Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Authors = Miroslav D. Dramićanin ORCID = 0000-0003-4750-5359

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6490 KiB  
Article
Pr3+-Activated Sr2LaF7 Nanoparticles as a Single-Phase White-Light-Emitting Nanophosphor
by Bojana Milićević, Aleksandar Ćirić, Katarina Milenković, Zoran Ristić, Jovana Periša, Željka Antić and Miroslav D. Dramićanin
Nanomaterials 2025, 15(10), 717; https://doi.org/10.3390/nano15100717 - 9 May 2025
Cited by 1 | Viewed by 392
Abstract
Sr2LaF7:xPr3+ (x = 0.2, 1, 2, 3, 5, 10, and 25 mol%) nanophosphors with a cubic Fm3m structure were hydrothermally synthesized, forming nearly spherical nanoparticles with an average diameter of approximately 32 nm. Diffuse reflectance [...] Read more.
Sr2LaF7:xPr3+ (x = 0.2, 1, 2, 3, 5, 10, and 25 mol%) nanophosphors with a cubic Fm3m structure were hydrothermally synthesized, forming nearly spherical nanoparticles with an average diameter of approximately 32 nm. Diffuse reflectance measurement and excitation spectra showed a primary excitation peak of Pr3+ at 443 nm, corresponding to the ground state to the 3P2 level transition. Upon blue light excitation, Pr3+-activated Sr2LaF7 nanophosphors showed rich emission structure across the visible region of the spectrum, with blue (~483 nm), green (~525 nm), orange (~600 nm), and red (~640 nm) emissions, blue and orange being the most prominent ones. The relative intensities of these emissions varied with Pr3+ concentration, leading to tunable emission colors. The chromaticity showed slight variation with the Pr3+ content (0.350 < x < 0.417, 0.374 < y < 0.380), while the CCT value increased from 3118 K to 4901 K as the doping concentration increased. The optimized Sr2LaF7 with 2 mol% Pr3+ had the most intense emission with correlated color temperature (CCT) of 3628 K, corresponding to the warm white color. The proposed Pr3+-doping strategy offers valuable insights into discovering or optimizing single-phase phosphors for white-light-emitting applications. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

35 pages, 3912 KiB  
Review
Pr3+ Visible to Ultraviolet Upconversion for Antimicrobial Applications
by Miroslav D. Dramićanin, Mikhail G. Brik, Željka Antić, Radu Bănică, Cristina Mosoarca, Tatjana Dramićanin, Zoran Ristić, George Daniel Dima, Tom Förster and Markus Suta
Nanomaterials 2025, 15(7), 562; https://doi.org/10.3390/nano15070562 - 6 Apr 2025
Cited by 5 | Viewed by 1377
Abstract
This paper addresses the upconversion of blue light to ultraviolet-C (UVC) with Pr3+-activated materials for antibacterial applications of UVC. It discusses the processes through which UV radiation provides biocidal effects on microorganisms, along with the most popular UVC sources employed in [...] Read more.
This paper addresses the upconversion of blue light to ultraviolet-C (UVC) with Pr3+-activated materials for antibacterial applications of UVC. It discusses the processes through which UV radiation provides biocidal effects on microorganisms, along with the most popular UVC sources employed in these processes. We describe the electronic and optical properties of the Pr3+ ion, emphasizing the conditions the host material must meet to obtain broad and intense emission in the UVC from parity-allowed transitions from the 4f5d levels and provide a list of materials that fulfill these conditions. This paper also delineates lanthanide-based upconversion, focusing on Pr3+ blue to UVC upconversion via the 3P0 and 1D2 intermediate states, and suggests routes for improving the quantum efficiency of the process. We review literature related to the use of upconversion materials in antimicrobial photodynamic treatments and for the blue to UVC upconversion germicidal effects. Further, we propose the spectral overlap between the UVC emission of Pr3+ materials and the germicidal effectiveness curve as a criterion for assessing the potential of these materials in antimicrobial applications. Finally, this paper briefly assesses the toxicity of materials commonly used in the preparation of upconversion materials. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

