Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Authors = Manpreet Kaur ORCID = 0000-0002-3637-7681

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 229 KiB  
Correction
Correction: Kaur et al. Synthesis of CaFe2O4-NGO Nanocomposite for Effective Removal of Heavy Metal Ion and Photocatalytic Degradation of Organic Pollutants. Nanomaterials 2021, 11, 1471
by Manmeet Kaur, Manpreet Kaur, Dhanwinder Singh, Aderbal C. Oliveira, Vijayendra Kumar Garg and Virender K. Sharma
Nanomaterials 2025, 15(15), 1204; https://doi.org/10.3390/nano15151204 - 6 Aug 2025
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

22 pages, 356 KiB  
Article
Financial Decision-Making Beyond Economic Considerations: A Strategic View for Family Firms in India
by Manpreet Kaur Khurana, Muhammad Shahin Miah and Shweta Sharma
J. Risk Financial Manag. 2025, 18(8), 432; https://doi.org/10.3390/jrfm18080432 - 4 Aug 2025
Viewed by 233
Abstract
The study examines economic and non-economic endeavors to explore the association between family involvement and financial decisions within family firms. The non-economic factors of a family drive the need to analyze the impact of socioemotional factors on the financial policies of the family [...] Read more.
The study examines economic and non-economic endeavors to explore the association between family involvement and financial decisions within family firms. The non-economic factors of a family drive the need to analyze the impact of socioemotional factors on the financial policies of the family firms. The study explores the impact of family ownership, family management, and family control drawn from agency theory and socioemotional wealth perspectives on the financial decisions of family firms. Our findings in support of the socioemotional wealth perspective show a positive relationship between family ownership and debt financing with a desire to finance growth and avoid control dilution, with an increase in the level of debt. However, the involvement of family members in management and the top management team leads to an adverse relationship between family ownership and debt level, exhibiting the risk-averse behavior of a firm, which drives firms to reduce debt levels. Overall, our findings suggest that the perceptions of the socioemotional wealth theoretical paradigm are important in determining capital structure decisions in family enterprises. The results are resilient to potential endogeneity and heterogeneity difficulties, which may assist scholars and practitioners in assessing capital structure decisions in emerging economies. Full article
(This article belongs to the Special Issue Corporate Finance: Financial Management of the Firm)
29 pages, 1532 KiB  
Article
Effect of Rearing, Physiological, and Processing Conditions on the Volatile Profile of Atlantic Salmon (Salmo salar) Using SIFT-MS
by Manpreet Kaur, Konrad Dabrowski, Kevin J. Fisher, Md Zakir Hossain and Sheryl Barringer
Foods 2025, 14(14), 2540; https://doi.org/10.3390/foods14142540 - 21 Jul 2025
Viewed by 364
Abstract
This study examined the effects of rearing, physiological, and processing conditions on the volatile profile of Atlantic salmon. Fish were reared under two different temperature and light conditions, and three harvests were conducted at different time points for male and female fish. Fish [...] Read more.
This study examined the effects of rearing, physiological, and processing conditions on the volatile profile of Atlantic salmon. Fish were reared under two different temperature and light conditions, and three harvests were conducted at different time points for male and female fish. Fish were processed to yield fillets with or without skin. Volatiles were analyzed using SIFT-MS headspace analysis. Atlantic salmon reared in cooler temperatures under a 12 h light/dark cycle exhibited significantly lower concentrations of off-odor volatiles compared to those reared in warm conditions under continuous light, suggesting that cooler temperatures with a dark cycle help maintain freshness. A temperature shift from cool to warm further increased volatile accumulation. Longer rearing time resulted in higher volatile concentrations, attributed to greater biochemical products, increased susceptibility to lipid oxidation, protein degradation, and contaminant accumulation from the rearing environment. Males had higher volatile levels at 202 days, while females surpassed males by 242 days, likely due to increased biochemical accumulation associated with reproductive development. Fillets with skin exhibited significantly higher concentration of off-odor volatiles. These findings highlight the role of all studied factors in establishing optimum conditions to minimize spoilage-related volatiles and preserve the freshness of Atlantic salmon, with rearing temperature being the most critical factor. Full article
(This article belongs to the Special Issue Aquatic Products Processing and Preservation Technology)
Show Figures

