (Ro5). Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

19 pages, 8861 KiB  
Article
Assessing Soil Organic Carbon Pool for Potential Climate-Change Mitigation in Agricultural Soils—A Case Study Fayoum Depression, Egypt
by Mostafa A. Abdellatif, Farag O. Hassan, Heba S. A. Rashed, Ahmed A. El Baroudy, Elsayed Said Mohamed, Dmitry E. Kucher, Sameh Kotb Abd-Elmabod, Mohamed S. Shokr and Ahmed S. Abuzaid
Land 2023, 12(9), 1755; https://doi.org/10.3390/land12091755 - 8 Sep 2023
Cited by 4 | Viewed by 2377
Abstract
It is essential to assess the soil organic carbon pool (SOCP) in dry environments to apply appropriate management techniques that address sustainable development. A significant opportunity for sustaining agricultural output and reducing climate change is the storage of soil organic carbon in agricultural [...] Read more.
It is essential to assess the soil organic carbon pool (SOCP) in dry environments to apply appropriate management techniques that address sustainable development. A significant opportunity for sustaining agricultural output and reducing climate change is the storage of soil organic carbon in agricultural soil. The goal of this study was to measure the spatial variability of SOCP content, and determine the effects of soil texture, changes in land use, and land cover on SOCP in surface soil samples. The study additionally investigated the relationships between SOCP and other characteristics, including the normalized vegetation index (NDVI) and land surface temperature (LST), as well as the effects of increasing soil organic carbon on the amount of greenhouse gases. To accomplish this goal, 45 soil surface samples were collected to a depth of 30 cm at the Fayoum depression in Egypt, and analyzed. The soil samples were representative of various soil textures and land uses. The average SOCP concentration in cultivated regions is 32.1 and in bare soils it is 6.5 Mg ha−1, with areas of 157,112.94 and 16,073.27 ha, respectively. According to variances in soil textures, sandy soils have the lowest SOCP (1.8 Mg ha−1) and clay loam soils have the highest concentrations (49 Mg ha−1). Additionally, fruit-growing regions have the greatest SOCP values and may therefore be better suited for carbon sequestration. The overall average SOCP showed 32.12 Mg C ha−1 for cultivated areas. A rise in arable land was accompanied by a 112,870.09 Mg C rise in SOCP. With an increase in soil organic carbon, stored carbon dioxide emissions (greenhouse gases) would be reduced by 414,233.24 Mg CO2. We should consider improving fertilization, irrigation methods, the use of the multiple cropping index, decreasing desertion rates, appropriate crop rotation, and crop variety selection. The research highlights the significance of expanding cultivated areas towards sustainable carbon sequestration and the climate-change-mitigation potential. Full article
(This article belongs to the Special Issue Soils and Land Management under Climate Change)
Show Figures

Figure 1

25 pages, 11212 KiB  
Article
The Potential Effects of Quercetin-Loaded Nanoliposomes on Amoxicillin/Clavulanate-Induced Hepatic Damage: Targeting the SIRT1/Nrf2/NF-κB Signaling Pathway and Microbiota Modulation
by Mahran Mohamed Abd El-Emam, Mahmoud Mostafa, Amina A. Farag, Heba S. Youssef, Azza S. El-Demerdash, Heba Bayoumi, Mohammed A. Gebba, Sawsan M. El-Halawani, Abdulrahman M. Saleh, Amira M. Badr and Shorouk El Sayed
Antioxidants 2023, 12(8), 1487; https://doi.org/10.3390/antiox12081487 - 25 Jul 2023
Cited by 26 | Viewed by 3832
Abstract
Amoxicillin/clavulanate (Co-Amox), a commonly used antibiotic for the treatment of bacterial infections, has been associated with drug-induced liver damage. Quercetin (QR), a naturally occurring flavonoid with pleiotropic biological activities, has poor water solubility and low bioavailability. The objective of this work was to [...] Read more.
Amoxicillin/clavulanate (Co-Amox), a commonly used antibiotic for the treatment of bacterial infections, has been associated with drug-induced liver damage. Quercetin (QR), a naturally occurring flavonoid with pleiotropic biological activities, has poor water solubility and low bioavailability. The objective of this work was to produce a more bioavailable formulation of QR (liposomes) and to determine the effect of its intraperitoneal pretreatment on the amelioration of Co-Amox-induced liver damage in male rats. Four groups of rats were defined: control, QR liposomes (QR-lipo), Co-Amox, and Co-Amox and QR-lipo. Liver injury severity in rats was evaluated for all groups through measurement of serum liver enzymes, liver antioxidant status, proinflammatory mediators, and microbiota modulation. The results revealed that QR-lipo reduced the severity of Co-Amox-induced hepatic damage in rats, as indicated by a reduction in serum liver enzymes and total liver antioxidant capacity. In addition, QR-lipo upregulated antioxidant transcription factors SIRT1 and Nrf2 and downregulated liver proinflammatory signatures, including IL-6, IL-1β, TNF-α, NF-κB, and iNOS, with upregulation in the anti-inflammatory one, IL10. QR-lipo also prevented Co-Amox-induced gut dysbiosis by favoring the colonization of Lactobacillus, Bifidobacterium, and Bacteroides over Clostridium and Enterobacteriaceae. These results suggested that QR-lipo ameliorates Co-Amox-induced liver damage by targeting SIRT1/Nrf2/NF-κB and modulating the microbiota. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

