Pr3+-Activated Sr2LaF7 Nanoparticles as a Single-Phase White-Light-Emitting Nanophosphor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of SLF:Pr
2.3. Characterization
3. Results and Discussion
3.1. Structure and Morphology
3.2. Photoluminescence Properties of SLF:Pr
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pathak, S.; Sakai, N.; Wisnivesky Rocca Rivarola, F.; Stranks, S.D.; Liu, J.; Eperon, G.E.; Ducati, C.; Wojciechowski, K.; Griffiths, J.T.; Haghighirad, A.A.; et al. Perovskite Crystals for Tunable White Light Emission. Chem. Mater. 2015, 27, 8066–8075. [Google Scholar] [CrossRef]
- Xia, Z.; Meijerink, A. Ce3+-Doped Garnet Phosphors: Composition Modification, Luminescence Properties and Applications. Chem. Soc. Rev. 2017, 46, 275–299. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Milićević, B.; Dramićanin, M.D.; Jing, X.; Tang, Q.; Shi, J.; Wu, M. Eu3+-Activated Sr3ZnTa2O9 Single-Component White Light Phosphors: Emission Intensity Enhancement and Color Rendering Improvement. J. Mater. Chem. C 2019, 7, 2596–2603. [Google Scholar] [CrossRef]
- Li, G.; Tian, Y.; Zhao, Y.; Lin, J. Recent Progress in Luminescence Tuning of Ce3+ and Eu2+-Activated Phosphors for Pc-WLEDs. Chem. Soc. Rev. 2015, 44, 8688–8713. [Google Scholar] [CrossRef]
- Shang, M.; Li, C.; Lin, J. How to Produce White Light in a Single-Phase Host? Chem. Soc. Rev. 2014, 43, 1372–1386. [Google Scholar] [CrossRef]
- Haider, G.; Usman, M.; Chen, T.-P.; Perumal, P.; Lu, K.-L.; Chen, Y.-F. Electrically Driven White Light Emission from Intrinsic Metal–Organic Framework. ACS Nano 2016, 10, 8366–8375. [Google Scholar] [CrossRef]
- Weber, M.J. CRC Handbook of Laser Science and Technology, Volume 3, Optical Materials: Part 1; CRC Press: Boca Raton, FL, USA, 1986; ISBN 0-8493-3512-4. [Google Scholar]
- Alain Tressaud, K.R.P. (Ed.) Photonic and Electronic Properties of Fluoride Materials, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780128016398. [Google Scholar]
- Srivastava, A.M. Aspects of Pr3+ Luminescence in Solids. J. Lumin. 2016, 169, 445–449. [Google Scholar] [CrossRef]
- Srivastava, A.M. Inter- and Intraconfigurational Optical Transitions of the Pr3+ Ion for Application in Lighting and Scintillator Technologies. J. Lumin. 2009, 129, 1419–1421. [Google Scholar] [CrossRef]
- Antić, Ž.; Racu, A.V.; Medić, M.; Alodhayb, A.N.; Kuzman, S.; Brik, M.G.; Dramićanin, M.D. Concentration and Temperature Dependence of Pr3+ F-f Emissions in La(PO3)3. Opt. Mater. 2024, 150, 115226. [Google Scholar] [CrossRef]
- Zdeb, P.; Rebrova, N.; Lisiecki, R.; Dereń, P.J. Luminescence Properties of an Orthorhombic KLaF4 Phosphor Doped with Pr3+ Ions under Vacuum Ultraviolet and Visible Excitation. Materials 2024, 17, 1410. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, Z.; Huang, S.; Zeng, C.; Meng, Z.; Bu, Y.; Luo, Z.; Xu, B.; Xu, H.; Ye, C.; et al. Diode-Pumped Pr3+:LiYF4 Continuous-Wave Deep Red Laser at 698 Nm. J. Opt. Soc. Am. B 2013, 30, 302. [Google Scholar] [CrossRef]
- Metz, P.W.; Reichert, F.; Moglia, F.; Müller, S.; Marzahl, D.-T.; Kränkel, C.; Huber, G. High-Power Red, Orange, and Green Pr3+:LiYF4 Lasers. Opt. Lett. 2014, 39, 3193. [Google Scholar] [CrossRef] [PubMed]
