Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Authors = Jingchen Zhang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1618 KiB  
Article
Multimodal Temporal Knowledge Graph Embedding Method Based on Mixture of Experts for Recommendation
by Bingchen Liu, Guangyuan Dong, Zihao Li, Yuanyuan Fang, Jingchen Li, Wenqi Sun, Bohan Zhang, Changzhi Li and Xin Li
Mathematics 2025, 13(15), 2496; https://doi.org/10.3390/math13152496 - 3 Aug 2025
Viewed by 294
Abstract
Knowledge-graph-based recommendation aims to provide personalized recommendation services to users based on their historical interaction information, which is of great significance for shopping transaction rates and other aspects. With the rapid growth of online shopping, the knowledge graph constructed from users’ historical interaction [...] Read more.
Knowledge-graph-based recommendation aims to provide personalized recommendation services to users based on their historical interaction information, which is of great significance for shopping transaction rates and other aspects. With the rapid growth of online shopping, the knowledge graph constructed from users’ historical interaction data now incorporates multiattribute information, including timestamps, images, and textual content. The information of multiple modalities is difficult to effectively utilize due to their different representation structures and spaces. The existing methods attempt to utilize the above information through simple embedding representation and aggregation, but ignore targeted representation learning for information with different attributes and learning effective weights for aggregation. In addition, existing methods are not sufficient for effectively modeling temporal information. In this article, we propose MTR, a knowledge graph recommendation framework based on mixture of experts network. To achieve this goal, we use a mixture-of-experts network to learn targeted representations and weights of different product attributes for effective modeling and utilization. In addition, we effectively model the temporal information during the user shopping process. A thorough experimental study on popular benchmarks validates that MTR can achieve competitive results. Full article
(This article belongs to the Special Issue Data-Driven Decentralized Learning for Future Communication Networks)
Show Figures

Figure 1

18 pages, 5712 KiB  
Article
A Fractional Fourier Transform-Based Channel Estimation and Equalization Algorithm for Mud Pulse Telemetry
by Jingchen Zhang, Zitong Sha, Lei Wan, Yishan Su, Jiang Zhu and Fengzhong Qu
J. Mar. Sci. Eng. 2025, 13(8), 1468; https://doi.org/10.3390/jmse13081468 - 31 Jul 2025
Viewed by 214
Abstract
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, [...] Read more.
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, this work proposes a fractional Fourier transform (FrFT)-based channel estimation and equalization method. Leveraging the energy aggregation of linear frequency-modulated signals in the fractional Fourier domain, the time delay and attenuation parameters of the multipath channel can be estimated accurately. Furthermore, a fractional Fourier domain equalizer is proposed to pre-filter the frequency-selective fading channel using fractionally spaced decision feedback equalization. The effectiveness of the proposed method is evaluated through a simulation analysis and field experiments. The simulation results demonstrate that this method can significantly reduce multipath effects, effectively control the impact of noise, and facilitate subsequent demodulation. The field experiment results indicate that the demodulation of real data achieves advanced data rate communication (over 12 bit/s) and a low bit error rate (below 0.5%), which meets engineering requirements in a 3000 m drilling system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 1237 KiB  
Article
β-1,3-Glucan Recognition Protein Can Inhibit the Proliferation of Bombyx mori Cytoplasmic Polyhedrosis Virus
by Yinong Zhang, Jiming Yan, Yukai Xie, Xiong Wang, Feifei Ren, Haixu Bian and Jingchen Sun
Insects 2025, 16(4), 431; https://doi.org/10.3390/insects16040431 - 19 Apr 2025
Viewed by 573
Abstract
Insects detect pathogens through their germ-line encoded pattern recognition receptors (PRRs). Among these, β-1,3-glucan recognition protein (βGRP) is a crucial PRR that specifically identifies pathogenic microorganisms and triggers innate immune signaling cascades. However, it remains unclear whether βGRP can detect viruses and protect [...] Read more.
Insects detect pathogens through their germ-line encoded pattern recognition receptors (PRRs). Among these, β-1,3-glucan recognition protein (βGRP) is a crucial PRR that specifically identifies pathogenic microorganisms and triggers innate immune signaling cascades. However, it remains unclear whether βGRP can detect viruses and protect the host from viral threats. In this study, using high-throughput sequencing technology, we observed a significant suppression of βGRP-3 in Bombyx mori during infection with the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV). Moreover, overexpression of βGRP-3 in BmN cell lines resulted in a reduction of BmCPV proliferation, whereas knockdown of βGRP-3 in BmN cells promoted BmCPV proliferation. These findings suggest that the βGRP family functions not only as anti-bacterial, antifungal, and anti-yeast PRRs but also as protectors against various harmful viruses in insects. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

