Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Authors = Mahmoud F. Seleiman ORCID = 0000-0003-4779-9414

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3832 KiB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

16 pages, 3254 KiB  
Article
Agrochemical Nitrogen Cycles, Photosynthesis Performance of Nitrogen Use Efficiency, and Yield of Maize
by Haixia Zheng, Hafeez Noor, Changchun Lin, Yu Feng, Zhengming Luo, Yanjun Hou, Mahmoud F. Seleiman and Fida Noor
Atmosphere 2025, 16(4), 373; https://doi.org/10.3390/atmos16040373 - 25 Mar 2025
Viewed by 427
Abstract
Nitrogen (N), as a macro-element, plays a vital role in plant growth and development. N deficiency affects plant productivity by decreasing the photosynthesis, leaf area, and longevity of green leaf. The experimental design was a randomized complete block design with four replicates: N0 [...] Read more.
Nitrogen (N), as a macro-element, plays a vital role in plant growth and development. N deficiency affects plant productivity by decreasing the photosynthesis, leaf area, and longevity of green leaf. The experimental design was a randomized complete block design with four replicates: N0 (0 kg N ha−1), N90 (90 kg N ha−1), N180 (180 kg N ha−1), and N210 (210 kg N ha−1), respectively, i.e., the effects of different N application levels on photosynthetic physiology, leaf characteristics, yield, and production. The findings of the present study underscore the importance of optimizing nitrogen application to maximize light capture, photosynthetic efficiency, and crop productivity. Under N-treated groups (N90, N180, and N210), the average photosynthetically active radiation (PAR) of panicle leaves at all levels, N210, was determined to be higher than that of other treated groups, as well as the N0 level and the upper, middle, and lower regions of N0, N90, and N180 plants under the same leaf area index (LAI), and it was noted to be higher under N210, respectively. Dry matter accumulation under N180, and N210 increased, respectively, and under N210, the dry matter accumulation of the population was significantly higher than that under N180, respectively. The nitrogen use efficiency (NUE), nitrogen recovery efficiency (NRE), nitrogen internal efficiency (NIE), and partial factor productivity of nitrogen (PFPN) under different nitrogen (N) application rates were significantly higher than N0, where the NIE of N180 was significantly higher than that of N210, the NUE and NRE of N180 and N210 were higher than those of N0, and the difference from PFPN was not significant, respectively. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

17 pages, 1584 KiB  
Article
Effects of Different Irrigation Water Sources Contaminated with Heavy Metals on Seed Germination and Seedling Growth of Different Field Crops
by Ömer Süha Uslu, Osman Gedik, Ali Rahmi Kaya, Adem Erol, Emre Babur, Haroon Khan, Mahmoud F. Seleiman and Daniel O. Wasonga
Water 2025, 17(6), 892; https://doi.org/10.3390/w17060892 - 19 Mar 2025
Cited by 4 | Viewed by 1332
Abstract
Irrigation water quality is of critical importance for optimum crop yield of economically important field crops in the Kahramanmaraş plains. A preliminary ecotoxicological assessment is necessary before large-scale irrigation. Therefore, this study aims to evaluate the quality of irrigation water supplied from different [...] Read more.
Irrigation water quality is of critical importance for optimum crop yield of economically important field crops in the Kahramanmaraş plains. A preliminary ecotoxicological assessment is necessary before large-scale irrigation. Therefore, this study aims to evaluate the quality of irrigation water supplied from different water sources (Karasu, Erkenez, and Oklu streams on the Aksu River and Sır Dam) and the effects on the seed germination and early seedling growth of different field crops (wheat, alfalfa, ryegrass, and maize) irrigated with this water. For this, in order to evaluate the effects on seed germination and early growth parameters of forage crop seedlings, a Petri dish germination test was carried out with four replications using a completely randomized design (CRD). Before the germination assay, heavy metal concentrations including copper (Cu), iron (Fe), lead (Pb), chromium (Cr), arsenic (As), nickel (Ni), and cadmium (Cd) were analyzed in water samples obtained from different water sources. In all water samples used for the experiment, Cu concentrations exceeded the acceptable limit of 0.2 mg L⁻1. The Cu levels found were 0.98 mg L⁻1 in Karasu (KC), 1.627 mg L⁻1 in Oklu (OC), 0.945 mg L⁻1 in Erkenez (EC), and 1.218 mg L⁻1 in Sır Dam (SD) waters. Additionally, Fe exceeded the limit only in KC, while Cd surpassed the permissible levels in EC and SD water samples. Seeds exposed to different water treatments were germinated in a climate chamber at 20 ± 1 °C. Over two weeks, daily germination and seedling growth parameters were measured. The results indicated that higher heavy metal concentrations in irrigation water led to a decline in seed germination rates and adversely impacted early seedling growth. Notably, water from Karasu Creek exhibited the most significant negative impact on all germination and growth parameters in the tested crops, especially due to Cu and Fe metal toxicity. Additionally, ryegrass seeds were most affected by these irrigation waters. This study highlights the importance of using uncontaminated quality irrigation water for optimal crop production by quantifying its impact, such as the percentage of decrease in germination or seedling growth. Full article
(This article belongs to the Special Issue Agricultural Water-Land-Plant System Engineering)
Show Figures