18 pages, 3092 KiB  
Review
Pigments and Near-Infrared Phosphors Based on Mn5+
by Sanja Kuzman, Tatjana Dramićanin, Anatoli I. Popov, Mikhail G. Brik and Miroslav D. Dramićanin
Nanomaterials 2025, 15(4), 275; https://doi.org/10.3390/nano15040275 - 11 Feb 2025
Cited by 2 | Viewed by 1308
Abstract
The optical properties of Mn5+ ions, which are responsible for the intense green–turquoise–blue coloration of Mn5+-based pigments and the near-infrared emission of phosphors, are the focus of this article. Mn5+ ions enter crystalline matrices in four-fold coordinated positions and [...] Read more.
The optical properties of Mn5+ ions, which are responsible for the intense green–turquoise–blue coloration of Mn5+-based pigments and the near-infrared emission of phosphors, are the focus of this article. Mn5+ ions enter crystalline matrices in four-fold coordinated positions and can maintain their 5+ valence state when crystalline hosts meet the conditions described in this work. Mn5+ ions have [Ar]3d2 electronic configuration and always experience a strong crystal field due to a high electric charge; therefore, their lower electronic states have the 3A2 < 1E < 1A1 < 3T2 < 3T1 progression in energy. We present the properties of several Mn5+-based pigments and discuss the electronic transitions responsible for their coloration. Specifically, we show that the color is determined by the spin-allowed 3A23T1(3F) absorption, which extends across the orange–red–deep red spectral region and is strongly influenced by crystal field strength. The narrow-band emission Mn5+-activated near-infrared phosphors arise from the spin-forbidden 1E → 3A2 transition, whose energy is independent of the crystal field strength and determined by the nephelauxetic effect. We demonstrate the linear relationship between 1E state energy and the nephelauxetic parameter β1 using Racah parameter literature data for Mn5+ phosphors. Lastly, we address the recent applications of these Mn5+ phosphors in luminescence thermometry. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

16 pages, 3203 KiB  
Review
Readout Methods to Enhance the Performance of Luminescence Thermometers
by Miroslav D. Dramićanin, Abdullah N. Alodhayb and Aleksandar Ćirić
Condens. Matter 2024, 9(4), 46; https://doi.org/10.3390/condmat9040046 - 9 Nov 2024
Viewed by 1339
Abstract
Over the past three decades, luminescence thermometry has gained significant attention among researchers and practitioners. The method has progressed in terms of utilizing temperature-sensitive luminescent materials, obtaining temperature read-outs from luminescence, developing applications, and improving performance. This paper reviews and critically analyzes routes [...] Read more.
Over the past three decades, luminescence thermometry has gained significant attention among researchers and practitioners. The method has progressed in terms of utilizing temperature-sensitive luminescent materials, obtaining temperature read-outs from luminescence, developing applications, and improving performance. This paper reviews and critically analyzes routes for improving luminescence thermometry performance, in particular the sensitivity, accuracy, and precision of the method. These include the use of highly temperature-sensitive probes, temperature read-outs from luminescence with improved sensitivity, multiparameter temperature-reading methods, the applications of principal component analysis and artificial neural networks, and sensor fusion. Full article
(This article belongs to the Section Spectroscopy and Imaging in Condensed Matter)
Show Figures

Figure 1

12 pages, 4438 KiB  
Article
Luminescence Thermometry with Eu3+-Doped Y2Mo3O12: Comparison of Performance of Intensity Ratio and Machine Learning Temperature Read-Outs
by Tamara Gavrilović, Vesna Đorđević, Jovana Periša, Mina Medić, Zoran Ristić, Aleksandar Ćirić, Željka Antić and Miroslav D. Dramićanin
Materials 2024, 17(21), 5354; https://doi.org/10.3390/ma17215354 - 1 Nov 2024
Cited by 2 | Viewed by 1016
Abstract
Accurate temperature measurement is critical across various scientific and industrial applications, necessitating advancements in thermometry techniques. This study explores luminescence thermometry, specifically utilizing machine learning methodologies to enhance temperature sensitivity and accuracy. We investigate the performance of principal component analysis (PCA) on the [...] Read more.
Accurate temperature measurement is critical across various scientific and industrial applications, necessitating advancements in thermometry techniques. This study explores luminescence thermometry, specifically utilizing machine learning methodologies to enhance temperature sensitivity and accuracy. We investigate the performance of principal component analysis (PCA) on the Eu3+-doped Y2Mo3O12 luminescent probe, contrasting it with the traditional luminescence intensity ratio (LIR) method. By employing PCA to analyze the full emission spectra collected at varying temperatures, we achieve an average accuracy (ΔT) of 0.9 K and a resolution (δT) of 1.0 K, significantly outperforming the LIR method, which yielded an average accuracy of 2.3 K and a resolution of 2.9 K. Our findings demonstrate that while the LIR method offers a maximum sensitivity (Sr) of 5‰ K⁻1 at 472 K, PCA’s systematic approach enhances the reliability of temperature measurements, marking a crucial advancement in luminescence thermometry. This innovative approach not only enriches the dataset analysis but also sets a new standard for temperature measurement precision. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