- Richter, A.; Heumann, E.; Osiac, E.; Huber, G.; Seelert, W.; Diening, A. Diode Pumping of a Continuous-Wave Pr3+-Doped LiYF4 Laser. Opt. Lett. 2004, 29, 2638. [Google Scholar] [CrossRef]
- Starecki, F.; Bolaños, W.; Braud, A.; Doualan, J.-L.; Brasse, G.; Benayad, A.; Nazabal, V.; Xu, B.; Moncorgé, R.; Camy, P. Red and Orange Pr3+:LiYF4 Planar Waveguide Laser. Opt. Lett. 2013, 38, 455. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, Y.; Hu, Z.; Du, Z. Tunable Orthogonal Polarized Dual-Wavelength Pr3+:LiGdF4 Lasers in the Visible Range. J. Russ. Laser Res. 2024, 45, 319–326. [Google Scholar] [CrossRef]
- Bai, J.; Fu, X. Red and Green Dual-Wavelength Pr:LiGdF4 Laser with a Single Birefringent Filter. Laser Phys. 2023, 33, 125001. [Google Scholar] [CrossRef]
- Baiocco, D.; Lopez-Quintas, I.; Vázquez de Aldana, J.R.; Tonelli, M.; Tredicucci, A. High Efficiency Diode-Pumped Pr:LiLuF4 Visible Lasers in Femtosecond-Laser-Written Waveguides. Opt. Express 2024, 32, 9767. [Google Scholar] [CrossRef]
- Pabœuf, D.; Mhibik, O.; Bretenaker, F.; Goldner, P.; Parisi, D.; Tonelli, M. Diode-Pumped Pr:BaY2F8 Continuous-Wave Orange Laser. Opt. Lett. 2011, 36, 280. [Google Scholar] [CrossRef]
- Metz, P.W.; Müller, S.; Reichert, F.; Marzahl, D.-T.; Moglia, F.; Kränkel, C.; Huber, G. Wide Wavelength Tunability and Green Laser Operation of Diode-Pumped Pr3+:KY3F10. Opt. Express 2013, 21, 31274. [Google Scholar] [CrossRef]
- Zhou, S.; Jiang, G.; Wei, X.; Duan, C.; Chen, Y.; Yin, M. Pr3+-Doped β-NaYF4 for Temperature Sensing with Fluorescence Intensity Ratio Technique. J. Nanosci. Nanotechnol. 2014, 14, 3739–3742. [Google Scholar] [CrossRef]
- Rajčić, A.; Ristić, Z.; Periša, J.; Milićević, B.; Aldawood, S.; Alodhayb, A.N.; Antić, Ž.; Dramićanin, M.D. Using Principal Component Analysis for Temperature Readings from YF3:Pr3+ Luminescence. Technologies 2024, 12, 131. [Google Scholar] [CrossRef]
- Dramićanin, M.D.; Brik, M.G.; Antić, Ž.; Bănică, R.; Mosoarca, C.; Dramićanin, T.; Ristić, Z.; Dima, G.D.; Förster, T.; Suta, M. Pr3+ Visible to Ultraviolet Upconversion for Antimicrobial Applications. Nanomaterials 2025, 15, 562. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-M.; Li, Z.-Y.; Zhang, J.-Y.; Lu, Y.; Guo, S.-Q.; Zhao, Q.; Wang, X.; Yong, Z.-J.; Li, H.; Ma, J.-P.; et al. X-Ray-Activated Long Persistent Phosphors Featuring Strong UVC Afterglow Emissions. Light Sci. Appl. 2018, 7, 88. [Google Scholar] [CrossRef]
- Rebrova, N.; Grippa, A.; Zdeb, P.; Dereń, P.J. Blue to UV Upconversion Properties of Pr3+ Doped ACaF3 (A = K, Rb, Cs) Phosphors. Scr. Mater. 2025, 255, 116395. [Google Scholar] [CrossRef]
- Rebrova, N.; Zdeb, P.; Lemański, K.; Macalik, B.; Bezkrovnyi, O.; Dereń, P.J. Upconversion Luminescence Properties of Pr3+-Doped BaYF5 Nanoparticles Prepared by Microwave Hydrothermal Method. Inorg. Chem. 2024, 63, 3028–3036. [Google Scholar] [CrossRef]
- Wei, T.; Bo, W.; Yan, C.; Yeqing, C.; Jun, L.; Qingguang, Z. Single Pr3+-Activated High-Color-Stability Fluoride White-Light Phosphor for White-Light-Emitting Diodes. Opt. Mater. Express 2019, 9, 223. [Google Scholar] [CrossRef]