17 pages, 3529 KiB  
Article
Centrifugation-Based Purification Protocol Optimization Enhances Structural Preservation of Nucleopolyhedrovirus Budded Virion Envelopes
by Yong Pan, Jiming Yan, Yinong Zhang, Jiasheng Lin, Zhiquan Liang and Jingchen Sun
Insects 2025, 16(4), 424; https://doi.org/10.3390/insects16040424 - 17 Apr 2025
Viewed by 1141
Abstract
The structural integrity of viral envelopes is a critical determinant of infectivity for enveloped viruses, directly influencing vector stability, functional accuracy of surface-displayed epitopes, and preservation of native conformational states required for membrane protein studies. However, conventional purification methods often disrupt envelope integrity [...] Read more.
The structural integrity of viral envelopes is a critical determinant of infectivity for enveloped viruses, directly influencing vector stability, functional accuracy of surface-displayed epitopes, and preservation of native conformational states required for membrane protein studies. However, conventional purification methods often disrupt envelope integrity and cause envelope proteins to lose their activity. Here, we systematically compared discontinuous, continuous, and optimized continuous sucrose density gradient centrifugation protocols for purifying Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Through cryo-EM, we demonstrated that our optimized continuous sucrose gradient protocol significantly increased the proportion of AcMNPV budded virions with intact envelopes from 36% to 81%, while preserving the metastable prefusion conformation of the fusion protein GP64. This advancement should prove useful for structural studies of viral envelope proteins and may enhance applications in gene therapy and vaccine development utilizing enveloped viruses. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

20 pages, 22222 KiB  
Article
Mechanisms of Surrounding Rock Failure and Control Measures When Main Roof Fractures Directly Above Gob-Side Entry in Thick Coal Seam
by Dongdong Chen, Jingchen Chang, Jun Zou, Chunyang Tian, Shengrong Xie, Jie Ni, Fangfang Guo, Zhixuan Zhang, Wenkang Zhao, Xiangyu Yang and Shikun Xing
Appl. Sci. 2025, 15(8), 4284; https://doi.org/10.3390/app15084284 - 13 Apr 2025
Viewed by 387
Abstract
This study investigates the surrounding rock failure caused by the fracture line of the main roof above the gob-side roadway during fully mechanized top-coal caving mining in a 19 m thick coal seam. As mining progresses, stress concentration occurs in the roadway roof. [...] Read more.
This study investigates the surrounding rock failure caused by the fracture line of the main roof above the gob-side roadway during fully mechanized top-coal caving mining in a 19 m thick coal seam. As mining progresses, stress concentration occurs in the roadway roof. Furthermore, the fracture line of the main roof above the roadway poses a significant threat to the structural stability of the gob-side roadway, leading to the localized failure of the roof structure, which consequently affects the safe and efficient production of the mine. This study investigates the shear failure mechanism of the roadway top coal and analyzes the failure characteristics and stress evolution law of the surrounding rock when the main roof fracture line (MRFL) is located above the roadway through three integrated approaches: theoretical analysis, numerical simulation, and physical similarity modeling. To effectively mitigate damage to the top coal, it is proposed to implement a five-hole tray coupled with high-strength prestressed anchor cables for reinforcing the surrounding rock, while compact wooden piles in combination with single pillars are employed to strengthen the roadway support control measures. It is verified by field tests that these control methods significantly improve the stability of coal above the entry and greatly mitigate the likelihood of surrounding rock failure. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