13 pages, 4366 KiB  
Article
Nanosized Eu3+-Doped NaY9Si6O26 Oxyapatite Phosphor: A Comprehensive Insight into Its Hydrothermal Synthesis and Structural, Morphological, Electronic, and Optical Properties
by Madalina Ivanovici, Aleksandar Ćirić, Jovana Periša, Milena Marinović Cincović, Mikhail G. Brik, Abdullah N. Alodhayb, Željka Antić and Miroslav D. Dramićanin
Nanomaterials 2024, 14(20), 1639; https://doi.org/10.3390/nano14201639 - 12 Oct 2024
Cited by 1 | Viewed by 1444
Abstract
Detailed analysis covered the optical and structural properties of Eu3+-doped NaY9Si6O26 oxyapatite phosphors, which were obtained via hydrothermal synthesis. X-ray diffraction patterns of NaY9Si6O26:xEu3+ (x = 0, 1, 5, [...] Read more.
Detailed analysis covered the optical and structural properties of Eu3+-doped NaY9Si6O26 oxyapatite phosphors, which were obtained via hydrothermal synthesis. X-ray diffraction patterns of NaY9Si6O26:xEu3+ (x = 0, 1, 5, 7, 10 mol% Eu3+) samples proved a single-phase hexagonal structure (P63/m (176) space group). Differential thermal analysis showed an exothermic peak at 995 °C attributed to the amorphous to crystalline transformation of NaY9Si6O26. Electron microscopy showed agglomerates composed of round-shaped nanoparticles ~53 nm in size. Room temperature photoluminescent emission spectra consisted of emission bands in the visible spectral region corresponding to 5D07FJ (J = 0, 1, 2, 3, 4) f-f transitions of Eu3+. Lifetime measurements showed that the Eu3+ concentration had no substantial effect on the rather long 5D0-level lifetime. The Eu3+ energy levels in the structure were determined using room-temperature excitation/emission spectra. Using the 7F1 manifold, the Nv-crystal field strength parameter was calculated to be 1442.65 cm−1. Structural, electronic, and optical properties were calculated to determine the band gap value, density of states, and index of refraction. The calculated direct band gap value was 4.665 eV (local density approximation) and 3.765 eV (general gradient approximation). Finally, the complete Judd–Ofelt analysis performed on all samples confirmed the experimental findings. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

10 pages, 4012 KiB  
Article
Tuneable Red and Blue Emission of Bi3+-Co-Doped SrF2:Eu3+ Nanophosphors for LEDs in Agricultural Applications
by Jovana Periša, Sanja Kuzman, Aleksandar Ćirić, Zoran Ristić, Željka Antić, Miroslav D. Dramićanin and Bojana Milićević
Nanomaterials 2024, 14(20), 1617; https://doi.org/10.3390/nano14201617 - 10 Oct 2024
Viewed by 1150
Abstract
Tunable blue/red dual-emitting Eu3+-doped, Bi3+-sensitized SrF2 phosphors were synthesized utilizing a solvothermal-microwave method. All phosphors have cubic structure (Fm-3m (225) space group) and well-distinct sphere-like particles with a size of ~20 nm, as examined by [...] Read more.
Tunable blue/red dual-emitting Eu3+-doped, Bi3+-sensitized SrF2 phosphors were synthesized utilizing a solvothermal-microwave method. All phosphors have cubic structure (Fm-3m (225) space group) and well-distinct sphere-like particles with a size of ~20 nm, as examined by X-ray diffraction and transmission electron microscopy. The diffuse reflectance spectra reveal a redshift of the absorption band in the UV region as the Bi3+ concentration in SrF2: Eu3+ phosphor increases. Under the 265 nm excitation, photoluminescence spectra show emission at around 400 nm from the host matrix and characteristic orange 5D0 → 7F1,2 and deep red 5D0 → 7F4 Eu3+ emissions. The red emission intensity increases with an increase in Bi3+ concentration up to 20 mol%, after which it decreases. The integrated intensity of Eu3+ red emission in the representative 20 mol% Bi3+ co-doped SrF2:10 mol% Eu3+ shows twice as bright emission compared to the Bi3+-free sample. To demonstrate the potential application in LEDs for artificial light-based plant factories, the powder with the highest emission intensity, SrF2: 10Eu, 20 Bi, was mixed with a ceramic binder and placed on top of a 275 nm UVC LED chip, showing pinkish violet light corresponding to blue (409 nm) and red (592, 614, and 700 nm) phosphors’ emission. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