Figure 1

32 pages, 4228 KiB  
Article
Jatropha curcas Seed Germination: Effect of Seed Imbibition, Aging, Storage, and Salinity
by Isidro Elias Suarez-Padrón, Marcelo F. Pompelli, Claudia Carlucci, Marvin José Perneth-Montaño, Andrés José Betin Ruiz, Mahmoud F. Seleiman, Majed Alotaibi, Khalid F. Almutairi, Luis Eliécer Oviedo Zumaque, Yirlis Yadeth Pineda-Rodríguez and Luis Alfonso Rodríguez-Paez
Horticulturae 2025, 11(3), 258; https://doi.org/10.3390/horticulturae11030258 - 28 Feb 2025
Viewed by 907
Abstract
Renewable energy sources are essential to mitigating climate change, with biofuels offering a sustainable alternative to fossil fuels by reducing greenhouse gas emissions. Jatropha curcas, the best, non-edible, high-oil-yielding species, is a leading candidate for biodiesel production. However, ensuring a stable seed [...] Read more.
Renewable energy sources are essential to mitigating climate change, with biofuels offering a sustainable alternative to fossil fuels by reducing greenhouse gas emissions. Jatropha curcas, the best, non-edible, high-oil-yielding species, is a leading candidate for biodiesel production. However, ensuring a stable seed supply through effective storage is critical for biodiesel markets stability. This study evaluated the physiological and biochemical viability of J. curcas seeds stored at 4 °C with controlled humidity using 1.5 g of silica gel per gram of seed over 12 months. The results demonstrated that low-temperature, low-humidity storage significantly reduced metabolic activity, embryo respiration, and seed deterioration, preserving high germinability and oil quality. Despite a slight increase in mean germination time, seeds retained resilience in germination potential and viability. Additionally, preliminary assessments of salt tolerance revealed the potential of J. curcas seeds to germinate under saline conditions, supported by analyses of mineral nutrition and salt tolerance-related gene expression. These findings underscore the practicality of optimized storage conditions for maintaining seed quality and economic value, ensuring a consistent supply chain for biodiesel production. This study highlights the importance of integrating storage strategies into biodiesel systems to enhance sustainability and market resilience in the face of fluctuating production demands. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

19 pages, 3556 KiB  
Article
Efficacy of Nano and Conventional Zinc and Silicon Fertilizers for Nutrient Use Efficiency and Yield Benefits in Maize Under Saline Field Conditions
by Abbas Shoukat, Uswah Maryam, Britta Pitann, Muhammad Mubashar Zafar, Allah Nawaz, Waseem Hassan, Mahmoud F. Seleiman, Zulfiqar Ahmad Saqib and Karl H. Mühling
Plants 2025, 14(5), 673; https://doi.org/10.3390/plants14050673 - 22 Feb 2025
Cited by 2 | Viewed by 1546
Abstract
The increasing severity of salinity stress, exacerbated by climate change, poses significant challenges to sustainable agriculture, particularly in salt-affected regions. Soil salinity, impacting approximately 20% of irrigated lands, severely reduces crop productivity by disrupting plants’ physiological and biochemical processes. This study evaluates the [...] Read more.
The increasing severity of salinity stress, exacerbated by climate change, poses significant challenges to sustainable agriculture, particularly in salt-affected regions. Soil salinity, impacting approximately 20% of irrigated lands, severely reduces crop productivity by disrupting plants’ physiological and biochemical processes. This study evaluates the effectiveness of zinc (Zn) and silicon (Si) nanofertilizers in improving maize (Zea mays L.) growth, nutrient uptake, and yield under both saline and non-saline field conditions. ZnO nanoparticles (NPs) were synthesized via the co-precipitation method due to its ability to produce highly pure and uniform particles, while the sol–gel method was chosen for SiO2 NPs to ensure precise control over the particle size and enhanced surface activity. The NPs were characterized using UV-Vis spectroscopy, XRD, SEM, and TEM-EDX, confirming their crystalline nature, morphology, and nanoscale size (ZnO~12 nm, SiO2~15 nm). A split-plot field experiment was conducted to assess the effects of the nano and conventional Zn and Si fertilizers. Zn was applied at 10 ppm (22.5 kg/ha) and Si at 90 ppm (201 kg/ha). Various agronomic, chemical, and physiological parameters were then evaluated. The results demonstrated that nano Zn/Si significantly enhanced the cob length and grain yield. Nano Si led to the highest biomass increase (110%) and improved the nutrient use efficiency by 105% under saline and 110% under non-saline conditions compared to the control. Under saline stress, nano Zn/Si improved the nutrient uptake efficiency, reduced sodium accumulation, and increased the grain yield by 66% and 106%, respectively, compared to the control. A Principal Component Analysis (PCA) highlighted a strong correlation between nano Zn/Si applications with the harvest index and Si contents in shoots, along with other physiological and yield attributes. These findings highlight that nanotechnology-based fertilizers can mitigate salinity stress and enhance crop productivity, providing a promising strategy for sustainable agriculture in salt-affected soils. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

