Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Crystal Structure of Y1.9Dy0.1SiO5 Luminescence Probe
3.2. Temperature Dependence of Y2SiO5:Dy3+ Photoluminescence
3.3. Conventional and Multilevel Cascade LIR Temperature Readings
3.4. Multiparameter Temperature Readout
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allison, S.W. A brief history of phosphor thermometry. Meas. Sci. Technol. 2019, 30, 072001. [Google Scholar] [CrossRef]
- Dramićanin, M. Schemes for Temperature Read-Out from Luminescence. In Luminescence Thermometry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 63–83. [Google Scholar]
- Quintanilla, M.; Benayas, A.; Naccache, R.; Vetrone, F. Luminescent Nanothermometry with Lanthanide-doped Nanoparticles. In Thermometry at the Nanoscale; Royal Society of Chemistry: London, UK, 2015; pp. 124–166. [Google Scholar]
- Brites, C.D.S.; Balabhadra, S.; Carlos, L.D. Lanthanide-Based Thermometers: At the Cutting-Edge of Luminescence Thermometry. Adv. Opt. Mater. 2018, 7, 1801239. [Google Scholar] [CrossRef][Green Version]
- Geitenbeek, R.G.; de Wijn, H.W.; Meijerink, A. Non-Boltzmann Luminescence in NaYF4:Eu3+: Implications for Luminescence Thermometry. Phys. Rev. Appl. 2018, 10, 64006. [Google Scholar] [CrossRef][Green Version]
- Wade, S.A.; Collins, S.F.; Baxter, G.W. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 2003, 94, 4743–4756. [Google Scholar] [CrossRef]
- Dramićanin, M.D. Trends in luminescence thermometry. J. Appl. Phys. 2020, 128, 40902. [Google Scholar] [CrossRef]
- Dramićanin, M.D. Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review. Methods Appl. Fluoresc. 2016, 4, 042001. [Google Scholar] [CrossRef][Green Version]
- Dramićanin, M. Lanthanide and Transition Metal Ion Doped Materials for Luminescence Temperature Sensing. In Luminescence Thermometry; Elsevier: Amsterdam, The Netherlands, 2018; p. 137. [Google Scholar]
- Allison, S.W.; Beshears, D.L.; Cates, M.R.; Scudiere, M.B.; Shaw, D.W.; Ellis, A.D. Luminescence of YAG:Dy and YAG:Dy,Er crystals to 1700 °C. Meas. Sci. Technol. 2019, 31, 044001. [Google Scholar] [CrossRef]
- Anderson, B.R.; Livers, S.; Gunawidjaja, R.; Eilers, H. Fiber-based optical thermocouples for fast temperature sensing in extreme environments. Opt. Eng. 2019, 58, 097105. [Google Scholar] [CrossRef]
- Aldén, M.; Omrane, A.; Richter, M.; Särner, G. Thermographic phosphors for thermometry: A survey of combustion applications. Prog. Energy Comb. Sci. 2011, 37, 422–461. [Google Scholar] [CrossRef]
- Chambers, M.D.; Clarke, D.R. Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry. Annu. Rev. Mater. Res. 2009, 39, 325–359. [Google Scholar] [CrossRef][Green Version]
- Wang, Y.; Sun, Y.; Xia, Z. Energy Gap Linear Superposition of Thermally Coupled Levels toward Enhanced Relative Sensitivity of Ratiometric Thermometry. J. Phys. Chem. Lett. 2023, 14, 178–182. [Google Scholar] [CrossRef]
- Ćirić, A.; Marciniak, Ł.; Dramićanin, M.D. Luminescence intensity ratio squared—A new luminescence thermometry meth-od for enhanced sensitivity. J. Appl. Phys. 2022, 131, 114501. [Google Scholar] [CrossRef]
- Ćirić, A.; van Swieten, T.; Periša, J.; Meijerink, A.; Dramićanin, M.D. Twofold increase in the sensitivity of Er3+/Yb3+ Boltzmann thermometer. J. Appl. Phys. 2023, 133, 194501. [Google Scholar] [CrossRef]
- Ćirić, A.; Periša, J.; Zeković, I.; Antić, Ž.; Dramićanin, M.D. Multilevel-cascade intensity ratio temperature read-out of Dy3+ luminescence thermometers. J. Lumin. 2022, 245, 118795. [Google Scholar] [CrossRef]
