Enhancing the Growth and Quality of Alfalfa Fodder in Aridisols through Wise Utilization of Saline Water Irrigation, Adopting a Strategic Leaching Fraction Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Treatments and Design
- W1. Water with EC less than 1.0 dS m−1
- 2.
- W2. Water with EC 2.0 dS m−1
W1 = EC < 1.0 dS m−1 | W2 = EC = 2.0 dS m−1 | W3 = EC = 3.0 dS m−1 | W4 = EC = 4.0 dS m−1 | W5 = EC = 5.0 dS m−1 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MT1 = Normal irrigation (control) | MT2 = Leaching fraction = 15% | MT3 = Leaching fraction = 30% | MT4 = Leaching fraction = 15% with 2–3 irrigation after every 3 months | MT5 = Leaching fraction = 30% with 2–3 irrigation after every 3 months | MT1 = Normal irrigation (control) | MT2 = Leaching fraction = 15% | MT3 = Leaching fraction = 30% | MT4= Leaching fraction = 15% with 2–3 irrigation after every 3 months | MT5= Leaching fraction = 30% with 2–3 irrigation after every 3 months | MT1 = Normal irrigation (control) | MT2 = Leaching fraction = 15% | MT3 = Leaching fraction = 30% | MT4 = Leaching fraction = 15% with 2–3 irrigation after every 3 months | MT5 = Leaching fraction = 30% with 2–3 irrigation after every 3 months | MT1 = Normal irrigation (control) | MT2 = Leaching fraction = 15% | MT3 = Leaching fraction = 30% | MT4 = Leaching fraction = 15% with 2–3 irrigation after every 3 months | MT5 = Leaching fraction = 30% with 2–3 irrigation after every 3 months | MT1 = Normal irrigation (control) | MT2 = Leaching fraction = 15% | MT3 = Leaching fraction = 30% | MT4 = Leaching fraction = 15% with 2–3 irrigation after every 3 months | MT5 = Leaching fraction = 30% with 2–3 irrigation after every 3 months |
With 03 Replications |
Determinations | Units | Value |
---|---|---|
pHs | - | 8.1 |
ECe | dS m−1 | 2.89 |
Carbonates | meq/L | Nil |
Bicarbonates | meq/L | 5.36 |
Chloride | meq/L | 7.15 |
Sulfate | meq/L | 16.39 |
Calcium + magnesium | meq/L | 7.11 |
Sodium | meq/L | 16.35 |
SAR | - | 8.65 |
N | % | 0.32 |
P | ppm | 8.1 |
K | ppm | 121.5 |
Soil textural class | - | Clay loam |
2.2. Sowing and Crop Husbandry
2.3. Measurements
2.4. Statistical Analysis
3. Results
3.1. Plant Height (cm)
3.2. Fresh Weight/Biomass
3.3. Oven Dry Weight/Biomass
3.4. The Relative Growth Rate
3.5. Alfalfa Fodder Quality Parameters
3.6. Crude Fiber
3.7. Total Ash
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shahid, M.A.; Pervez, M.A.; Balal, R.M.; Mattson, N.S.; Rashid, A.; Ahmad, R.; Ayyub, C.M.; Abbas, T. Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Aust. J. Crop Sci. 2012, 5, 500–510. [Google Scholar]
- Dagar, J.C.; Sharma, P.C.; Chaudhari, S.K.; Jat, H.S.; Ahamad, S. Climate Change vis-a-vis Saline Agriculture: Impact and Adaptation Strategies. In Innovative Saline Agriculture; Dagar, J., Sharma, P., Sharma, D., Singh, A., Eds.; Springer: New Delhi, India, 2016. [Google Scholar] [CrossRef]