Figure 1

2 pages, 337 KiB  
Correction
Correction: Kaur et al. Nanocomposite of MgFe2O4 and Mn3O4 as Polyphenol Oxidase Mimic for Sensing of Polyphenols. Biosensors 2022, 12, 428
by Harmilan Kaur, Manpreet Kaur, Renuka Aggarwal, Sucheta Sharma and Davinder Singh
Biosensors 2025, 15(7), 462; https://doi.org/10.3390/bios15070462 - 18 Jul 2025
Viewed by 190
Abstract
Error in Figure/Table [...] Full article
Show Figures

Figure 1

12 pages, 1395 KiB  
Article
Combinatory Flowcytometric Approach in Pediatric Acute Lymphoid Leukemia Identifies Surrogate Minimal Residual Disease Markers
by Noreen Grace George, Bhavika Rishi, Sanghmitra Ray, Manpreet Kaur, Raj Kamal, Shikha Garg, Sumit Mehndiratta, Nidhi Chopra, Shamsuz Zaman, Amitabh Singh and Aroonima Misra
Diagnostics 2025, 15(6), 658; https://doi.org/10.3390/diagnostics15060658 - 8 Mar 2025
Viewed by 1063
Abstract
Background/Objectives: Minimal residual disease (MRD) refers to the resistant clonal population of leukemia cells that survive induction chemotherapy, serving as a critical indicator of treatment response in pediatric Acute Lymphoid Leukemia (ALL). While flow cytometry (FCM) and molecular methods are standard for [...] Read more.
Background/Objectives: Minimal residual disease (MRD) refers to the resistant clonal population of leukemia cells that survive induction chemotherapy, serving as a critical indicator of treatment response in pediatric Acute Lymphoid Leukemia (ALL). While flow cytometry (FCM) and molecular methods are standard for MRD detection, novel leukemia-associated immunophenotype (LAIP) markers are needed when conventional markers are insufficient. Methods: MRD was assessed in 218 pediatric B-ALL patients using a combinatory approach of Different-from-Normal (DfN) and LAIP strategies. An eight-color flow cytometry panel included routine MRD markers (e.g., CD10, CD19, and CD20) and less commonly used markers (e.g., CD123, CD73, CD86). Cytogenetic and molecular profiling were integrated to evaluate the association between genetic abnormalities and MRD positivity. Results: The combined DfN and LAIP approach enhanced MRD detection sensitivity compared to individual methods. CD7 showed a significant association with MRD positivity (p = 0.003), whereas CD73 (p = 0.000) and CD86 (p = 0.002) correlated with MRD-negative status. CD123 exhibited the highest aberrancy among MRD-positive cases, while CD81 had the lowest. These findings highlight the prognostic potential of CD73 and CD86 for MRD-negative status, complementing the established utility of CD123. Conclusions: Incorporating novel markers (CD123, CD73, CD86, and CD81) into MRD panels enhances detection sensitivity and clinical applicability. These markers are compatible with standard flow cytometry, supporting their integration into routine practice for comprehensive MRD evaluation, ultimately improving therapeutic outcomes in pediatric B-ALL. Full article
(This article belongs to the Special Issue Diagnosis and Management of Hematologic Malignancies)
Show Figures

Figure 1

3 pages, 604 KiB  
Correction
Correction: Grewal et al. Structural and Photocatalytic Studies on Oxygen Hyperstoichiometric Titanium-Substituted Strontium Ferrite Nanoparticles. Magnetochemistry 2022, 8, 120
by Jaspreet Kaur Grewal, Manpreet Kaur, Rajeev K. Sharma, Aderbal C. Oliveira, Vijayendra Kumar Garg and Virender K. Sharma
Magnetochemistry 2024, 10(9), 65; https://doi.org/10.3390/magnetochemistry10090065 - 5 Sep 2024
Viewed by 752
Abstract
The authors wish to make a change to the published paper [...] Full article
Show Figures