- Li, L.; Qin, F.; Zhou, Y.; Zheng, Y.; Miao, J.; Zhang, Z. Three-energy-level-cascaded strategy for a more sensitive luminescence ratiometric thermometry. Sens. Actuator A Phys. 2020, 304, 111864. [Google Scholar] [CrossRef]
- Periša, J.; Ćirić, A.; Zeković, I.; Đorđević, V.; Sekulić, M.; Antić, Ž.; Dramićanin, M.D. Exploiting High-Energy Emissions of YAlO3:Dy3+ for Sensitivity Improvement of Ratiometric Luminescence Thermometry. Sensors 2022, 22, 7997. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Wei, X.; Chen, Y.; Duan, C.; Yin, M. Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd3+. Opt. Express 2014, 22, 30333–30345. [Google Scholar] [CrossRef] [PubMed]
- Ćirić, A.; Aleksić, J.; Barudžija, T.; Antić, Ž.; Đorđević, V.; Medić, M.; Periša, J.; Zeković, I.; Mitrić, M.; Dramićanin, M.D. Comparison of three ratiometric temperature readings from the Er3+ upconversion emission. Nanomaterials 2020, 10, 627. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yu, D.; Li, H.; Zhang, D.; Zhang, Q.; Meijerink, A.; Suta, M. One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+. Light Sci. Appl. 2021, 10, 236. [Google Scholar] [CrossRef]
- Shen, Y.; Santos, H.D.A.; Ximendes, E.C.; Lifante, J.; Sanz-Portilla, A.; Monge, L.; Fernández, N.; Chaves-Coira, I.; Jacinto, C.; Brites, C.D.S.; et al. Ag2S Nanoheaters with Multiparameter Sensing for Reliable Thermal Feedback during In Vivo Tumor Therapy. Adv. Funct. Mater. 2020, 30, 2002730. [Google Scholar] [CrossRef]
- Maturi, F.E.; Brites, C.D.S.; Ximendes, E.C.; Mills, C.; Olsen, B.; Jaque, D.; Ribeiro, S.J.L.; Carlos, L.D. Going Above and Beyond: A Tenfold Gain in the Performance of Luminescence Thermometers Joining Multiparametric Sensing and Multiple Regression. Laser Photonics Rev. 2021, 15, 2100301. [Google Scholar] [CrossRef]
- Aseev, V.A.; Borisevich, D.A.; Khodasevich, M.A.; Kuz’menko, N.K.; Fedorov, Y.K. Calibration of Temperature by Normalized Up-Conversion Fluorescence Spectra of Germanate Glasses and Glass Ceramics Doped with Erbium and Ytterbium Ions. Opt. Spectrosc. 2021, 129, 297–302. [Google Scholar] [CrossRef]
- Borisov, E.V.; Kalinichev, A.A.; Kolesnikov, I.E. ZnTe Crystal Multimode Cryogenic Thermometry Using Raman and Luminescence Spectroscopy. Materials 2023, 16, 1311. [Google Scholar] [CrossRef] [PubMed]
- Ximendes, E.; Marin, R.; Carlos, L.D.; Jaque, D. Less is more: Dimensionality reduction as a general strategy for more precise luminescence thermometry. Light Sci. Appl. 2022, 11, 237. [Google Scholar] [CrossRef]
- Liu, L.; Zhong, K.; Munro, T.; Alvarado, S.; Côte, R.; Creten, S.; Fron, E.; Ban, H.; Van der Auweraer, M.; Roozen, N.B.; et al. Wideband fluorescence-based thermometry by neural network recognition: Photothermal application with 10 ns time resolution. J. Appl. Phys. 2015, 118, 184906. [Google Scholar] [CrossRef][Green Version]
- Lewis, C.; Erikson, J.W.; Sanchez, D.A.; McClure, C.E.; Nordin, G.P.; Munro, T.R.; Colton, J.S. Use of Machine Learning with Temporal Photoluminescence Signals from CdTe Quantum Dots for Temperature Measurement in Microfluidic Devices. ACS Appl. Nano Mater. 2020, 3, 4045–4053. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Xu, W.; Yao, M.; Zheng, L.; Hu, C.; Zhang, Z.; Sun, Z. Convolutional neural networks open up horizons for luminescence thermometry. J. Lumin. 2023, 256, 119637. [Google Scholar] [CrossRef]
- Dhanalakshmi, K.; Hari Krishna, R.; Jagannatha Reddy, A.; Chandraprabha, M.N.; Monika, D.L.; Parashuram, L. Photo- and thermoluminescence properties of single-phase white light-emitting Y2−xSiO5:xDy3+ nanophosphor: A concentration-dependent structural and optical study. Appl. Phys. A 2019, 125, 526. [Google Scholar] [CrossRef]