19 pages, 3559 KiB  
Article
Effects of Different Winter Wheat (Triticum aestivum L.) Varieties Addressing the Agriculture Climate Interactions in Temperature Regions of Yield
by Feng Yu, Hafeez Noor, Mahmoud F. Seleiman and Fida Noor
Atmosphere 2025, 16(2), 189; https://doi.org/10.3390/atmos16020189 - 7 Feb 2025
Viewed by 707
Abstract
Agricultural productions are deeply affected by the phenological changes, especially in Shanxi Province, where Southern Shanxi is the main production area of winter wheat. Studying the phenological changes of this region and clarifying the effects of varieties and sowing dates on the phenological [...] Read more.
Agricultural productions are deeply affected by the phenological changes, especially in Shanxi Province, where Southern Shanxi is the main production area of winter wheat. Studying the phenological changes of this region and clarifying the effects of varieties and sowing dates on the phenological characteristics of southern Shanxi can be used for efficient introduction and scientific sowing. We have analyzed the meteorological datasets, phenological period data, and crop management data of seven observation points in the main winter wheat producing areas of Shanxi Province from 1992 to 2021. Trend analysis was used to analyze the time variation trend of various meteorological factors from 1992 to 2021. These results showed that the growth period was mainly advanced, especially in Changzhi and Yuncheng. The sensitivity analysis showed that the growth period of most sites were positively correlated with the sensitivity of various climate factors. Except for jointing to heading stage, the sensitivity of the duration of other growth stages to average temperature was positive, indicating that high temperature had an effect on effective vernalization and early reproductive growth of winter wheat. The modeling results showed that the growth period of winter wheat in Shanxi showed a trend of delay from sowing to ripening, and the sensitivity to temperature showed an increasing trend from sowing to ripening, while the sensitivity to precipitation was the opposite. Meanwhile, an earlier sowing date will make winter wheat develop earlier in warm climate conditions, requiring attention to cold prevention after winter. It is recommended to plant YH-20410 or YH-805 as suitable varieties in the Yuncheng area. In the future, this area can also moderately introduce new varieties with high heat requirements, which can, to some extent, offset the negative impacts of climate change. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

22 pages, 3992 KiB  
Article
Optimizing Tomato (Lycopersicon esculentum) Yield Under Salt Stress: The Physiological and Biochemical Effects of Foliar Thiourea Application
by Jawaria Abdul Majeed, Safura Bibi, Athar Mahmood, Liaqat Ali, Muhammad Ehsan Safdar, Mahmoud F. Seleiman, Zain Ul Abidin, Bushra A. Alhammad and Muhammad Ahsan Asghar
Plants 2024, 13(23), 3318; https://doi.org/10.3390/plants13233318 - 26 Nov 2024
Cited by 1 | Viewed by 1711
Abstract
A pot experiment was conducted to investigate the role of thiourea exogenous application (0 mg/L and 100 mg/L) on the morphological, physiological, and yield traits of two varieties of tomato (Naqeeb and Nadir) under different salt stress treatments (0, 60, and 120 mM) [...] Read more.
A pot experiment was conducted to investigate the role of thiourea exogenous application (0 mg/L and 100 mg/L) on the morphological, physiological, and yield traits of two varieties of tomato (Naqeeb and Nadir) under different salt stress treatments (0, 60, and 120 mM) in completely randomized design (CRD). The imposition of salinity by rooting medium showed that salt stress reduced plant height by 20%, fresh shoot weight by 50%, dry shoot weight by 78%, fresh root weight by 43%, dry root weight by 84%, root length by 34%, shoot length by 32%, shoot K+ by 47%, Ca2+ by 70%, chlorophyll a by 30%, chlorophyll b by 67%, and the number of seeds per berry by 53%, while shoot Na+ ions were increased by 90% in comparison to those grown with control treatment. However, the exogenous application of thiourea significantly enhanced dry root weight by 25% and the number of seeds per berry by 20% in comparison to untreated plants with thiourea when grown under salt stress. Salt stress resulted in a reduction in the number of berries, weight per berry, number of seeds per berry, and seed weight in both varieties, while thiourea foliar application increased these yield parameters. On the other hand, the Nadir variety surpassed Naqeeb in plant height (+13%), root length (+31%) and shoot length (+11%), fresh shoot weight (+42%) and dry shoot weight (+11%), fresh root weight (+29%), dry root weight (+25%), area of leaf (+26%), chlorophyll a (+32%), and chlorophyll b (+24%). In conclusion, the exogenous application of thiourea can be used to mitigate salt stress in tomato plants since it can improve the growth, physiological, and yield traits of this strategic crop. Full article
Show Figures