26 pages, 17998 KiB  
Article
Triterpenes of Prunella vulgaris Inhibit Triple-Negative Breast Cancer by Regulating PTP1B/PI3K/AKT/mTOR and IL-24/CXCL12/CXCR4 Pathways
by Yamei Li, Hongshan Luo, Xiulian Lin, Linye Hua, Jiayao Wang, Jingchen Xie, Zhimin Zhang, Zhe Shi, Minjie Li, Qiuxian Peng, Limei Lin, Duanfang Liao and Bohou Xia
Int. J. Mol. Sci. 2025, 26(5), 1959; https://doi.org/10.3390/ijms26051959 - 24 Feb 2025
Cited by 1 | Viewed by 1001
Abstract
Triple-negative breast cancer (TNBC) is a type of breast cancer characterized by high molecular heterogeneity. Owing to the lack of effective therapeutic strategies, patients with TNBC have a poor prognosis. Prunella vulgaris L. has the effects of reducing swelling, dissolving knots and treating [...] Read more.
Triple-negative breast cancer (TNBC) is a type of breast cancer characterized by high molecular heterogeneity. Owing to the lack of effective therapeutic strategies, patients with TNBC have a poor prognosis. Prunella vulgaris L. has the effects of reducing swelling, dissolving knots and treating breast carbuncles and mammary rocks. Modern pharmacological studies have reported that it can effectively inhibit the growth of breast cancer. The main active antitumor components of Prunella vulgaris are triterpenoids (PVT); however, the role and potential mechanism of PVT in TNBC remain unexplored. Our study aimed to further explore the inhibitory effects of PVT on TNBC and the associated mechanism. The results showed that 19 compounds associated with PVT were identified, 9 of which were triterpenoids. The percentages of ursolic acid and oleanolic acid in PVT were 34.51% and 11.32%, respectively. Triterpenes of Prunella vulgaris significantly inhibited the proliferation, migration and invasion of MDA-MB-231 cells and promoted their apoptosis in a concentration-dependent manner. PVT could also effectively downregulate the mRNA and protein expression levels of Ptp1b, Pi3k, Akt and mtor and upregulate the mRNA and protein expression levels of Il-24 in MDA-MB-231 cells. In mice with tumors of TNBC, PVT significantly reduced tumor growth and the expression levels of PTP1B, CXCL12, CXCR4, PI3K, AKT, mTOR and other proteins in TNBC tumor tissue and upregulated the expression of IL-24. This study showed that PVT played an anti-TNBC role by regulating the PTP1B/PI3K/AKT/mTOR signaling pathway and the IL-24/CXCL12/CXCR4 signaling axis. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

21 pages, 15426 KiB  
Article
Numerical Simulation on Aerodynamic Noise of (K)TS Control Valves in Natural Gas Transmission and Distribution Stations in Southwest China
by Xiaobo Feng, Lu Yu, Hui Cao, Ling Zhang, Yizhi Pei, Jingchen Wu, Wenhao Yang and Junmin Gao
Energies 2025, 18(4), 968; https://doi.org/10.3390/en18040968 - 17 Feb 2025
Viewed by 548
Abstract
Fluid dynamic noise produced by eddy disturbances and friction along pipe walls poses a significant challenge in natural gas transmission and distribution stations. (K)TS control valves are widely used in natural gas transmission and distribution stations across Southwest China and are among the [...] Read more.
Fluid dynamic noise produced by eddy disturbances and friction along pipe walls poses a significant challenge in natural gas transmission and distribution stations. (K)TS control valves are widely used in natural gas transmission and distribution stations across Southwest China and are among the primary sources of noise in these facilities. In this study, a 3D geometric model of the (K)TS valve was developed, and the gas flow characteristics were simulated to analyze the gas flow field and sound field within the valve under varying pipeline flow velocities, outlet pressures, and valve openings. The results demonstrate that accurate calculations of the 3D valve model can be achieved with a grid cell size of 3.6 mm and a boundary layer set to 3. The noise-generating regions of the valve are concentrated around the throttle port, valve chamber, and valve inlet. The primary factors contributing to the aerodynamic noise include high gas flow velocity gradients, intense turbulence, rapid turbulent energy dissipation, and vortex formation and shedding within the valve. An increase in inlet flow velocity intensifies turbulence and energy dissipation inside the valve, while valve opening primarily influences the size of vortex rings in the valve chamber and throttle outlet. In contrast, outlet pressure exerts a relatively weak effect on the flow field characteristics within the valve. Under varying operating conditions, the noise directivity distribution remains consistent, exhibiting symmetrical patterns along the central axis of the flow channel and forming six-leaf or four-leaf flower shapes. As the distance from the monitoring point to the valve increases, noise propagation becomes more concentrated in the vertical direction of the valve. These findings provide a theoretical basis for understanding the mechanisms of aerodynamic noise generation within (K)TS control valves during natural gas transmission, and can also offer guidance for designing noise reduction solutions for valves. Full article
(This article belongs to the Topic Oil and Gas Pipeline Network for Industrial Applications)
Show Figures