- Hussain, M.I.; Farooq, M.; Muscolo, A.; Rehman, A. Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils—A review. Env. Sci. Pollut. Res. 2020, 27, 28695–28729. [Google Scholar] [CrossRef] [PubMed]
- Kreye, C.; Bouman, B.A.; Reversat, G.; Fernandez, L.; Cruz, C.V.; Elazegui, F.; Faronilo, J.E.; Llorca, L. Biotic and abiotic causes of yield failure in tropical aerobic rice. Field Crop Res. 2009, 112, 97–106. [Google Scholar] [CrossRef]
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Hayat, R.; Ali, S. Water absorption by synthetic polymer (Aquasorb) and its effect on soil properties and tomato yield. Int. J. Agric. Biol. 2004, 6, 998–1002. [Google Scholar]
- Minhas, P.S.; Dubey, S.K.; Sharma, D.R. Comparative effects of blending, intera/inter- seasonal cyclic uses of alkali and good quality waters on soil properties and yields of paddy and wheat. Agric. Water Manag. 2007, 87, 83–90. [Google Scholar] [CrossRef]
- Kaledbonkar, M.J.; Meena, B.L.; Sharma, P.C. Reclamation and Nutrient Management for Salt-affected Soils. Indian J. Fert. 2019, 15, 566–575. [Google Scholar]
- Kaledhonkar, M.J.; Singh, A.K.; Singh, R.; Meena, B.L. Management of Saline Water Irrigation in Water Stress Arid Regions. In Technological Advances in Enhancing Productivity of Salt Affected Soils; Masilamani, P., Arulmozhiselvan, K., Balasubramaniam, P., Eds.; Today & Tomorrow’s Printers and Publishers: New Delhi, India, 2020; pp. 69–82. [Google Scholar]
- Ashraf, M. Water Scarcity in Pakistan: Issues and Options. 2018. Available online: https://www.researchgate.net/publication/360514975_Water_Scarcity_in_Pakistan_Issues_and_Options (accessed on 19 August 2024).
- Qureshi, A.S.; Perry, C. Managing Water and Salt for Sustainable Agriculture in the Indus Basin of Pakistan. Sustainability 2021, 13, 5303. [Google Scholar] [CrossRef]
- FAO. High Level Expert Forum—How to Feed the World in 2050; Economic and Social Development Department, Food and Agricultural Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Khan, M.H.; Panda, S.K. Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl salinity stress. Acta Physyol. Plant 2008, 30, 81–89. [Google Scholar] [CrossRef]
- Rodriguez, M.E.; Canales, E.; Borras, O.H. Molecular aspects of abiotic stress in plants. Biotechnol. Apl. 2005, 22, 1–10. [Google Scholar]
- Pawlowski, A.; Guzman, J.L.; Rodriguez, F.; Berenguel, M.; Sanchez, J.; Dormido, S. Simulation of greenhouse climate monitoring and control with wireless sensor network and event-based control. J. Sens. 2009, 9, 232–252. [Google Scholar] [CrossRef] [PubMed]
- Elhindi, K.M.; Fahed, A.; Algahtania, A.M.; Alotaibia, M.A. Effect of irrigation with saline magnetized water and different soil amendments on growth and flower production of Calendula officinalis L. plants. Saudi J. Biol. Sci. 2020, 27, 3072–3078. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.A.; Abbas, M.; Nadeem, S.M.; Ibrahim, M.; Hussain, S. Effective use of brackish water for improving soil properties and chickpea (Cicer arietinum) growth through organic amendments. Soil Environ. 2015, 34, 65–74. [Google Scholar]