Figure 1

36 pages, 5088 KiB  
Article
Eco-Friendly Synthesis of ZnO Nanoparticles for Quinoline Dye Photodegradation and Antibacterial Applications Using Advanced Machine Learning Models
by Hayet Chelghoum, Noureddine Nasrallah, Hichem Tahraoui, Mahmoud F. Seleiman, Mustapha Mounir Bouhenna, Hayet Belmeskine, Meriem Zamouche, Souhila Djema, Jie Zhang, Amina Mendil, Fayçal Dergal, Mohammed Kebir and Abdeltif Amrane
Catalysts 2024, 14(11), 831; https://doi.org/10.3390/catal14110831 - 19 Nov 2024
Cited by 4 | Viewed by 2424
Abstract
Community drinking water sources are increasingly contaminated by various point and non-point sources, with emerging organic contaminants and microbial strains posing health risks and disrupting ecosystems. This study explores the use of zinc oxide nanoparticles (ZnO-NPs) as a non-specific agent to address groundwater [...] Read more.
Community drinking water sources are increasingly contaminated by various point and non-point sources, with emerging organic contaminants and microbial strains posing health risks and disrupting ecosystems. This study explores the use of zinc oxide nanoparticles (ZnO-NPs) as a non-specific agent to address groundwater contamination and combat microbial resistance effectively. The ZnO-NPs were synthesized via a green chemistry approach, employing a sol-gel method with lemon peel aqueous extract. The catalyst was characterized using techniques including XRD, ATR-FTIR, SEM-EDAX, UV-DRS, BET, and Raman spectroscopy. ZnO-NPs were then tested for photodegradation of quinoline yellow dye (QY) under sunlight irradiation, as well as for their antibacterial and antioxidant properties. The ZnO-NP photocatalyst showed significant photoactivity, attributed to effective separation of photogenerated charge carriers. The efficiency of sunlight dye photodegradation was influenced by catalyst dosage (0.1–0.6 mg L−1), pH (3–11), and initial QY concentration (10–50 mg L−1). The study developed a first-order kinetic model for ZnO-NPs using the Langmuir–Hinshelwood equation, yielding kinetic constants of equilibrium adsorption and photodegradation of Kc = 6.632 × 10−2 L mg−1 and kH = 7.104 × 10−2 mg L−1 min−1, respectively. The results showed that ZnO-NPs were effective against Gram-positive bacterial strains and showed moderate antioxidant activity, suggesting their potential in wastewater disinfection to achieve sustainable development goals. A potential antibacterial mechanism of ZnO-NPs involving interactions with microbial cells is proposed. Additionally, Gaussian Process Regression (GPR) combined with an improved Lévy flight distribution (FDB-LFD) algorithm was used to model QY photodegradation by ZnO-NPs. The ARD-Exponential kernel function provided high accuracy, validated through residue analysis. Finally, an innovative MATLAB-based application was developed to integrate the GPR_FDB-LFD model and FDB-LFD algorithm, streamlining optimization for precise photodegradation rate predictions. The results obtained in this study show that the GPR and FDB-LFD approaches offer efficient and cost-effective methods for predicting dye photodegradation, saving both time and resources. Full article
(This article belongs to the Special Issue Cutting-Edge Photocatalysis)
Show Figures