- Zhao, T.; Hu, L.; Ren, J. Fluorophosphate Upconversion-Luminescent Glass-Ceramics Containing Ba2LaF7:Er3+ Nanocrystals: An Advanced Solid-State Nuclear Magnetic Resonance Study. J. Phys. Chem. C 2021, 125, 26901–26915. [Google Scholar] [CrossRef]
- Grzyb, T.; Przybylska, D. Formation Mechanism, Structural, and Upconversion Properties of Alkaline Rare-Earth Fluoride Nanocrystals Doped with Yb3+/Er3+ Ions. Inorg. Chem. 2018, 57, 6410–6420. [Google Scholar] [CrossRef]
- Mao, Y.; Ma, M.; Gong, L.; Xu, C.; Ren, G.; Yang, Q. Controllable Synthesis and Upconversion Emission of Ultrasmall Near-Monodisperse Lanthanide-Doped Sr2LaF7 Nanocrystals. J. Alloys Compd. 2014, 609, 262–267. [Google Scholar] [CrossRef]
- Malinowski, M.; Wolski, R.; Woliński, W. Spectroscopic Studies of Pr3+ Ions in KPrxY1−xP4O12. J. Lumin. 1986, 35, 1–8. [Google Scholar] [CrossRef]
- Ćirić, A.; Dramićanin, M.D. LumTHools—Software for Fitting the Temperature Dependence of Luminescence Emission Intensity, Lifetime, Bandshift, and Bandwidth and Luminescence Thermometry and Review of the Theoretical Models. J. Lumin. 2022, 252, 119413. [Google Scholar] [CrossRef]
- Carnall, W.T.; Crosswhite, H.; Crosswhite, H.M. Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3; Argonne National Lab. (ANL): Argonne, IL, USA, 1978. [Google Scholar]
- Pawlik, N.; Goryczka, T.; Zubko, M.; Śmiarowska, J.; Pisarski, W.A. White Light and Near-Infrared Emissions of Pr3+ Ions in SiO2-LaF3 Sol–Gel Nano-Glass-Ceramics. Nanoscale 2024, 16, 4249–4265. [Google Scholar] [CrossRef]
- Toncelli, A.; Bonelli, L.; Faoro, R.; Parisi, D.; Tonelli, M. Investigation of Pr-Doped Fluoride Crystals as Possible White-Light Emitters. Opt. Mater. 2009, 31, 1205–1209. [Google Scholar] [CrossRef]
- Hoa Tran, T.Q.; Hoang, M.H.; Do, T.A.T.; Le, A.T.; Nguyen, T.H.; Nguyen, T.D.; Man, M.T. Nanostructure and Photoluminescence Dynamics of Praseodymium Doped Hexagonal LaF3 Nanocrystals. J. Lumin. 2021, 237, 118162. [Google Scholar] [CrossRef]
- Jusza, A.; Lipińska, L.; Baran, M.; Olszyna, A.; Jastrzębska, A.; Gil, M.; Mergo, P.; Piramidowicz, R. Praseodymium Doped Nanocrystals and Nanocomposites for Application in White Light Sources. Opt. Mater. 2019, 95, 109247. [Google Scholar] [CrossRef]
- Görller-Walrand, C.; Binnemans, K. Chapter 167 Spectral Intensities of F-f Transitions. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 1998; pp. 101–264. [Google Scholar]
- Naresh, V.; Ham, B.S. Influence of Multiphonon and Cross Relaxations on 3P0 and 1D2 Emission Levels of Pr3+ Doped Borosilicate Glasses for Broad Band Signal Amplification. J. Alloys Compd. 2016, 664, 321–330. [Google Scholar] [CrossRef]
- Kunkel, T.; Daly, S.; Miller, S.; Froehlich, J. Perceptual Design for High Dynamic Range Systems. In High Dynamic Range Video; Elsevier: Amsterdam, The Netherlands, 2016; pp. 391–430. [Google Scholar]
- David, A.; Whitehead, L.A. LED-Based White Light. Comptes Rendus. Phys. 2018, 19, 169–181. [Google Scholar] [CrossRef]
- Available online: https://www.jstage.jst.go.jp/article/jlve/22/1/22_1_1_2/_pdf (accessed on 1 April 2025).