12 pages, 3594 KiB  
Article
Structure–Dopant Concentration Relations in Europium-Doped Yttrium Molybdate and Peak-Sharpening for Luminescence Temperature Sensing
by Tamara Gavrilović, Aleksandar Ćirić, Mina Medić, Zoran Ristić, Jovana Periša, Željka Antić and Miroslav D. Dramićanin
Materials 2024, 17(17), 4267; https://doi.org/10.3390/ma17174267 - 28 Aug 2024
Cited by 1 | Viewed by 1169
Abstract
A set of Eu3+-doped molybdates, Y2−xEuxMo3O12 (x = 0.04; 0.16; 0.2; 0.4; 0.8; 1; 1.6; 2), was synthesized using a solid-state technique and their properties studied as a function of Eu3+ concentration. X-ray diffraction showed [...] Read more.
A set of Eu3+-doped molybdates, Y2−xEuxMo3O12 (x = 0.04; 0.16; 0.2; 0.4; 0.8; 1; 1.6; 2), was synthesized using a solid-state technique and their properties studied as a function of Eu3+ concentration. X-ray diffraction showed that the replacement of Y3+ with larger Eu3+ resulted in a transformation from orthorhombic (low doping concentrations) through tetragonal (high doping concentrations), reaching monoclinic structure for full replacement in Eu2Mo3O12. The intensity of typical Eu3+ red emission slightly increases in the orthorhombic structure then rises significantly with dopant concentration and has the highest value for the tetragonal Y2Mo3O12:80mol% Eu3+. Further, the complete substitution of Y3+ with Eu3+ in the case of monoclinic Eu2Mo3O12 leads to decreased emission intensity. Lifetime follows a similar trend; it is lower in the orthorhombic structure, reaching slightly higher values for the tetragonal structure and showing a strong decrease for monoclinic Eu2Mo3O12. Temperature-sensing properties of the sample with the highest red Eu3+ emission, Y2Mo3O12:80mol% Eu3+, were analyzed by the luminescence intensity ratio method. For the first time, the peak-sharpening algorithm was employed to separate overlapping peaks in luminescence thermometry, in contrast to the peak deconvolution method. The Sr (relative sensitivity) value of 2.8 % K−1 was obtained at room temperature. Full article
Show Figures

Figure 1

9 pages, 3837 KiB  
Article
Using Principal Component Analysis for Temperature Readings from YF3:Pr3+ Luminescence
by Anđela Rajčić, Zoran Ristić, Jovana Periša, Bojana Milićević, Saad Aldawood, Abdullah N. Alodhayb, Željka Antić and Miroslav D. Dramićanin
Technologies 2024, 12(8), 131; https://doi.org/10.3390/technologies12080131 - 12 Aug 2024
Cited by 5 | Viewed by 2496
Abstract
The method of measuring temperature using luminescence by analyzing the emission spectra of Pr3+-doped YF3 using principal component analysis is presented. The Pr3+-doped YF3 is synthesized using a solid-state technique, and its single-phase orthorhombic crystal structure is [...] Read more.
The method of measuring temperature using luminescence by analyzing the emission spectra of Pr3+-doped YF3 using principal component analysis is presented. The Pr3+-doped YF3 is synthesized using a solid-state technique, and its single-phase orthorhombic crystal structure is confirmed using X-ray diffraction. The emission spectra measured within the 93–473 K temperature range displays characteristic Pr3+ f-f electronic transitions. The red emission from the 3P0,13H6,3F2 electronic transition mostly dominates the spectra. However, at low temperatures, the intensity of the green emissions from the 3P0,13H5, deep-red 3P0,13F4, and the deep-red emissions from the 3P0,13F4 transitions are considerably lower compared to the intensity of the red emissions. Temperature variations directly impact the photoluminescent spectra, causing a notable increase in the green and deep-red emissions from the 3P1 excited state. We utilized the entire spectrum as an input for principal component analysis, considering each temperature as an independent group of data. The first principal component explained 99.3% of the variance in emission spectra caused by temperature and we further used it as a reliable temperature indicator for luminescence thermometry. The approach has a maximum absolute sensitivity of around 0.012 K−1. The average accuracy and precision values are 0.7 K and 0.5 K, respectively. Full article
Show Figures