Figure 1

21 pages, 3831 KiB  
Article
Green Synthesis, Characterization and Pharmaceutical Applications of Biocompatible Zinc Oxide Nanoparticles Using Heliotropium rariflorum Stocks
by Noor Ul Uza, Ghulam Dastagir, Syed Tanveer Shah, Elitsa Pavlova, Aftab Jamal, Mahmoud F. Seleiman and Jakub Černý
Pharmaceuticals 2024, 17(11), 1457; https://doi.org/10.3390/ph17111457 - 31 Oct 2024
Cited by 2 | Viewed by 2213
Abstract
Background: Zinc oxide nanoparticles are safe, non-toxic, and biocompatible. These NPs are used in food packaging materials, self-cleaning glass, ceramics, deodorants, sunscreens, paints, coatings, ointments, lotions, and as preservatives. This study explored the biological potential of ZnO nanoparticles synthesized using H. rariflorum. [...] Read more.
Background: Zinc oxide nanoparticles are safe, non-toxic, and biocompatible. These NPs are used in food packaging materials, self-cleaning glass, ceramics, deodorants, sunscreens, paints, coatings, ointments, lotions, and as preservatives. This study explored the biological potential of ZnO nanoparticles synthesized using H. rariflorum. Methods: In vitro antibacterial and antifungal activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Candida albicans, Penicillium notatum, Aspergillus flavus, Aspergillus niger and Aspergillus solani were determined. Antioxidant activity was explored using the DPPH radical scavenging method. In vivo analgesic, antipyretic and sedative potential of synthesized nanoparticles was investigated using a mouse model. Results: SEM with various magnification powers showed that some particles were spherical while some were aggregated, flake-shaped, and hexagonal with rough and irregular surfaces. The EDX analysis revealed Zn (12.63%), O (22.83%) and C (63.11%) with trace quantities of Si (0.40%), Ca (0.54%) and P (0.49%). The XRD pattern indicated an amorphous state, with no peaks observed throughout the spectrum. The UV–visible spectrophotometry revealed a characteristic absorption peak at 375 nm, indicating the presence of ZnO nanoparticles. Fourier Transform Infrared Spectroscopy (FTIR) displayed several small peaks between 1793 and 2370 cm−1, providing evidence of the presence of different kinds of organic compounds with different functional groups. ZnO-NPs showed dose-dependent antibacterial and antifungal potential against all strains. Staphylococcus aureus and Candida albicans were the most susceptible strains. The nanoparticles exhibited a maximum antioxidant effect of 85.28% at 100 μg/mL. In this study, the acute toxicity test showed no mortality, and normal behavior was observed in mice at ZnO-NP doses of 5, 10, and 20 mg/kg. For analgesic and antipyretic activities, a two-way ANOVA revealed that dose, time, and the interaction between dose and time were significant. In contrast, the samples had a non-significant effect on sedative activity. Conclusions: This innovative study suggests a potential use of plant resources for managing microbes and treating various diseases, providing a scientific basis for the traditional use of H. rariflorum. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

23 pages, 3333 KiB  
Article
Optimizing Biochemical and Phytochemical Attributes in Peaches through Foliar Applications of Silicon and Zinc
by Syed Tanveer Shah, Naseer Ahmad, Abdul Basit, Muhammad Sajid, Aftab Jamal, Muhammad Farhan Saeed, Waleed Iqbal, Mahmoud F. Seleiman, Emanuele Radicetti and Roberto Mancinelli
Horticulturae 2024, 10(10), 1031; https://doi.org/10.3390/horticulturae10101031 - 28 Sep 2024
Viewed by 1345
Abstract
Peach production faces significant pre-harvest challenges, including low moisture, nutrient deficiencies, flower drop, physical damage, and surface discoloration, which can limit yield and fruit quality. To mitigate these issues, the present study hypothesized that foliar applications of silicon and zinc could enhance peach [...] Read more.
Peach production faces significant pre-harvest challenges, including low moisture, nutrient deficiencies, flower drop, physical damage, and surface discoloration, which can limit yield and fruit quality. To mitigate these issues, the present study hypothesized that foliar applications of silicon and zinc could enhance peach growth, yield, and quality due to their known roles in improving stress tolerance, nutrient uptake, and antioxidant activity. Therefore, this research aimed to identify optimal concentrations of silicon and zinc for quality peach production. Ten-year-old peach trees of uniform size were sprayed with four levels of silicon (0%, 0.1%, 0.2%, and 0.3%) and zinc (0%, 0.25%, 0.50%, and 0.75%) for two consecutive growing seasons, at the berry and pit hardening stages, using a Randomized Complete Block Design (RCBD) with three replications. The averaged data from the two years showed that the pre-harvest foliar application of silicon significantly improved all yield and quality attributes of peaches. The foliar application of silicon at 0.3% notably enhanced fruit growth, yield, and biochemical attributes. Additionally, the highest fruit growth, yield, and quality of peach fruits were observed at the 0.75% zinc concentration. Maximum antioxidant activity, flavonoid content, proline content, and catalase activity were observed in fruits from plants treated with 0.3% silicon, which were statistically on par with 0.2% silicon. However, peroxidase activity was highest at 0.2% silicon. Regarding zinc levels, antioxidant activity, flavonoid content, proline content, and peroxidase activity were highest in fruits treated with 0.75% zinc, while catalase activity was superior when fruits were sprayed with 0.50% zinc. The interaction between silicon and zinc concentrations was found to be non-significant for most parameters, except for titratable acidity, TSS–acid ratio, ascorbic acid content, antioxidant activity, flavonoid content, and peroxidase activity. In conclusion, the foliar application of 0.3% silicon and 0.75% zinc independently enhanced all yield and quality characteristics of peaches. For the agro-climatic conditions of Peshawar, 0.2% silicon and 0.50% zinc are recommended for optimal peach production. Full article
Show Figures