Figure 1

20 pages, 5273 KiB  
Article
Effect of Yogurt on the Deodorization of Raw Garlic (Allium sativum L.) Sulfur Volatiles in Breath and the Roles of Its Components
by Manpreet Kaur and Sheryl Barringer
Dairy 2024, 5(2), 316-335; https://doi.org/10.3390/dairy5020026 - 6 Jun 2024
Cited by 1 | Viewed by 3313
Abstract
Consumption of garlic leads to the persistence of “garlic breath” due to the presence of malodorous sulfur volatiles which may persist for as long as 24 h. Therefore, the purpose of this study is to investigate the effect of yogurt and its components [...] Read more.
Consumption of garlic leads to the persistence of “garlic breath” due to the presence of malodorous sulfur volatiles which may persist for as long as 24 h. Therefore, the purpose of this study is to investigate the effect of yogurt and its components on the deodorization of garlic sulfur volatiles in breath and study the roles of these components in deodorization. Raw garlic was consumed with different treatments and at different times for breath analysis. Different components were mixed with the garlic for headspace analysis. Volatiles were measured using selected-ion flow-tube mass spectrometry. Consuming yogurt at the same time as garlic was more effective than consuming it before or after. Yogurt was the most effective at deodorization, followed by the emulsion, then protein or fat alone. Decreasing the pH of protein solutions increased deodorization because changes to the structure of the proteins exposed more binding sites for the volatiles, while decreasing the pH of water or fat had no effect on deodorization. Whey protein deodorized better than casein due to the presence of more cysteine binding sites for volatiles. This study proposes that the fat, protein, microbial culture, and water in yogurt have synergistic effects on the deodorization of garlic volatiles. This study’s findings can help in the development of novel products targeting sulfur volatiles, with broad applications for mitigating malodors produced by garlic. Full article
(This article belongs to the Section Milk and Human Health)
Show Figures

Figure 1

11 pages, 3608 KiB  
Article
L-Ascorbic Acid Restricts Vibrio cholerae Survival in Various Growth Conditions
by Himanshu Sen, Manpreet Kaur and Saumya Ray Chaudhuri
Microorganisms 2024, 12(3), 492; https://doi.org/10.3390/microorganisms12030492 - 29 Feb 2024
Cited by 3 | Viewed by 2405
Abstract
Cholera, a deadly diarrheal disease, continues to ravage various parts of the world. It is caused by Vibrio cholerae, an important member of the gamma-proteobacteria. Based on certain genetic and phenotypic tests, the organism is classified into two major biotypes, namely classical [...] Read more.
Cholera, a deadly diarrheal disease, continues to ravage various parts of the world. It is caused by Vibrio cholerae, an important member of the gamma-proteobacteria. Based on certain genetic and phenotypic tests, the organism is classified into two major biotypes, namely classical and El Tor. The El Tor and its variants are majorly responsible for the ongoing seventh pandemic across the globe. Previously, we have shown that cross-feeding of glucose metabolic acidic by-products of gut commensals can severely affect the viability of the biotypes. In this work, we examined the effect of L-ascorbic acid on the survival of Vibrio cholerae strains belonging to both biotypes and different serotypes. We observed that L-ascorbic acid effectively restricts the growth of all strains under various conditions including strains adapted to acid stress. In addition, L-ascorbic acid is also effective in decreasing bile-induced biofilms of Vibrio cholerae. Full article
(This article belongs to the Special Issue Research on Relevant Clinical Infections)
Show Figures