- Venkateswarlu, B.; Singh, A.K. Climate change adaptation and mitigation strategies in rainfed agriculture. In Climate Change Modelling, Planning and Policy for Agriculture; Singh, A.K., Dagar, J.C., Arunachalam, A., Gopichandran, R., Shelat, K.N., Eds.; Springer: New Delhi, India, 2015; pp. 1–12. [Google Scholar]
- Chowdary, K.A.; Umadevi, M.; Ramulu, V.; Kumar, K.A. Growth, yield and water productivity of sorghum influenced by saline water irrigation and management practices. Int. J. Innov. Res. Dev. 2016, 5, 188–193. [Google Scholar]
- Feng, G.; Zhang, Z.; Zhang, Z. Evaluating the Sustainable Use of Saline Water Irrigation on Soil Water-Salt Content and Grain Yield under Subsurface Drainage Condition. Sustainability 2019, 11, 6431. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, H.; Jeon, J.; Bae, S. Effects of irrigation with saline water on crop growth and yield in greenhouse cultivation. Water 2016, 8, 127. [Google Scholar] [CrossRef]
- Ahmed, B.O.; Yamamoto, T.; Inoue, M. Response of drip irrigated sorghum varieties growing in dune sand to salinity levels in irrigation water. J. Appl. Sci. 2007, 7, 1061–1066. [Google Scholar] [CrossRef]
- Qadir, M.; Schubert, S. Degradation processes and nutrient constraints in sodic soils. Land Degrad. Dev. 2002, 13, 275–294. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, Z.; Wan, C.; Lu, P.; Bakour, A. Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agric. Water Manag. 2017, 193, 205–213. [Google Scholar]
- Batool, N.; Shahzad, A.; Ilyas, N.; Noor, T. Plants and Salt stress. Int. J. Agric. Crop Sci. 2014, 7, 582–589. [Google Scholar]
- Abdelsattar, M.M.; Ahmed, M.A.; Hussein, M.N.; El-Ati, A.; Saleem, A.M. Impacts of saline water stress on livestock production: A review. SVU-Int. J. Agric. Sci. 2020, 2, 1–12. [Google Scholar] [CrossRef]
- Peel, M.D.; Waldron, B.L.; Jensen, K.B.; Chatterton, N.J.; Horton, H.; Dudley, L.M. Screening for salinity tolerance in alfalfa. Crop Sci. 2004, 44, 2049–2053. [Google Scholar] [CrossRef]
- Mansour, M.M.; Salama, F.Z.; Ali, M.; Abou-Hadid, A.F. Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Gen. Appl. Plant Physiol. 2005, 31, 29–41. [Google Scholar]
- Gama, P.B.; Inanaga, S.; Tanaka, K.; Nakazawa, R. Physiological response of common bean (Phaseolus Vulg. L.) seedlings to salinity stress. Afr. J. Biotechnol. 2007, 6, 79–88. [Google Scholar]
- Hanson, B.; Grattan, S.R.; Fulton, A. Agricultural Salinity and Drainage; Publication 3375; University of California Agriculture and Natural Resources: Oakland, CA, USA, 2006. [Google Scholar]
- Latif, A.; Sun, Y.; Noman, A. Herbaceous Alfalfa plant as a multipurpose crop and predominant forage specie in Pakistan. Front. Sustain. Food Syst. 2023, 7, 1126151. [Google Scholar] [CrossRef]
- Naeem, M.S. Facts to Know before Alfalfa Hay Farming in Pakistan. 2020. Available online: https://www.linkedin.com/pulse/fac-know-before-alfalfa-hay-farming-pakistan-muhammad-salman-naeem/ (accessed on 29 March 2020).