Figure 1

19 pages, 7632 KiB  
Article
Enhancing the Growth and Quality of Alfalfa Fodder in Aridisols through Wise Utilization of Saline Water Irrigation, Adopting a Strategic Leaching Fraction Technique
by Ghulam Sarwar, Noor Us Sabah, Mukkram Ali Tahir, Muhammad Zeeshan Manzoor, Mahmoud F. Seleiman, Muhammad Amir Zia, Hemat Mahmood, Johar Jamil, Ismail Shah, Sumaira Salahuddin Lodhi, Gulnaz Parveen, Hamid Ali and Ikram Ullah
Water 2024, 16(19), 2738; https://doi.org/10.3390/w16192738 - 26 Sep 2024
Viewed by 1514
Abstract
An experiment was conducted to investigate the optimal use of high-salt water for alfalfa fodder growth and quality in Aridisol. The experiment included five treatments and was performed using a completely randomized design (CRD) as factorial design with three replications. We used a [...] Read more.
An experiment was conducted to investigate the optimal use of high-salt water for alfalfa fodder growth and quality in Aridisol. The experiment included five treatments and was performed using a completely randomized design (CRD) as factorial design with three replications. We used a leaching fraction technique (LF), which is a mitigating technique (MT). The five treatments were T1 = MT1 as normal irrigation (control), T2 = MT2 as a leaching fraction (LF) of 15% with the same quality of water, T3 = MT3 as a LF of 30% with the same quality of water, T4 = MT4 as a LF of 15% with good-quality water (as percentage of total water), in the form of 2–3 irrigations every 3 months, and T5 = MT5 as a LF of 30% with good-quality water (as percentage of total water), in the form of 2–3 irrigations every 3 months. The duration of the experiment was three years and normal soil (non-saline, non-sodic) was used in the current study. Results showed that saline water irrigation negatively affected the growth traits, but the application of the LF technique with same-quality or good-quality water mitigated such negative effects. The fodder quality traits such as crude protein (CP), crude fiber (CF) and ashes were also affected in a negative way with the use of saline irrigation water. This negative impact was more intensified in the third year as the concentration of salts increased in saline water during the three years of the current investigation. A LF with canal water at 15 or 30% reduced the negative effects of salt stress and improved fodder biomass production and quality traits. For examples, using a LF with canal water at 30% increased the biomass production to 33.30 g and 15.87 g when plants were irrigated with W1 and W5, respectively. In addition, it improved quality traits such as crude protein content (5.54% and 3.73%) and crude fiber content (14.55% and 12.75%) when plants were irrigated with W1 and W5, respectively. It was concluded that the LF technique can be recommended for practice in the case of saline water irrigation for the optimized growth and quality of alfalfa fodder. Full article
(This article belongs to the Special Issue Safe Application of Reclaimed Water in Agriculture)
Show Figures