Figure 1

16 pages, 6049 KiB  
Article
High-Temperature Wear and Frictional Performance of Plasma-Nitrided AISI H13 Die Steel
by Ashish Kumar, Manpreet Kaur, Alphonsa Joseph, Ghanshyam Jhala, Tarun Nanda and Surinder Singh
Lubricants 2023, 11(10), 448; https://doi.org/10.3390/lubricants11100448 - 17 Oct 2023
Cited by 6 | Viewed by 2703
Abstract
Plasma nitriding, a surface treatment technique, is gaining popularity, as it is environment-friendly and offers superior mechanical properties. This research studied the wear and friction performance of AISI H13 die steel after plasma nitriding in a gas mixture of N2:H2 at 20:80, 50:50, [...] Read more.
Plasma nitriding, a surface treatment technique, is gaining popularity, as it is environment-friendly and offers superior mechanical properties. This research studied the wear and friction performance of AISI H13 die steel after plasma nitriding in a gas mixture of N2:H2 at 20:80, 50:50, and 80:20 (volume ratio) at a fixed time and temperature. This work aimed to analyze the sliding wear performance of the plasma-nitrided tool die steel in hot-forming operations at higher loads. Scanning electron microscopy/electron-dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD) techniques were used to study the microstructures of the H13 die steel pins after plasma nitriding. Wear tests were performed on a high-temperature tribometer under uni-directional sliding and dry conditions using a high-temperature tribometer under a 50 N load at various operating temperatures ranging from 25 °C to 600 °C. The results show that the plasma-nitriding process with N2:H2 at 20:80 improved the wear behavior of H13 steel. The friction coefficients and wear volume losses for all the plasma-nitrided specimens were less than those of the untreated die steel. Full article
(This article belongs to the Special Issue Plasma Surface Treatments for Wear and Corrosion Protection)
Show Figures

Figure 1

14 pages, 3810 KiB  
Article
PACS-Integrated Tools for Peritumoral Edema Volumetrics Provide Additional Information to RANO-BM-Based Assessment of Lung Cancer Brain Metastases after Stereotactic Radiotherapy: A Pilot Study
by Manpreet Kaur, Gabriel Cassinelli Petersen, Leon Jekel, Marc von Reppert, Sunitha Varghese, Irene Dixe de Oliveira Santo, Arman Avesta, Sanjay Aneja, Antonio Omuro, Veronica Chiang and Mariam Aboian
Cancers 2023, 15(19), 4822; https://doi.org/10.3390/cancers15194822 - 30 Sep 2023
Cited by 5 | Viewed by 2164
Abstract
Stereotactic radiotherapy (SRT) is the standard of care treatment for brain metastases (METS) today. Nevertheless, there is limited understanding of how posttreatment lesional volumetric changes may assist prediction of lesional outcome. This is partly due to the paucity of volumetric segmentation tools. Edema [...] Read more.
Stereotactic radiotherapy (SRT) is the standard of care treatment for brain metastases (METS) today. Nevertheless, there is limited understanding of how posttreatment lesional volumetric changes may assist prediction of lesional outcome. This is partly due to the paucity of volumetric segmentation tools. Edema alone can cause significant clinical symptoms and, therefore, needs independent study along with standard measurements of contrast-enhancing tumors. In this study, we aimed to compare volumetric changes of edema to RANO-BM-based measurements of contrast-enhancing lesion size. Patients with NSCLC METS ≥10 mm on post-contrast T1-weighted image and treated with SRT had measurements for up to seven follow-up scans using a PACS-integrated tool segmenting the peritumoral FLAIR hyperintense volume. Two-dimensional contrast-enhancing and volumetric edema changes were compared by creating treatment response curves. Fifty NSCLC METS were included in the study. The initial median peritumoral edema volume post-SRT relative to pre-SRT baseline was 37% (IQR 8–114%). Most of the lesions with edema volume reduction post-SRT experienced no increase in edema during the study. In over 50% of METS, the pattern of edema volume change was different than the pattern of contrast-enhancing lesion change at different timepoints, which was defined as incongruent. Lesions demonstrating incongruence at the first follow-up were more likely to progress subsequently. Therefore, edema assessment of METS post-SRT provides critical additional information to RANO-BM. Full article
(This article belongs to the Special Issue Role of Novel Imaging Technique in Brain Tumors)
Show Figures