- Hanson, B.R.; Bali, K.M.; Sanden, B.L. Irrigating alfalfa in arid regions. In The Regents of the University of California Agriculture and Natural Resources; Summers, C.G., Putnam, D.H., Eds.; Irrigated Alfalfa Management for Mediterranean and Desert Zones: Oakland, CA, USA, 2008; pp. 89–111. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29 Rev. 1; FAO, United Nations: Rome, Italy, 1985; 174p. [Google Scholar]
- Smith, S.E. Salinity and the production of alfalfa (Medicago sativa L.). In Handbook of Plant and Crop Stress; Pessarakli, M., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 1994; pp. 431–448. [Google Scholar]
- Cornacchione, M.V.; Suarez, D.L. Emergence, forage production, and ion relations of alfalfa in response to saline waters. Crop Sci. 2015, 55, 444–457. [Google Scholar] [CrossRef]
- U. S. Salinity Laboratory Staff. Diagnosis and Improvements of Saline and Alkali Soils; US Department of Agriculture Handbook 60: Washington, DC, USA, 1969. [Google Scholar]
- Eaton, F.M. Significance of Carbonates in Irrigation Waters. Soil Sci. 1950, 69, 123–134. [Google Scholar] [CrossRef]
- Beadle, C.L. Plant Growth Analysis. In Techniques in Bioproductivity and Photosynthesis; Coombs, J., Hall, D.O., Long, S.P., Scurlock, J.M.O., Eds.; Pergamon: Oxford, UK, 1985; pp. 20–25. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles and Procedures of Statistics, a Biometrical Approach, 3rd ed.; McGraw Hill, Inc. Book Co.: New York, NY, USA, 1997; pp. 352–358. [Google Scholar]
- Murkute, A.A.; Sharma, S.; Singh, S.K. Citrus in term of soil and water salinity: A review. J. Sci. Ind. Res. 2005, 64, 393–402. [Google Scholar]
- Ebrahimi, R.; Bhatla, S.C. Ion distribution measured by electron probe X-rays microanalysis in apoplastic and symplastic pathways in root cells in sunflower plants grown in saline medium. J. Biosci. 2012, 37, 713–721. [Google Scholar] [CrossRef]
- Xiong, J.; Sun, Y.; Yang, Q.; Tian, H.; Zhang, H.; Liu, Y.; Chen, M. Proteomic analysis of early salt stress responsive proteins in alfalfa roots and shoots. Proteome Sci. 2017, 15, 19–25. [Google Scholar] [CrossRef]
- Smethurst, C.F.; Rix, K.; Garnett, T.; Auricht, G.; Bayart, A.; Lane, P.; Wilson, S.J.; Shabala, S. Multiple traits associated with salt tolerance in lucerne: Revealing the underlying cellular mechanisms. Funct. Plant Biol. 2008, 35, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Chaparzadeh, N.; Mehrnejad, F. Oxidative markers in five Iranian alfalfa (Medicago sativa L.) cultivars under salinity stress. Iran. J. Plant Physiol. 2013, 3, 793–799. [Google Scholar]
- Maas, E.V.; Grattan, S.R. Crop yield as affected by salinity. In Agricultural Drainage, Agron; Skaggs, R.W., van Schilfgaarde, J., Eds.; Monograph No. 38; ASA: Madison, WI, USA, 1999. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Shekari, F.; Mohammadi, M.H.; Juhos, K.; Végvári, G.; Biró, B. Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity. Acta Physiol. Plant 2019, 41, 195–208. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieveb, C.M.; Possb, J.A.; Robinsonc, P.H.; Suarezb, D.L.; Benes, S.E. Evaluation of salt-tolerant forages for sequential water reuse systems I. Biomass production. Agric. Water Manag. 2004, 70, 109–120. [Google Scholar] [CrossRef]
- Putnam, D.H.; Hutmacher, B.; Brummer, C.; Galdi, G.; Gull, U.; Anderson, A. Developing High Yielding and High Quality Alfalfa Varieties and Cropping Systems for High Salinity Conditions; University of California Division of Agriculture and Natural Resources Davis, CA 95616: 2019. Available online: http://alfalfa.org/pdf/USAFRI/FinalReports/2017/17Putnam.pdf (accessed on 19 August 2024).