Figure 1

30 pages, 6746 KiB  
Article
Photosynthesis, Anatomy, and Metabolism as a Tool for Assessing Physiological Modulation in Five Native Species of the Brazilian Atlantic Forest
by Luis Alfonso Rodríguez-Páez, Mahmoud F. Seleiman, Bushra A. Alhammad, Yirlis Yadeth Pineda-Rodríguez, Marcelo F. Pompelli, Auxiliadora Oliveira Martins, Jaqueline Dias-Pereira and Wagner L. Araújo
Plants 2024, 13(14), 1906; https://doi.org/10.3390/plants13141906 - 10 Jul 2024
Cited by 2 | Viewed by 1821
Abstract
The Brazilian Atlantic Forest, renowned for its exceptional species richness and high endemism, acts as a vital reservoir of terrestrial biodiversity, often referred to as a biodiversity hotspot. Consequently, there is an urgent need to restore this forest to safeguard certain species and [...] Read more.
The Brazilian Atlantic Forest, renowned for its exceptional species richness and high endemism, acts as a vital reservoir of terrestrial biodiversity, often referred to as a biodiversity hotspot. Consequently, there is an urgent need to restore this forest to safeguard certain species and to unravel the ecophysiological adaptations of others. This study aims to integrate some physiological parameters, including gas exchange and chlorophyll a fluorescence, with anatomical and metabolic techniques to elucidate how five different native species (Paubrasilia echinata, Chorisia glaziovii, Clusia nemorosa, Licania tomentosa, and Schinus terebinthifolius), each occupying distinct ecological niches, respond to seasonal variations in rainfall and their consequences. Our investigation has revealed that C. nemorosa and P. echinata exhibit robust mechanisms to mitigate the adverse effects of drought. In contrast, others demonstrate greater adaptability (e.g., S. terebinthifolia and C. glaziovii). In this context, exploring metabolic pathways has proven invaluable in comprehending the physiological strategies and their significance in species acclimatization. This study provides a comprehensive overview of the impact of water restrictions and their consequential effects on various species, defining the strategies each species uses to mitigate water privation during the dry season. Full article
(This article belongs to the Special Issue Photosynthesis and Carbon Metabolism in Higher Plants and Algae)
Show Figures

Figure 1

21 pages, 5561 KiB  
Article
Nanocurcumin-Based Sugar-Free Formulation: Development and Impact on Diabetes and Oxidative Stress Reduction
by Safa Ferradj, Madiha Melha Yahoum, Mounia Rebiha, Ikram Nabi, Selma Toumi, Sonia Lefnaoui, Amel Hadj-Ziane-Zafour, Nabil Touzout, Hichem Tahraoui, Adil Mihoub, Mahmoud F. Seleiman, Nawab Ali, Jie Zhang and Abdeltif Amrane
Nanomaterials 2024, 14(13), 1105; https://doi.org/10.3390/nano14131105 - 27 Jun 2024
Cited by 3 | Viewed by 2348
Abstract
The objective of this study is the development of innovative nanocurcumin-based formulations designed for the treatment and prevention of oxidative stress and diabetes. Nanocurcumin was obtained through a micronization process and subsequently encapsulated within biopolymers derived from corn starch and fenugreek mucilage, achieving [...] Read more.
The objective of this study is the development of innovative nanocurcumin-based formulations designed for the treatment and prevention of oxidative stress and diabetes. Nanocurcumin was obtained through a micronization process and subsequently encapsulated within biopolymers derived from corn starch and fenugreek mucilage, achieving encapsulation rates of 75% and 85%, respectively. Subsequently, the encapsulated nanocurcumin was utilized in the formulation of sugar-free syrups based on Stevia rebaudiana Bertoni. The stability of the resulting formulations was assessed by monitoring particle size distribution and zeta potential over a 25-day period. Dynamic light scattering (DLS) revealed a particle size of 119.9 nm for the fenugreek mucilage-based syrup (CURF) and 117 nm for the corn starch-based syrup (CURA), with polydispersity indices PDIs of 0.509 and 0.495, respectively. The dissolution rates of the encapsulated nanocurcumin were significantly enhanced, showing a 67% improvement in CURA and a 70% enhancement in CURF compared with crude curcumin (12.82%). Both formulations demonstrated excellent antioxidant activity, as evidenced by polyphenol quantification using the 2.2-diphenyl 1-pycrilhydrazyl (DPPH) assay. In the evaluation of antidiabetic activity conducted on Wistar rats, a substantial reduction in fasting blood sugar levels from 392 to 187 mg/mL was observed. The antioxidant properties of CURF in reducing oxidative stress were clearly demonstrated by a macroscopic observation of the rats’ livers, including their color and appearance. Full article
(This article belongs to the Special Issue Antimicrobial and Antioxidant Activity of Nanoparticles)
Show Figures