Figure 1

32 pages, 11676 KiB  
Review
Luminescence Thermometry with Nanoparticles: A Review
by Ljubica Đačanin Far and Miroslav D. Dramićanin
Nanomaterials 2023, 13(21), 2904; https://doi.org/10.3390/nano13212904 - 5 Nov 2023
Cited by 42 | Viewed by 6547
Abstract
Luminescence thermometry has emerged as a very versatile optical technique for remote temperature measurements, exhibiting a wide range of applicability spanning from cryogenic temperatures to 2000 K. This technology has found extensive utilization across many disciplines. In the last thirty years, there has [...] Read more.
Luminescence thermometry has emerged as a very versatile optical technique for remote temperature measurements, exhibiting a wide range of applicability spanning from cryogenic temperatures to 2000 K. This technology has found extensive utilization across many disciplines. In the last thirty years, there has been significant growth in the field of luminous thermometry. This growth has been accompanied by the development of temperature read-out procedures, the creation of luminescent materials for very sensitive temperature probes, and advancements in theoretical understanding. This review article primarily centers on luminescent nanoparticles employed in the field of luminescence thermometry. In this paper, we provide a comprehensive survey of the recent literature pertaining to the utilization of lanthanide and transition metal nanophosphors, semiconductor quantum dots, polymer nanoparticles, carbon dots, and nanodiamonds for luminescence thermometry. In addition, we engage in a discussion regarding the benefits and limitations of nanoparticles in comparison with conventional, microsized probes for their application in luminescent thermometry. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

10 pages, 2375 KiB  
Article
The Upconversion Luminescence of Ca3Sc2Si3O12:Yb3+,Er3+ and Its Application in Thermometry
by Junyu Hong, Feilong Liu, Miroslav D. Dramićanin, Lei Zhou and Mingmei Wu
Nanomaterials 2023, 13(13), 1910; https://doi.org/10.3390/nano13131910 - 22 Jun 2023
Cited by 5 | Viewed by 1939
Abstract
To develop novel luminescent materials for optical temperature measurement, a series of Yb3+- and Er3+-doped Ca3Sc2Si3O12 (CSS) upconversion (UC) phosphors were synthesized by the sol–gel combustion method. The crystal structure, phase purity, [...] Read more.
To develop novel luminescent materials for optical temperature measurement, a series of Yb3+- and Er3+-doped Ca3Sc2Si3O12 (CSS) upconversion (UC) phosphors were synthesized by the sol–gel combustion method. The crystal structure, phase purity, and element distribution of the samples were characterized by powder X-ray diffraction and a transmission electron microscope (TEM). The detailed study of the photoluminescence emission spectra of the samples shows that the addition of Yb3+ can greatly enhance the emission of Er3+ by effective energy transfer. The prepared Yb3+ and Er3+ co-doped CSS phosphors exhibit green emission bands near 522 and 555 nm and red emission bands near 658 nm, which correspond to the 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2 transitions of Er3+, respectively. The temperature-dependent behavior of the CSS:0.2Yb3+,0.02Er3+ sample was carefully studied by the fluorescence intensity ratio (FIR) technique. The results indicate the excellent sensitivity of the sample, with a maximum absolute sensitivity of 0.67% K−1 at 500 K and a relative sensitivity of 1.34% K−1 at 300 K. We demonstrate here that the temperature measurement performance of FIR technology using the CSS:Yb3+,Er3+ phosphor is not inferior to that of infrared thermal imaging thermometers. Therefore, CSS:Yb3+,Er3+ phosphors have great potential applications in the field of optical thermometry. Full article
(This article belongs to the Special Issue Luminescent Applications of Rare-Earth-Doped Nanoparticles)
Show Figures