Molecular Formula | Pr3+ (mol%) | Abbreviated Name | Precursors (g) | ||||
---|---|---|---|---|---|---|---|
Sr(NO3)2 | La(NO3)3ꞏ6H2O | Pr6O11 | NH4F | EDTA-2Na | |||
Sr2La0.998Pr0.002F7 | 0.2 | SLF:0.2Pr | 0.8465 | 0.8643 | 0.0007 | 0.8889 | 0.7445 |
Sr2La0.99Pr0.01F7 | 1 | SLF:1Pr | 0.8465 | 0.8574 | 0.0034 | 0.8889 | 0.7445 |
Sr2La0.98Pr0.02F7 | 2 | SLF:2Pr | 0.8465 | 0.8487 | 0.0068 | 0.8889 | 0.7445 |
Sr2La0.97Pr0.03F7 | 3 | SLF:3Pr | 0.8465 | 0.8401 | 0.0102 | 0.8889 | 0.7445 |
Sr2La0.95Pr0.05F7 | 5 | SLF:5Pr | 0.8465 | 0.82274 | 0.0170 | 0.8889 | 0.7445 |
Sr2La0.90Pr0.10F7 | 10 | SLF:10Pr | 0.8465 | 0.7794 | 0.0340 | 0.8889 | 0.7445 |
Sr2La0.75Pr0.25F7 | 25 | SLF:25Pr | 0.8465 | 0.6495 | 0.0851 | 0.8889 | 0.7445 |
Pr3+ Content (mol%) | 0.2 | 1 | 2 | 3 | 5 | 10 | 25 |
---|---|---|---|---|---|---|---|
Abbreviated Name | SLF:0.2Pr | SLF:1Pr | SLF:2Pr | SLF:3Pr | SLF:5Pr | SLF:10Pr | SLF:25Pr |
a = b = c (Å) | 5.8465 (2) | 5.8541 (3) | 5.8492 (3) | 5.84912 (15) | 5.8528 (3) | 5.83895 (16) | 5.85336 (17) |
CV (Å3) | 199.84 (3) | 200.62 (4) | 200.12 (4) | 200.11 (2) | 200.49 (4) | 199.07 (2) | 200.55 (2) |
CS (Å) | 185.0 (15) | 230.4 (10) | 229.9 (2) | 268.6 (10) | 266.4 (9) | 236.80 (8) | 293.0 (6) |
Strain | 0.120 (10) | 0.141 (19) | 0.146 (4) | 0.036 (12) | 0.145 (11) | 0.1704 (13) | 0.124 (6) |
GOF | 1.4617 | 1.7782 | 1.7023 | 1.6925 | 2.2436 | 1.3764 | 1.3033 |
* Rwp | 5.37 | 6.42 | 6.08 | 6.26 | 8.31 | 5.05 | 4.90 |
** Rp | 4.04 | 4.65 | 4.42 | 4.69 | 5.89 | 3.71 | 3.66 |
*** Re | 3.67 | 3.61 | 3.57 | 3.70 | 3.70 | 3.67 | 3.76 |
Sample | Pr3+ Content (%) | λexc (nm) | (x, y) | CCT (K) | Reference |
---|---|---|---|---|---|
β-NaYF4:Pr3+ | 0.1 | 443 | (0.354, 0.339) | 4563 | [28] |
0.5 | (0.323, 0.338) | 5951 | |||
1.0 | (0.307, 0.335) | 6767 | |||
BaY2F8:Pr3+ | 0.3 | 457.9 | (0.35, 0.32) | 4667 | [36] |
1.25 | (0.38, 0.34) | 3724 | |||
3.0 | (0.40, 0.34) | 3158 | |||
KYF4:Pr3+ | 1.25 | 457.9 | (0.35, 0.31) | 4604 | [36] |