- Pang, H.C.; Li, Y.Y.; Yang, J.S.; Liang, Y.S. Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions. Agric. Water Manag. 2010, 97, 1971–1977. [Google Scholar] [CrossRef]
- Malash, N.M.; Flowers, T.J.; Ragab, R. Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Irrig. Sci. 2008, 26, 313–323. [Google Scholar] [CrossRef]
- Machekposhti, M.F.; Shahnazari, A.; Ahmadi, M.Z.; Aghajani, G.; Ritzema, H. Effect of irrigation with sea water on soil salinity and yield of oleic sunflower. Agric. Water Manag. 2017, 188, 69–78. [Google Scholar] [CrossRef]
- Al-Khatib, M.; McNeilly, T.; Collins, J. The potential of selection and breeding for improved salt tolerance in lucerne (Medicago sativa L.). Euphytica 1992, 65, 43–51. [Google Scholar] [CrossRef]
- Robinson, P.H.; Grattan, S.R.; Getachew, G.; Grieve, C.M.; Poss, J.A.; Suarez, D.L.; Benes, S.E. Biomass accumulation and potential nutritive value of some forages irrigated with saline-sodic drainage water. Anim. Feed Sci. Technol. 2004, 111, 175–189. [Google Scholar] [CrossRef]
- Ben-Ghedalia, K.; Solomon, R.; Miron, J.; Yosef, E.; Zomberg, Z.; Zukerman, E.; Kipnis, T. Effect of Water salinityon the composition and in vitro digestibility of winter-annual ryegrass grown in the Arava Desert. Anim. Feed Sci. Technol. 2001, 91, 139–147. [Google Scholar] [CrossRef]
- Ferreira, L.J.; Azevedo, V.; Maroco, J.; Oliveira, M.M.; Santos, A.P. Salt Tolerant and Sensitive Rice Varieties Display Differential Methylome Flexibility under Salt Stress. PLoS ONE 2015, 10, e0124060. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Dabi, M.; More, P.; Patel, K.; Jana, K.; Agarwal, P.K. Improved Shoot Regeneration, Salinity Tolerance and Reduced Fungal Susceptibility in Transgenic Tobacco Constitutively Expressing PR-10a Gene. Front. Plant Sci. 2016, 7, 217–230. [Google Scholar] [CrossRef] [PubMed]
Determinations | Units | Value |
---|---|---|
EC | dS m−1 | 0.78 |
Total soluble salts (TSS) | meq/L | 7.8 |
Carbonates | meq/L | Nil |
Bicarbonates | meq/L | 5.5 |
Chlorides | meq/L | 2.1 |
Sulphates | meq/L | 0.2 |
Calcium + magnesium | meq/L | 4.4 |
Sodium | meq/L | 3.4 |
Residual adsorption ratio (SAR) | - | 2.30 |
Residual sodium carbonates (RSC) | meq/L | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarwar, G.; Sabah, N.U.; Tahir, M.A.; Manzoor, M.Z.; Seleiman, M.F.; Zia, M.A.; Mahmood, H.; Jamil, J.; Shah, I.; Lodhi, S.S.; et al. Enhancing the Growth and Quality of Alfalfa Fodder in Aridisols through Wise Utilization of Saline Water Irrigation, Adopting a Strategic Leaching Fraction Technique. Water 2024, 16, 2738. https://doi.org/10.3390/w16192738
Sarwar G, Sabah NU, Tahir MA, Manzoor MZ, Seleiman MF, Zia MA, Mahmood H, Jamil J, Shah I, Lodhi SS, et al. Enhancing the Growth and Quality of Alfalfa Fodder in Aridisols through Wise Utilization of Saline Water Irrigation, Adopting a Strategic Leaching Fraction Technique. Water. 2024; 16(19):2738. https://doi.org/10.3390/w16192738
Chicago/Turabian StyleSarwar, Ghulam, Noor Us Sabah, Mukkram Ali Tahir, Muhammad Zeeshan Manzoor, Mahmoud F. Seleiman, Muhammad Amir Zia, Hemat Mahmood, Johar Jamil, Ismail Shah, Sumaira Salahuddin Lodhi, and et al. 2024. "Enhancing the Growth and Quality of Alfalfa Fodder in Aridisols through Wise Utilization of Saline Water Irrigation, Adopting a Strategic Leaching Fraction Technique" Water 16, no. 19: 2738. https://doi.org/10.3390/w16192738
APA StyleSarwar, G., Sabah, N. U., Tahir, M. A., Manzoor, M. Z., Seleiman, M. F., Zia, M. A., Mahmood, H., Jamil, J., Shah, I., Lodhi, S. S., Parveen, G., Ali, H., & Ullah, I. (2024). Enhancing the Growth and Quality of Alfalfa Fodder in Aridisols through Wise Utilization of Saline Water Irrigation, Adopting a Strategic Leaching Fraction Technique. Water, 16(19), 2738. https://doi.org/10.3390/w16192738