Figure 1

19 pages, 1523 KiB  
Article
Effect of Yogurt and Its Components on the Deodorization of Raw and Fried Garlic Volatiles
by Manpreet Kaur and Sheryl Barringer
Molecules 2023, 28(15), 5714; https://doi.org/10.3390/molecules28155714 - 28 Jul 2023
Cited by 4 | Viewed by 11802
Abstract
Garlic contains sulfur volatiles that cause a bad odor after consumption. The objective of this study was to understand how yogurt and its components cause deodorization. Raw and fried garlic samples were mixed with various treatments and measurements of volatiles were conducted using [...] Read more.
Garlic contains sulfur volatiles that cause a bad odor after consumption. The objective of this study was to understand how yogurt and its components cause deodorization. Raw and fried garlic samples were mixed with various treatments and measurements of volatiles were conducted using a selected-ion flow-tube mass spectrometer. Frying garlic significantly reduced almost all sulfur volatile compounds. Raw garlic was deodorized more than fried garlic by all of the treatments. Fat, protein and water significantly reduced the concentration of sulfur-based volatiles in garlic. At the same concentration, either fat or protein produced higher deodorization, depending on the hydrophobicity of the volatile. Whey protein, casein and their complex all caused deodorization. Increasing the pH to 7 or heating changed the structure of the proteins and decreased the deodorization of the volatiles, showing the importance of proteins for deodorization. As the quantity of fat increased, the deodorization of the volatiles also increased. Foods with higher fat or protein content can be formulated to offer a potential solution to reduce the unpleasant odor associated with garlic consumption. Full article
(This article belongs to the Special Issue Challenges in Food Flavor and Volatile Compounds Analysis)
Show Figures

Figure 1

18 pages, 4302 KiB  
Article
A Cubic Class of Iterative Procedures for Finding the Generalized Inverses
by Munish Kansal, Manpreet Kaur, Litika Rani and Lorentz Jäntschi
Mathematics 2023, 11(13), 3031; https://doi.org/10.3390/math11133031 - 7 Jul 2023
Cited by 4 | Viewed by 1522
Abstract
This article considers the iterative approach for finding the Moore–Penrose inverse of a matrix. A convergence analysis is presented under certain conditions, demonstrating that the scheme attains third-order convergence. Moreover, theoretical discussions suggest that selecting a particular parameter could further improve the convergence [...] Read more.
This article considers the iterative approach for finding the Moore–Penrose inverse of a matrix. A convergence analysis is presented under certain conditions, demonstrating that the scheme attains third-order convergence. Moreover, theoretical discussions suggest that selecting a particular parameter could further improve the convergence order. The proposed scheme defines the special cases of third-order methods for β=0,1/2, and 1/4. Various large sparse, ill-conditioned, and rectangular matrices obtained from real-life problems were included from the Matrix-Market Library to test the presented scheme. The scheme’s performance was measured on randomly generated complex and real matrices, to verify the theoretical results and demonstrate its superiority over the existing methods. Furthermore, a large number of distinct approaches derived using the proposed family were tested numerically, to determine the optimal parametric value, leading to a successful conclusion. Full article
(This article belongs to the Special Issue Advances in Linear Recurrence System)
Show Figures

Figure 1

23 pages, 4581 KiB  
Review
A Review on Impacting Parameters for Photocatalytic Degradation of Organic Effluents by Ferrites and Their Nanocomposites
by Gurpinder Singh, Manpreet Kaur Ubhi, Kiran Jeet, Chetan Singla and Manpreet Kaur
Processes 2023, 11(6), 1727; https://doi.org/10.3390/pr11061727 - 5 Jun 2023
Cited by 40 | Viewed by 4587
Abstract
Traditional wastewater treatment methods, such as reverse osmosis, adsorption, desalination, and others, are outweighed by the photocatalytic degradation of organic pollutants. Ferrites are prominent photocatalysts due to their tunable band gaps, surface areas, and magnetic properties, which render photodegradation economical. Ferrites and their [...] Read more.
Traditional wastewater treatment methods, such as reverse osmosis, adsorption, desalination, and others, are outweighed by the photocatalytic degradation of organic pollutants. Ferrites are prominent photocatalysts due to their tunable band gaps, surface areas, and magnetic properties, which render photodegradation economical. Ferrites and their nanocomposites have been reported as promising visible light active photocatalysts. The photocatalytic system is heavily reliant on a number of factors that influence the photodegradation of organic effluents. This review demonstrates various parameters such as substrate concentration, pH of solution, photocatalyst quantity, photocatalyst surface area, metal and non-metal ion doping, light intensity, irradiation time, quenchers, etc. affecting the photocatalytic degradation of organic effluents by ferrite nanoparticles and their nanocomposites in detail. The photodegradation efficiency of the ferrite nanoparticles alters with the change in the value of pH of the solution, which further depends upon the nature of the pollutant used. A dose of the substrate and the photocatalyst must be optimized so as to attain better photodegradation efficiency. Photocatalysts with different surface areas change the amount of active sites, which in turn affects the degradation of pollutant and render it a crucial factor. In addition, the mechanism of the action of photocatalysis is elaborated in this review. Future research perspectives for the advancement of ferrites and their nanocomposites are deliberated in order to improve their use as photocatalysts. Full article
(This article belongs to the Section Catalysis Enhanced Processes)
Show Figures