Figure 1

24 pages, 1750 KiB  
Article
Chitosan and Chitosan Nanoparticles Differentially Alleviate Salinity Stress in Phaseolus vulgaris L. Plants
by Mekhled M. Alenazi, Aya M. El-Ebidy, Omar A. El-shehaby, Mahmoud F. Seleiman, Khalid J. Aldhuwaib and Heba M. M. Abdel-Aziz
Plants 2024, 13(3), 398; https://doi.org/10.3390/plants13030398 - 29 Jan 2024
Cited by 30 | Viewed by 3679
Abstract
Salinity stress can significantly cause negative impacts on the physiological and biochemical traits of plants and, consequently, a reduction in the yield productivity of crops. Therefore, the current study aimed to investigate the effects of chitosan (Cs) and chitosan nanoparticles (CsNPs) to mitigate [...] Read more.
Salinity stress can significantly cause negative impacts on the physiological and biochemical traits of plants and, consequently, a reduction in the yield productivity of crops. Therefore, the current study aimed to investigate the effects of chitosan (Cs) and chitosan nanoparticles (CsNPs) to mitigate salinity stress (i.e., 25, 50, 100, and 200 mM NaCl) and improve pigment fractions, carbohydrates content, ions content, proline, hydrogen peroxide, lipid peroxidation, electrolyte leakage content, and the antioxidant system of Phaseolus vulgaris L. grown in clay–sandy soil. Methacrylic acid was used to synthesize CsNPs, with an average size of 40 ± 2 nm. Salinity stress negatively affected yield traits, pigment fractions, and carbohydrate content. However, in plants grown under salt stress, the application of either Cs or CsNPs significantly improved yield, pigment fractions, carbohydrate content, proline, and the antioxidant system, while these treatments reduced hydrogen peroxide, lipid peroxidation, and electrolyte leakage. The positive effects of CsNPs were shown to be more beneficial than Cs when applied exogenously to plants grown under salt stress. In this context, it could be concluded that CsNPs could be used to mitigate salt stress effects on Phaseolus vulgaris L. plants grown in saline soils. Full article
Show Figures

Figure 1

15 pages, 2745 KiB  
Article
Cobalt and Titanium Alleviate the Methylglyoxal-Induced Oxidative Stress in Pennisetum divisum Seedlings under Saline Conditions
by Bushra Ahmed Alhammad, Khansa Saleem, Muhammad Ahsan Asghar, Ali Raza, Abd Ullah, Taimoor Hassan Farooq, Jean W. H. Yong, Fei Xu, Mahmoud F. Seleiman and Aamir Riaz
Metabolites 2023, 13(11), 1162; https://doi.org/10.3390/metabo13111162 - 19 Nov 2023
Cited by 9 | Viewed by 2163
Abstract
Salinity is considered to be a global problem and a severe danger to modern agriculture since it negatively impacts plants’ growth and development at both cellular- and whole-plant level. However, cobalt (Co) and titanium (Ti), multifunctional non-essential micro-elements, play a crucial role in [...] Read more.
Salinity is considered to be a global problem and a severe danger to modern agriculture since it negatively impacts plants’ growth and development at both cellular- and whole-plant level. However, cobalt (Co) and titanium (Ti), multifunctional non-essential micro-elements, play a crucial role in improving plant growth and development under salinity stress. In the current study, Co and Ti impact on the morphological, biochemical, nutritional, and metabolic profile of Pennisetum divisum plants under three salinity levels which were assessed. Two concentrations of Co (Co-1; 15.0 mg/L and Co-2; 25.0 mg/L), and two concentrations of Ti (Ti-1; 50.0 mg/L and Ti-2; 100.0 mg/L) were applied as foliar application to the P. divisum plants under salinity (S1; 200 mM, S2; 500 mM, and S3; 1000 mM) stress. The results revealed that various morphological, biochemical, and metabolic processes were drastically impacted by the salinity-induced methylglyoxal (MG) stress. The excessive accumulation of salt ions, including Na+ (1.24- and 1.21-fold), and Cl (1.53- and 1.15-fold) in leaves and roots of P. divisum, resulted in the higher production of MG (2.77- and 2.95-fold) in leaves and roots under severe (1000 mM) salinity stress, respectively. However, Ti-treated leaves showed a significant reduction in ionic imbalance and MG concentrations, whereas considerable improvement was shown in K+ and Ca2+ under salinity stress, and Co treatment showed downregulation of MG content (26, 16, and 14%) and improved the antioxidant activity, such as a reduction in glutathione (GSH), oxidized glutathione (GSSG), Glutathione reductase (GR), Glyoxalase I (Gly I), and Glyoxalase II (Gly II) by up to 1.13-, 1.35-, 3.75-, 2.08-, and 1.68-fold under severe salinity stress in P. divisum roots. Furthermore, MG-induced stress negatively impacted the metabolic profile and antioxidants activity of P. divisum’s root and leaves; however, Co and Ti treatment considerably improved the biochemical processes and metabolic profile in both underground and aerial parts of the studied plants. Collectively, the results depicted that Co treatment showed significant results in roots and Ti treatment presented considerable changes in leaves of P. divism under salinity stress. Full article
Show Figures

Graphical abstract

Back to TopTop