Graphical abstract

11 pages, 3251 KiB  
Article
Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings
by Željka Antić, Aleksandar Ćirić, Milica Sekulić, Jovana Periša, Bojana Milićević, Abdullah N. Alodhayb, Tahani A. Alrebdi and Miroslav D. Dramićanin
Crystals 2023, 13(6), 884; https://doi.org/10.3390/cryst13060884 - 28 May 2023
Cited by 8 | Viewed by 1906
Abstract
The sensitivity of luminescent Boltzmann thermometers is restricted by the energy difference between the thermally coupled excitement levels of trivalent lanthanides, and their values further decrease with increases in temperature, rendering their use at high temperatures difficult. Here, we demonstrate how to overcome [...] Read more.
The sensitivity of luminescent Boltzmann thermometers is restricted by the energy difference between the thermally coupled excitement levels of trivalent lanthanides, and their values further decrease with increases in temperature, rendering their use at high temperatures difficult. Here, we demonstrate how to overcome this sensitivity limitation by employing multiparameter and multilevel cascade temperature readings. For this purpose, we synthesized Dy3+:Y2SiO5, a phosphor whose emission is known to begin quenching at very high temperatures. Its photoluminescence-emission features, later used for thermometry, consisted of two blue emission bands centered around 486 nm and 458 nm, and two bands centered around 430 nm and 398 nm, which were only visible at elevated temperatures. Next, we performed thermometry using the standard luminescence-intensity ratio (LIR) method, which employs the 4F9/2 and 4I15/2 Dy3+ levels’ emissions and the multilevel cascade method, which additionally uses the 4G11/2 level and overlapping intensities of 4I13/2, 4M21/2, 4K17/2, and 4F7/2 levels to create two LIRs with a larger energy difference than the standard LIR. This approach yielded a sensitivity that was 3.14 times greater than the standard method. Finally, we simultaneously exploited all the LIRs in the multiparameter temperature readings and found a relative sensitivity that was 30 times greater than that of the standard approach. Full article
Show Figures

Figure 1

11 pages, 1530 KiB  
Article
Comparison of Performance between Single- and Multiparameter Luminescence Thermometry Methods Based on the Mn5+ Near-Infrared Emission
by Tahani A. Alrebdi, Abdullah N. Alodhayb, Zoran Ristić and Miroslav D. Dramićanin
Sensors 2023, 23(8), 3839; https://doi.org/10.3390/s23083839 - 9 Apr 2023
Cited by 10 | Viewed by 2116
Abstract
Herein, we investigate the performance of single- and multiparametric luminescence thermometry founded on the temperature-dependent spectral features of Ca6BaP4O17:Mn5+ near-infrared emission. The material was prepared by a conventional steady-state synthesis, and its photoluminescence emission was measured [...] Read more.
Herein, we investigate the performance of single- and multiparametric luminescence thermometry founded on the temperature-dependent spectral features of Ca6BaP4O17:Mn5+ near-infrared emission. The material was prepared by a conventional steady-state synthesis, and its photoluminescence emission was measured from 7500 to 10,000 cm−1 over the 293–373 K temperature range in 5 K increments. The spectra are composed of the emissions from 1E → 3A2 and 3T23A2 electronic transitions and Stokes and anti-Stokes vibronic sidebands at 320 cm−1 and 800 cm−1 from the maximum of 1E → 3A2 emission. Upon temperature increase, the 3T2 and Stokes bands gained in intensity while the maximum of 1E emission band is redshifted. We introduced the procedure for the linearization and feature scaling of input variables for linear multiparametric regression. Then, we experimentally determined accuracies and precisions of the luminescence thermometry based on luminescence intensity ratios between emissions from the 1E and 3T2 states, between Stokes and anti-Stokes emission sidebands, and at the 1E energy maximum. The multiparametric luminescence thermometry involving the same spectral features showed similar performance, comparable to the best single-parameter thermometry. Full article
(This article belongs to the Special Issue Optical Thermometry: Concepts, Methods, and Applications)
Show Figures