19 pages, 99506 KiB  
Article
Integration of Electrical Resistivity Tomography and Induced Polarization for Characterization and Mapping of (Pb-Zn-Ag) Sulfide Deposits
by Mosaad Ali Hussein Ali, Farag M. Mewafy, Wei Qian, Fahad Alshehri, Mohamed S. Ahmed and Hussein A. Saleem
Minerals 2023, 13(7), 986; https://doi.org/10.3390/min13070986 - 24 Jul 2023
Cited by 15 | Viewed by 4301
Abstract
The accurate characterization and mapping of low-grade ore deposits necessitate the utilization of a robust exploration technique. Induced polarization (IP) tomography is a powerful geophysical method for mineral exploration. An integrated survey using electrical resistivity tomography (ERT) and IP was employed in this [...] Read more.
The accurate characterization and mapping of low-grade ore deposits necessitate the utilization of a robust exploration technique. Induced polarization (IP) tomography is a powerful geophysical method for mineral exploration. An integrated survey using electrical resistivity tomography (ERT) and IP was employed in this study to characterize and map (Zn-Pb-Ag) ore deposits in NE New Brunswick, Canada. The survey encompassed twelve parallel lines across the study area. The 2D and 3D inversion of the results provided a detailed image of the resistivity and chargeability ranges of subsurface formations. The boundaries of sulfide mineralization were determined based on resistivity values of (700–2000 Ohm.m) and chargeability values of (3.5 mV/V) and were found to be located at an approximate depth of 80–150 m from the surface. The findings were validated through a comparison with data from borehole logs and mineralogy data analysis. The size and shape of sulfide deposits were successfully characterized and mapped in the study area using this cost-effective mapping approach. Full article
(This article belongs to the Special Issue Pb-Zn Deposits and Associated Critical Metals)
Show Figures

Figure 1

14 pages, 4807 KiB  
Article
Clinico-Pathological Features and Immunohistochemical Comparison of p16, p53, and Ki-67 Expression in Muscle-Invasive and Non-Muscle-Invasive Conventional Urothelial Bladder Carcinoma
by Abdulkarim Hasan, Yasien Mohammed, Mostafa Basiony, Mehenaz Hanbazazh, Abdulhadi Samman, Mohamed Fayek Abdelaleem, Mohamed Nasr, Hesham Abozeid, Hassan Ismail Mohamed, Mahmoud Faisal, Eslam Mohamed, Diaa Ashmawy, Mohamed Tharwat, Deaa Fekri Morsi, Abeer Said Farag, Eman Mohamed Ahmed, Noha M. Aly, Hala E. Abdel-Hamied, Doaa E. A. Salama and Essam Mandour
Clin. Pract. 2023, 13(4), 806-819; https://doi.org/10.3390/clinpract13040073 - 9 Jul 2023
Cited by 15 | Viewed by 4566
Abstract
Introduction: The identification of bladder detrusor muscle invasion in urothelial cancer is essential for prognosis and management. We studied the clinical, histological, and immunohistochemical expression of p16, p53, and Ki-67 in urothelial detrusor muscle-invasive bladder cancer (MIBC) and urothelial non-detrusor muscle-invasive bladder cancer [...] Read more.
Introduction: The identification of bladder detrusor muscle invasion in urothelial cancer is essential for prognosis and management. We studied the clinical, histological, and immunohistochemical expression of p16, p53, and Ki-67 in urothelial detrusor muscle-invasive bladder cancer (MIBC) and urothelial non-detrusor muscle-invasive bladder cancer (NMIBC) in Egyptian patients. Methods: Sixty-two bladder urothelial cancer cases obtained through TURBT were included and divided into two groups: (MIBC, stage T2) and NMIBC (T1). Tissue blocks were recut and re-examined microscopically; then, the immunostaining of p16, p53, and Ki-67 was performed to compare both groups and evaluate the 13% cut-off for Ki-67, 20% for p53, and p16 intensity in various conditions aided by telepathology technology. Results and conclusion: Hematuria was the main clinical first presentation, with no significant difference between either group. The mean age was 61.6 years, with male predominance (52 males and 10 females). The absence of papillary histological pattern was associated with a higher stage, including detrusor muscle invasion (p = 0.000). The overall average percent of p53 immunostaining was 12.9%, revealing no significant difference between MIBC and NMIBC when a cut-off of 20% was implicated. The Ki-67 expression was correlated with higher grade and muscle invasion; however, no association was found with the other two markers’ expression. The negative immunostaining of p16 was associated with low grade and NMIBC in the case of the preservation of the papillary pattern. We recommend further studies on the cut-off of widely used markers and more immunohistochemical and genetic studies on the p16(INK4A), taking into consideration the histological pattern of conventional carcinomas. Full article
(This article belongs to the Special Issue Teaching Pathology Towards Clinics and Practice)
Show Figures

Figure 1

Back to TopTop