- Ćirić, A.; Stojadinović, S.; Dramićanin, M.D. Custom-built thermometry apparatus and luminescence intensity ratio thermometry of ZrO2:Eu3+ and Nb2O5:Eu3+. Meas. Sci. Technol. 2019, 30, 045001. [Google Scholar] [CrossRef]
- Wang, J.; Tian, S.; Li, G.; Liao, F.; Jing, X. Preparation and X-ray characterization of low-temperature phases of R2SiO5 (R = rare earth elements). Mater. Res. Bull. 2001, 36, 1855–1861. [Google Scholar] [CrossRef]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm 3+. J. Chem. Phys. 1968, 49, 4424–4442. [Google Scholar] [CrossRef]
- Ishiwada, N.; Fujii, E.; Yokomori, T. Evaluation of Dy-doped phosphors (YAG:Dy, Al2O3:Dy, and Y2SiO5:Dy) as thermographic phosphors. J. Lumin. 2018, 196, 492–497. [Google Scholar] [CrossRef]
- Chepyga, L.M.; Hertle, E.; Ali, A.; Zigan, L.; Osvet, A.; Brabec, C.J.; Batentschuk, M. Synthesis and Photoluminescent Properties of the Dy3+ Doped YSO as a High-Temperature Thermographic Phosphor. J. Lumin. 2018, 197, 23–30. [Google Scholar] [CrossRef]
- Ćirić, A.; Dramićanin, M.D. LumTHools—Software for fitting the temperature dependence of luminescence emission intensity, lifetime, bandshift, and bandwidth and luminescence thermometry and review of the theoretical models. J. Lumin. 2022, 252, 119413. [Google Scholar] [CrossRef]
- Chepyga, L.M.; Osvet, A.; Brabec, C.J.; Batentschuk, M. High-temperature thermographic phosphor mixture YAP/YAG:Dy3+ and its photoluminescence properties. J. Lumin. 2017, 188, 582–588. [Google Scholar] [CrossRef]
- Skinner, S.J.; Feist, J.P.; Brooks, I.J.E.; Seefeldt, S.; Heyes, A.L. YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications. Sens. Actuators B Chem. 2009, 136, 52–59. [Google Scholar] [CrossRef]
Precursor Material | Amount |
---|---|
Y(NO3)3·6H2O | 2.5464 g |
Dy(NO3)3·5H2O | 0.1535 g |
SiO2 colloidal dispersion in ethylene glycol | 0.54 mL |
Citric acid | 3.3621 g |
Ethylene glycol | 4.9 mL |
ICDD Card 01-070-5613 | Y1.9Dy0.1SiO5 |
---|---|
Crystallite size (nm) | 20.7(3) |
Strain | 0.16(8) |
Rwp * | 7.26 |
Re * | 3.18 |
GOF * | 2.2806 |
a (Å) | 9.0364(11) |
b (Å) | 6.9353(8) |
c (Å) | 6.6602(8) |
B | ΔE (cm−1) | Adj. R2 | Temperature Range (K) | Relative Sensitivity at 900 K (% K−1) | |
---|---|---|---|---|---|
LIR2-1 | 3.99 ± 0.17 | 1160 ± 21 | 0.997 | 300–900 | 0.21 |
LIR3-1 | 0.82 ± 0.11 | 2244 ± 77 | 0.992 | 600–900 | 0.40 |
LIR4-1 | 6.90 ± 1.50 | 3728 ± 131 | 0.994 | 700–900 | 0.66 |
i | B | ΔE | βi |
---|---|---|---|
2-1 | 3.99 | 1160 | 0.0179 |
3-1 | 0.82 | 2244 | 0.0328 |
4-1 | 6.90 | 3728 | 0.9489 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antić, Ž.; Ćirić, A.; Sekulić, M.; Periša, J.; Milićević, B.; Alodhayb, A.N.; Alrebdi, T.A.; Dramićanin, M.D. Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings. Crystals 2023, 13, 884. https://doi.org/10.3390/cryst13060884
Antić Ž, Ćirić A, Sekulić M, Periša J, Milićević B, Alodhayb AN, Alrebdi TA, Dramićanin MD. Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings. Crystals. 2023; 13(6):884. https://doi.org/10.3390/cryst13060884
Chicago/Turabian StyleAntić, Željka, Aleksandar Ćirić, Milica Sekulić, Jovana Periša, Bojana Milićević, Abdullah N. Alodhayb, Tahani A. Alrebdi, and Miroslav D. Dramićanin. 2023. "Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings" Crystals 13, no. 6: 884. https://doi.org/10.3390/cryst13060884
APA StyleAntić, Ž., Ćirić, A., Sekulić, M., Periša, J., Milićević, B., Alodhayb, A. N., Alrebdi, T. A., & Dramićanin, M. D. (2023). Thirty-Fold Increase in Relative Sensitivity of Dy3+ Luminescent Boltzmann Thermometers Using Multiparameter and Multilevel Cascade Temperature Readings. Crystals, 13(6), 884. https://doi.org/10.3390/cryst13060884