Graphical abstract

36 pages, 6819 KiB  
Review
Nanocomposites of Ferrites with TiO2, SiO2 and Carbon Quantum Dots as Photocatalysts for Degradation of Organic Pollutants and Microbes
by Ajaypal Kaur, Manpreet Kaur, Vasundhara Singh and Pratibha Vyas
Magnetochemistry 2023, 9(5), 127; https://doi.org/10.3390/magnetochemistry9050127 - 9 May 2023
Cited by 19 | Viewed by 5156
Abstract
Ferrites are important magnetic materials used in electronic devices. Nanocomposites of ferrites with TiO2, SiO2 and carbon quantum dots have gained recent interest due to their unique advantages, such as high chemical stability, surface-active sites, high specific surface area, non-toxicity, [...] Read more.
Ferrites are important magnetic materials used in electronic devices. Nanocomposites of ferrites with TiO2, SiO2 and carbon quantum dots have gained recent interest due to their unique advantages, such as high chemical stability, surface-active sites, high specific surface area, non-toxicity, excellent optical properties, and tunable porosity. In the present review, general and adaptable coprecipitation, sol–gel, hydrothermal, solvothermal, and Stöber methods for the fabrication of nanocomposites are discussed. These materials offer the advantage of magnetic recovery and superior photocatalytic performance. The potential of nanocomposites to act as photocatalysts to eliminate organic pollutants and microbes from water is discussed. Mechanisms involved in these applications are also elaborated upon. The review provides a detailed study of recent applications and future perspectives of nanocomposites in sustainable water treatment. Full article
Show Figures

Graphical abstract

31 pages, 6807 KiB  
Review
Recent Advances in Recognition Receptors for Electrochemical Biosensing of Mycotoxins—A Review
by Manpreet Kaur, Jyoti Gaba, Komal Singh, Yashika Bhatia, Anoop Singh and Narinder Singh
Biosensors 2023, 13(3), 391; https://doi.org/10.3390/bios13030391 - 17 Mar 2023
Cited by 8 | Viewed by 3575
Abstract
Mycotoxins are naturally occurring toxic secondary metabolites produced by fungi in cereals and foodstuffs during the stages of cultivation and storage. Electrochemical biosensing has emerged as a rapid, efficient, and economical approach for the detection and quantification of mycotoxins in different sample media. [...] Read more.
Mycotoxins are naturally occurring toxic secondary metabolites produced by fungi in cereals and foodstuffs during the stages of cultivation and storage. Electrochemical biosensing has emerged as a rapid, efficient, and economical approach for the detection and quantification of mycotoxins in different sample media. An electrochemical biosensor consists of two main units, a recognition receptor and a signal transducer. Natural or artificial antibodies, aptamers, molecularly imprinted polymers (MIP), peptides, and DNAzymes have been extensively employed as selective recognition receptors for the electrochemical biosensing of mycotoxins. This article affords a detailed discussion of the recent advances and future prospects of various types of recognition receptors exploited in the electrochemical biosensing of mycotoxins. Full article
Show Figures

Figure 1

Back to TopTop