Exploiting High-Energy Emissions of YAlO3:Dy3+ for Sensitivity Improvement of Ratiometric Luminescence Thermometry
Abstract
:1. Introduction
2. Material and Methods
3. Results & Discussion
3.1. Structural and Phase Characterization of YAP: 2 mol% Dy3+
3.2. Multilevel LIR of YAP: 2 mol% Dy3+
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brites, C.D.S.; Balabhadra, S.; Carlos, L.D. Lanthanide-Based Thermometers: At the Cutting-Edge of Luminescence Thermometry. Adv. Opt. Mater. 2018, 7, 1801239. [Google Scholar] [CrossRef] [Green Version]
- Suta, M.; Meijerink, A. A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers—Thermodynamic and Kinetic Guidelines for Optimized Performance. Adv. Theory Simul. 2020, 3, 2000176. [Google Scholar] [CrossRef]
- Dramićanin, M.D. Trends in luminescence thermometry. J. Appl. Phys. 2020, 128, 040902. [Google Scholar] [CrossRef]
- Stefanska, J.; Marciniak, L. Single-Band Ratiometric Luminescent Thermometry Using Pr3+ Ions Emitting in Yellow and Red Spectral Ranges. Adv. Photonics Res. 2021, 2, 2100070. [Google Scholar] [CrossRef]
- Mykhaylyk, V.; Kraus, H.; Zhydachevskyy, Y.; Tsiumra, V.; Luchechko, A.; Wagner, A.; Suchocki, A. Multimodal Non-Contact Luminescence Thermometry with Cr-Doped Oxides. Sensors 2020, 20, 5259. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.W.; Beshears, D.L.; Cates, M.R.; Scudiere, M.B.; Shaw, D.W.; Ellis, A.D. Luminescence of YAG:Dy and YAG:Dy,Er crystals to 1700 °C. Meas. Sci. Technol. 2020, 31, 044001. [Google Scholar] [CrossRef]
- Bednarkiewicz, A.; Marciniak, L.; Carlos, L.D.; Jaque, D. Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 2020, 12, 14405–14421. [Google Scholar] [CrossRef]
- Ximendes, E.; Marin, R.; Carlos, L.D.; Jaque, D. Less is more: Dimensionality reduction as a general strategy for more precise luminescence thermometry. Light Sci. Appl. 2022, 11, 237. [Google Scholar] [CrossRef]
- Morey, W.W.; Glenn, W.H.; Snitzer, E. Fiber Optic Temperature Sensor. Instrum. Aerosp. Ind. 1983, 29, 261–274. [Google Scholar]
- Thiem, J.; Spelthann, S.; Neumann, L.; Jakobs, F.; Johannes, H.-H.; Kowalsky, W.; Kracht, D.; Neumann, J.; Ruehl, A.; Ristau, D. Upconversion Nanocrystal Doped Polymer Fiber Thermometer. Sensors 2020, 20, 6048. [Google Scholar] [CrossRef]
- Venturini, F.; Baumgartner, M.; Borisov, S. Mn4+-Doped Magnesium Titanate—A Promising Phosphor for Self-Referenced Optical Temperature Sensing. Sensors 2018, 18, 668. [Google Scholar] [CrossRef] [PubMed]
- Sposito, A.; Heaps, E.; Sutton, G.; Machin, G.; Bernard, R.; Clarke, S. Phosphor thermometry for nuclear decommissioning and waste storage. Nucl. Eng. Des. 2021, 375, 111091. [Google Scholar] [CrossRef]
- Dramićanin, M. Schemes for Temperature Read-Out From Luminescence. In Luminescence Thermometry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 63–83. [Google Scholar]
- Swieten, T.P.; Yu, D.; Yu, T.; Vonk, S.J.W.; Suta, M.; Zhang, Q.; Meijerink, A.; Rabouw, F.T. A Ho3+ -Based Luminescent Thermometer for Sensitive Sensing over a Wide Temperature Range. Adv. Opt. Mater. 2021, 9, 2001518. [Google Scholar] [CrossRef]