Figure 1

10 pages, 2075 KiB  
Article
Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles
by Bojana Milićević, Jovana Periša, Zoran Ristić, Katarina Milenković, Željka Antić, Krisjanis Smits, Meldra Kemere, Kaspars Vitols, Anatolijs Sarakovskis and Miroslav D. Dramićanin
Nanomaterials 2023, 13(1), 30; https://doi.org/10.3390/nano13010030 - 21 Dec 2022
Cited by 7 | Viewed by 2565
Abstract
We report the procedure for hydrothermal synthesis of ultrasmall Yb3+/Tm3+ co-doped Sr2LaF7 (SLF) upconversion phosphors. These phosphors were synthesized by varying the concentrations of Yb3+ (x = 10, 15, 20, and 25 mol%) and Tm3+ [...] Read more.
We report the procedure for hydrothermal synthesis of ultrasmall Yb3+/Tm3+ co-doped Sr2LaF7 (SLF) upconversion phosphors. These phosphors were synthesized by varying the concentrations of Yb3+ (x = 10, 15, 20, and 25 mol%) and Tm3+ (y = 0.75, 1, 2, and 3 mol%) with the aim to analyze their emissions in the near IR spectral range. According to the detailed structural analysis, Yb3+ and Tm3+ occupy the La3+ sites in the SLF host. The addition of Yb3+/Tm3+ ions has a huge impact on the lattice constant, particle size, and PL emission properties of the synthesized SLF nanophosphor. The results show that the optimal dopant concentrations for upconversion luminescence of Yb3+/Tm3+ co-doped SLF are 20 mol% Yb3+ and 1 mol% Tm3+ with EDTA as the chelating agent. Under 980 nm light excitation, a strong upconversion emission of Tm3+ ions around 800 nm was achieved. In addition, the experimental photoluminescence lifetime of Tm3+ emission in the SLF host is reported. This study discovered that efficient near IR emission from ultrasmall Yb3+/Tm3+ co-doped SLF phosphors may have potential applications in the fields of fluorescent labels in bioimaging and security applications. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles)
Show Figures

Graphical abstract

8 pages, 1552 KiB  
Article
Exploiting High-Energy Emissions of YAlO3:Dy3+ for Sensitivity Improvement of Ratiometric Luminescence Thermometry
by Jovana Periša, Aleksandar Ćirić, Ivana Zeković, Vesna Đorđević, Milica Sekulić, Željka Antić and Miroslav D. Dramićanin
Sensors 2022, 22(20), 7997; https://doi.org/10.3390/s22207997 - 20 Oct 2022
Cited by 8 | Viewed by 2084
Abstract
The sensitivity of luminescence thermometry is enhanced at high temperatures when using a three-level luminescence intensity ratio approach with Dy3+- activated yttrium aluminum perovskite. This material was synthesized via the Pechini method, and the structure was verified using X-ray diffraction analysis. [...] Read more.
The sensitivity of luminescence thermometry is enhanced at high temperatures when using a three-level luminescence intensity ratio approach with Dy3+- activated yttrium aluminum perovskite. This material was synthesized via the Pechini method, and the structure was verified using X-ray diffraction analysis. The average crystallite size was calculated to be around 46 nm. The morphology was examined using scanning electron microscopy, which showed agglomerates composed of densely packed, elongated spherical particles, the majority of which were 80–100 nm in size. The temperature-dependent photoluminescence emission spectra (ex = 353 nm, 300–850 K) included Dy3+ emissions in blue (458 nm), blue (483 nm), and violet (430 nm, T 600 K). Luminescence intensity ratio, the most utilized temperature readout method in luminescent thermometry, was used as the testing method: a) using the intensity ratio of Dy3+ ions and 4I15/26H15/2/4F9/26H15/2 transitions; and b) employing the third, higher energy 4G11/2 thermalized level, i.e., using the intensity ratio of 4G11/26H15/2/4F9/26H15/2 transitions, thereby showing the relative sensitivities of 0.41% K−1 and 0.86% K−1 at 600 K, respectively. This more than doubles the increase in sensitivity and therefore demonstrates the method’s usability at high temperatures, although the major limitation of the method is the chemical stability of the host material and the temperature at which the temperature quenching commences. Lastly, it must be noted that at 850 K, the emission intensities from the energetically higher levels were still increasing in YAP: Dy3+. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

Back to TopTop