Figure 1

22 pages, 8949 KiB  
Article
Flexural Response of UHPC Wet Joints Subjected to Vibration Load: Experimental and Theoretical Investigation
by Bin Zhao, Jun Yang, Dingsong Qin, Yang Zou, Zhongya Zhang, Kaijie Zhang and Jingchen Leng
Buildings 2025, 15(3), 496; https://doi.org/10.3390/buildings15030496 - 5 Feb 2025
Viewed by 756
Abstract
This study aims to investigate the flexural performance of ultra-high-performance concrete (UHPC) wet joints subjected to vibration load during the early curing period. The parameters investigated included vibration amplitude (1 mm, 3 mm, and 5 mm) and vibration stage (pouring—final setting, pouring—initial setting, [...] Read more.
This study aims to investigate the flexural performance of ultra-high-performance concrete (UHPC) wet joints subjected to vibration load during the early curing period. The parameters investigated included vibration amplitude (1 mm, 3 mm, and 5 mm) and vibration stage (pouring—final setting, pouring—initial setting, and initial setting—final setting). A novel simulated vibration test set-up was developed to reproduce the actual vibration conditions of the joints. The actuator’s reaction force time-history curves for the UHPC joint indicate that the reaction force is stable during the initial setting stage, and it increases linearly with time from the initial setting to the final setting, trending toward stability after 16 h of casting. Under the vibration of 3 Hz-5 mm, cracks measuring 14 cm × 0.2 mm emerge in the UHPC joint. It occurs during the stage from the initial setting to the final setting. The flexural performance of wet joint specimens after vibration was evaluated by the four-point flexural test, focusing on failure modes, load-deflection curves, and the interface opening. The results show that all specimens with joints exhibited bending failure, with cracks predominantly concentrated at the interfaces and the sides of the NC precast segment. The interfacial bond strength was reduced by vibrations of higher amplitude and frequency. Compared with the specimens without vibration, the flexural strength of specimens subjected to the vibration at 3 Hz-3 mm and 3 Hz-5 mm were decreased by 8% and 19%, respectively. However, as the amplitude and frequency decreased, the flexural strength of the specimens showed an increasing trend, as this type of vibration enhanced the compactness of the concrete. Additionally, the calculation model for the flexural strength of UHPC joints has been established, taking into account the impact of live-load vibration. The average ratio of theoretical calculation values to experimental values is 1.01, and the standard deviation is 0.04, the theoretical calculation value is relatively precise. Full article
Show Figures

Figure 1

16 pages, 9890 KiB  
Article
Noise Cancellation Method for Mud Pulse Telemetry Based on Discrete Fourier Transform
by Jingchen Zhang, Zitong Sha, Xingbin Tu, Zhujun Zhang, Jiang Zhu, Yan Wei and Fengzhong Qu
J. Mar. Sci. Eng. 2025, 13(1), 75; https://doi.org/10.3390/jmse13010075 - 4 Jan 2025
Cited by 1 | Viewed by 1048
Abstract
Mud pulse telemetry (MPT) systems are widely recognized for their effectiveness and are most commonly used to transmit downhole data to the surface in real time. These data facilitate the drilling process and make it more cost-efficient. In MPT, the mud channel presents [...] Read more.
Mud pulse telemetry (MPT) systems are widely recognized for their effectiveness and are most commonly used to transmit downhole data to the surface in real time. These data facilitate the drilling process and make it more cost-efficient. In MPT, the mud channel presents a challenging communication environment, primarily due to various sources of noises, with pump noise being the most dominant. In this paper, a noise cancellation method based on discrete Fourier transform (DFT) is proposed for demodulation under a low signal-to-noise ratio, eliminating the pump noise generated by two pumps with a single sensor during drilling. The method employs DFT to estimate the noise spectrum, subtracts noises from the received signal, and performs an inverse transformation to reconstruct the original signal estimation. The effectiveness of the proposed method is evaluated through a simulation analysis and field experiments. The simulation results indicate that the major components of multiple pump noises could be successfully eliminated. The field experiment results demonstrate that the demodulation of the received data achieves advanced data rate communication and a low bit error rate (BER) in a 3000 m drilling system. Full article
Show Figures