- Kolesnikov, I.E.; Afanaseva, E.V.; Kurochkin, M.A.; Vaishlia, E.I.; Kolesnikov, E.Y.; Lähderanta, E. Dual-center co-doped and mixed ratiometric LuVO4:Nd3+/Yb 3+ nanothermometers. Nanotechnology 2022, 33, 165504. [Google Scholar] [CrossRef]
- Geitenbeek, R.G.; De Wijn, H.W.; Meijerink, A. Non-Boltzmann Luminescence in NayF4:Eu3+: Implications for Luminescence Thermometry. Phys. Rev. Appl. 2018, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Wade, S.A.; Collins, S.F.; Baxter, G.W. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 2003, 94, 4743. [Google Scholar] [CrossRef]
- Li, L.; Qin, F.; Zhou, Y.; Zheng, Y.; Miao, J.; Zhang, Z. Three-energy-level-cascaded strategy for a more sensitive luminescence ratiometric thermometry. Sens. Actuators A Phys. 2020, 304, 111864. [Google Scholar] [CrossRef]
- Ćirić, A.; Periša, J.; Zeković, I.; Antić, Ž.; Dramićanin, M.D. Multilevel-cascade intensity ratio temperature read-out of Dy3+ luminescence thermometers. J. Lumin. 2022, 245, 118795. [Google Scholar] [CrossRef]
- Tian, X.; Wei, X.; Chen, Y.; Duan, C.; Yin, M. Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4:Nd3+. Opt. Express 2014, 22, 30333. [Google Scholar] [CrossRef]
- Ćirić, A.; Aleksić, J.; Barudžija, T.; Antić, Ž.; Đorđević, V.; Medić, M.; Periša, J.; Zeković, I.; Mitrić, M.; Dramićanin, M.D. Comparison of three ratiometric temperature readings from the Er3+ upconversion emission. Nanomaterials 2020, 10, 627. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Li, H.; Zhang, D.; Zhang, Q.; Meijerink, A.; Suta, M. One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+. Light Sci. Appl. 2021, 10, 236. [Google Scholar] [CrossRef] [PubMed]
- Chepyga, L.M.; Osvet, A.; Brabec, C.J.; Batentschuk, M. High-temperature thermographic phosphor mixture YAP/YAG:Dy3+ and its photoluminescence properties. J. Lumin. 2017, 188, 582–588. [Google Scholar] [CrossRef]
- Chambers, M.D.; Clarke, D.R. Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry. Annu. Rev. Mater. Res. 2009, 39, 325–359. [Google Scholar] [CrossRef] [Green Version]
- Trajić, J.; Rabasović, M.S.; Savić-Šević, S.; Ševic, D.; Babić, B.; Romčević, M.; Ristić-Djurović, J.L.; Paunović, N.; Križan, J.; Romčević, N. Far-infrared spectra of dysprosium doped yttrium aluminum garnet nanopowder. Infrared Phys. Technol. 2016, 77, 226–229. [Google Scholar] [CrossRef]
- Pechini, M. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor 1967. U.S. Patent 3,330,697, 11 July 1967. [Google Scholar]
- Ćirić, A.; Stojadinović, S.; Dramićanin, M.D. Custom-built thermometry apparatus and luminescence intensity ratio thermometry of ZrO2:Eu3+ and Nb2O5:Eu3+. Meas. Sci. Technol. 2019, 30, 045001. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Ross, N.; Zhao, J.; Angel, R. High-pressure single-crystal X-ray diffraction study of YAlO3 perovskite. J. Solid State Chem. 2004, 177, 1276–1284. [Google Scholar] [CrossRef]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr 3+, Nd 3+, Pm 3+, Sm 3+, Dy 3+, Ho 3+, Er 3+ and Tm 3+. J. Chem. Phys. 1968, 49, 4424–4442. [Google Scholar] [CrossRef]
- Carnall, W.T.; Crosswhite, H.; Crosswhite, H.M. Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF₃; Argonne: Lemont, IL, USA, 1978. [Google Scholar]
- Ćirić, A.; Stojadinović, S. Photoluminescence of ZrO2:Gd3+ and ZrO2:Dy3+ coatings formed by the plasma electrolytic oxidation. J. Alloys Compd. 2020, 832, 154907. [Google Scholar] [CrossRef]