KY3F10:Pr3+ | 0.3 | 457.9 | (0.37, 0.32) | 3861 | [36] |
Sr2LaF7:Pr3+ | 0.2 | 468 | (0.417, 0.374) | 3105 | This work |
1 | (0.394, 0.367) | 3561 | |||
2 | (0.390, 0.363) | 3628 | |||
3 | (0.365, 0.353) | 4292 | |||
5 | (0.366, 0.360) | 4308 | |||
10 | (0.357, 0.364) | 4628 | |||
25 | (0.350, 0.380) | 4924 |
Sample | Fitting Parameters | |||||
---|---|---|---|---|---|---|
[µs] | [µs] | [µs] | ||||
SLF:0.2Pr | 0.969 | 69.3 | 0.981 | 227.9 | 0.976 | 108.9 |
SLF:1Pr | 0.938 | 66.8 | 0.968 | 131.9 | 0.953 | 81.0 |
SLF:2Pr | 0.940 | 56.6 | 0.943 | 96.2 | 0.936 | 67.8 |
SLF:3Pr | 0.919 | 53.0 | 0.945 | 73.4 | 0.911 | 57.9 |
SLF:5Pr | 0.904 | 38.3 | 0.905 | 45.1 | 0.871 | 41.0 |
SLF:10Pr | 0.887 | 20.1 | 0.898 | 19.9 | 0.853 | 20.1 |
SLF:25Pr | 1.035 | 5.5 | 0.984 | 1.5 | 0.974 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milićević, B.; Ćirić, A.; Milenković, K.; Ristić, Z.; Periša, J.; Antić, Ž.; Dramićanin, M.D. Pr3+-Activated Sr2LaF7 Nanoparticles as a Single-Phase White-Light-Emitting Nanophosphor. Nanomaterials 2025, 15, 717. https://doi.org/10.3390/nano15100717
Milićević B, Ćirić A, Milenković K, Ristić Z, Periša J, Antić Ž, Dramićanin MD. Pr3+-Activated Sr2LaF7 Nanoparticles as a Single-Phase White-Light-Emitting Nanophosphor. Nanomaterials. 2025; 15(10):717. https://doi.org/10.3390/nano15100717
Chicago/Turabian StyleMilićević, Bojana, Aleksandar Ćirić, Katarina Milenković, Zoran Ristić, Jovana Periša, Željka Antić, and Miroslav D. Dramićanin. 2025. "Pr3+-Activated Sr2LaF7 Nanoparticles as a Single-Phase White-Light-Emitting Nanophosphor" Nanomaterials 15, no. 10: 717. https://doi.org/10.3390/nano15100717
APA StyleMilićević, B., Ćirić, A., Milenković, K., Ristić, Z., Periša, J., Antić, Ž., & Dramićanin, M. D. (2025). Pr3+-Activated Sr2LaF7 Nanoparticles as a Single-Phase White-Light-Emitting Nanophosphor. Nanomaterials, 15(10), 717. https://doi.org/10.3390/nano15100717