Figure 1

19 pages, 7479 KiB  
Article
Optimal Scheduling of Virtual Power Plants Under a Multiple Energy Sharing Framework Considering Joint Electricity and Carbon Trading
by Xue Li, Xuan Zhang, Jiannan Zhang, Wenlu Ji, Lifeng Wang, Xiaomin Lu and Jingchen Zhang
Inventions 2024, 9(6), 119; https://doi.org/10.3390/inventions9060119 - 2 Dec 2024
Cited by 2 | Viewed by 1491
Abstract
The virtual power plant (VPP) is an excellent approach for mitigating the intermittency and fluctuation of renewable energy sources. The present work proposes an optimal scheduling model for VPPs to leverage the benefits of joint electricity and carbon trading from the perspective of [...] Read more.
The virtual power plant (VPP) is an excellent approach for mitigating the intermittency and fluctuation of renewable energy sources. The present work proposes an optimal scheduling model for VPPs to leverage the benefits of joint electricity and carbon trading from the perspective of multiple energy-sharing mechanisms. First, the optimal sharing scheduling model of the electric, thermal, and hydrogen energy was established. The model integrates various components, including wind turbines, photovoltaic units, electrolytic cells, combined heat and power units, hydrogen-doped gas boilers, electric energy storage, thermal storage tanks, and hydrogen storage tanks. Then, the model incorporates a tiered carbon trading mechanism to minimize operating and trading costs. Finally, numerical results indicate that, compared with the independent operation of virtual power plants and the lack of joint electricity and carbon trading, the optimal scheduling scheme proposed in this paper reduces the total cost and carbon emissions of the three VPPs by 3.3% and 49.7%, respectively. This demonstrates that the proposed model can effectively reduce the total operating expenses of VPPs by facilitating the allocation of electric, thermal, and hydrogen energy and achieving low-carbon emission operations. Full article
Show Figures

Figure 1

26 pages, 4186 KiB  
Review
Research Progress on the Mechanism for Improving Glucose and Lipid Metabolism Disorders Using Phenolic Acid Components from Medicinal and Edible Homologous Plants
by Miao Sun, Zhimin Zhang, Jingchen Xie, Jiahui Yu, Suhui Xiong, Feng Xiang, Xinyi Ma, Chen Yang and Limei Lin
Molecules 2024, 29(20), 4790; https://doi.org/10.3390/molecules29204790 - 10 Oct 2024
Cited by 5 | Viewed by 2319
Abstract
Glucose and lipid metabolism disorders are the core pathological mechanism of a variety of metabolic diseases, and the incidence of related diseases is increasing year by year, which seriously threatens human life and health. Traditional Chinese medicine with medicinal and edible properties refers [...] Read more.
Glucose and lipid metabolism disorders are the core pathological mechanism of a variety of metabolic diseases, and the incidence of related diseases is increasing year by year, which seriously threatens human life and health. Traditional Chinese medicine with medicinal and edible properties refers to Chinese medicinal resources that have both medicinal and edible characteristics. Due to its safety and its health-promoting and medicinal functions, traditional Chinese medicine has received increasing attention in the development of functional health foods. Phenolic acids are important secondary metabolites that are ubiquitous in medicinal and edible homologous plants, and the regulation of glycolipid metabolism is an important activity and plays a key role in many diseases. In this paper, we focus on the alleviation of glycolipid disorders using MEHH phenolic acids, which regulate glucose metabolism and lipid metabolism, improve insulin resistance, inhibit inflammatory responses, alleviate oxidative stress, and regulate intestinal flora; additionally, we summarize the mechanism in order to provide a reference for MEHH phenolic acids in the treatment of glycolipid metabolism diseases. Full article
Show Figures