- Ćirić, A.; Stojadinović, S.; Dramićanin, M.D. Time-integrated luminescence thermometry of Eu3+ and Dy3+ doped YVO4. Sens. Actuators A Phys. 2019, 295, 450–455. [Google Scholar] [CrossRef]
- Cates, M.R. YAG:Dy and YAG:Tm Fluorescence Above 1400 C.; Department of Energy: Oak Ridge, TN, USA, 2003. [Google Scholar]
- Ishiwada, N.; Tsuchiya, K.; Yokomori, T. Applicability of Dy-doped yttrium aluminum garnet (YAG:Dy) in phosphor thermometry at different oxygen concentrations. J. Lumin. 2019, 208, 82–88. [Google Scholar] [CrossRef]
- Skinner, S.J.; Feist, J.P.; Brooks, I.J.E.; Seefeldt, S.; Heyes, A.L. YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications. Sens. Actuators B Chem. 2009, 136, 52–59. [Google Scholar] [CrossRef]
- Ćirić, A.; Gavrilović, T.; Dramićanin, M.D. Luminescence Intensity Ratio Thermometry with Er3+: Performance Overview. Crystals 2021, 11, 189. [Google Scholar] [CrossRef]
- Martinović, A.; Dramićanin, M.D.; Ćirić, A. Modeling the Performance of Dy3+-Based Boltzmann Thermometers by the Judd–Ofelt Theory. Adv. Theory Simul. 2022, 5, 2200029. [Google Scholar] [CrossRef]
ICDD Card 01-074-4232 | YAP:2 mol% Dy3+ |
---|---|
Crystallite size (nm) | 46.2 |
Strain | 0.04 |
* Rwp | 5.88 |
** Rp | 4.27 |
*** Re | 2.81 |
GOF | 2.0906 |
a (Å) | 5.1791 |
b (Å) | 5.3254 |
c (Å) | 7.3694 |
Host | Activator | LIR1 | LIR2 | Sr (LIR1) | Sr (LIR2) | LIR2 T-Range [K] | Ref. |
---|---|---|---|---|---|---|---|
CaWO4 | Dy3+ | 4I15/2/4F9/2 | 4G11/2/4F9/2 | (1664 K)/T2 | (3473 K)/T2 | 450–800 | [18] |
YAG | Dy3+ | 4I15/2/4F9/2 | 4G11/2/4F9/2 | (1500 K)/T2 | (3545 K)/T2 | 600–938 | [19] |
NaYF4 | Nd3+ | 4F5/2/4F3/2 | 4F7/2/4F3/2 | (1438 K)/T2 | (2802 K)/T2 | 320–720 | [20] |
YF3 | Er3+ | 2H11/2/4S3/2 | 4F7/2/4S3/2 | (914 K)/T2 | (1742 K)/T2 | 293–473 | [21] |
YAB | Gd3+ | 6P5/2/6P7/2 | 6P3/2/6P7/2 | (728 K)/T2 | (1611 K)/T2 | 548–873 | [22] |
YAP | Dy3+ | 4I15/2/4F9/2 | 4G11/2/4F9/2 | (1470 K)/T2 | (3106 K)/T2 | 600–850 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Periša, J.; Ćirić, A.; Zeković, I.; Đorđević, V.; Sekulić, M.; Antić, Ž.; Dramićanin, M.D. Exploiting High-Energy Emissions of YAlO3:Dy3+ for Sensitivity Improvement of Ratiometric Luminescence Thermometry. Sensors 2022, 22, 7997. https://doi.org/10.3390/s22207997
Periša J, Ćirić A, Zeković I, Đorđević V, Sekulić M, Antić Ž, Dramićanin MD. Exploiting High-Energy Emissions of YAlO3:Dy3+ for Sensitivity Improvement of Ratiometric Luminescence Thermometry. Sensors. 2022; 22(20):7997. https://doi.org/10.3390/s22207997
Chicago/Turabian StylePeriša, Jovana, Aleksandar Ćirić, Ivana Zeković, Vesna Đorđević, Milica Sekulić, Željka Antić, and Miroslav D. Dramićanin. 2022. "Exploiting High-Energy Emissions of YAlO3:Dy3+ for Sensitivity Improvement of Ratiometric Luminescence Thermometry" Sensors 22, no. 20: 7997. https://doi.org/10.3390/s22207997
APA StylePeriša, J., Ćirić, A., Zeković, I., Đorđević, V., Sekulić, M., Antić, Ž., & Dramićanin, M. D. (2022). Exploiting High-Energy Emissions of YAlO3:Dy3+ for Sensitivity Improvement of Ratiometric Luminescence Thermometry. Sensors, 22(20), 7997. https://doi.org/10.3390/s22207997