Graphical abstract

17 pages, 6795 KiB  
Article
Experimental and Modeling Analysis of Polypropylene Fiber Reinforced Concrete Subjected to Alkali Attack and Freeze–Thaw Cycling Effect
by Yuxiang Huang, Yongcheng Ji, Jingchen Wang, Zihao Wang, Bosong Yu and Siyu Zhang
Materials 2024, 17(18), 4529; https://doi.org/10.3390/ma17184529 - 14 Sep 2024
Cited by 3 | Viewed by 1881
Abstract
The durability of concrete materials in harsh environmental conditions, particularly in cold regions, has garnered significant attention in civil engineering research in recent years. Concrete structures in these areas are often damaged by the combined effects of alkali–silica reaction (ASR) and freeze–thaw cycles, [...] Read more.
The durability of concrete materials in harsh environmental conditions, particularly in cold regions, has garnered significant attention in civil engineering research in recent years. Concrete structures in these areas are often damaged by the combined effects of alkali–silica reaction (ASR) and freeze–thaw cycles, leading to structural cracks and significant safety hazards. Numerous studies have demonstrated that polypropylene fiber concrete exhibits excellent crack resistance and durability, making it promising for applications in cold regions. This study elucidates the impact of alkali content on concrete durability by comparing the mechanical properties and durability of different alkali–aggregate concretes. The principal experimental methodologies employed include freeze–thaw cycle experiments, which examine patterns of mass loss; fluctuations in the dynamic modulus of elasticity; and changes in mechanical properties before and after freeze cycles. The findings indicate that increased alkali content in concrete reduces its strength and durability. At 100% alkali–aggregate content, compressive strength decreases by 35.5%, flexural strength by 32.9%, mass loss increases by 35.85%, relative dynamic elastic modulus by 39.4%, and residual strength by 97.28%, indicating higher alkali content leads to diminished durability. Additionally, this paper introduces a constitutive damage model, validated by a strong correlation with experimental stress–strain curves, to effectively depict the stress–strain relationship of concrete under varying alkali contents. This research contributes to a broader understanding of concrete durability in cold climates and guides the selection of materials for sustainable construction in such environments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 11931 KiB  
Article
Machine Learning-Driven Discovery and Evaluation of Antimicrobial Peptides from Crassostrea gigas Mucus Proteome
by Jingchen Song, Kelin Liu, Xiaoyang Jin, Ke Huang, Shiwei Fu, Wenjie Yi, Yijie Cai, Ziniu Yu, Fan Mao and Yang Zhang
Mar. Drugs 2024, 22(9), 385; https://doi.org/10.3390/md22090385 - 26 Aug 2024
Cited by 2 | Viewed by 2716
Abstract
Marine antimicrobial peptides (AMPs) represent a promising source for combating infections, especially against antibiotic-resistant pathogens and traditionally challenging infections. However, traditional drug discovery methods face challenges such as time-consuming processes and high costs. Therefore, leveraging machine learning techniques to expedite the discovery of [...] Read more.
Marine antimicrobial peptides (AMPs) represent a promising source for combating infections, especially against antibiotic-resistant pathogens and traditionally challenging infections. However, traditional drug discovery methods face challenges such as time-consuming processes and high costs. Therefore, leveraging machine learning techniques to expedite the discovery of marine AMPs holds significant promise. Our study applies machine learning to develop marine AMPs, focusing on Crassostrea gigas mucus rich in antimicrobial components. We conducted proteome sequencing of C. gigas mucous proteins, used the iAMPCN model for peptide activity prediction, and evaluated the antimicrobial, hemolytic, and cytotoxic capabilities of six peptides. Proteomic analysis identified 4490 proteins, yielding about 43,000 peptides (8–50 amino acids). Peptide ranking based on length, hydrophobicity, and charge assessed antimicrobial potential, predicting 23 biological activities. Six peptides, distinguished by their high relative scores and promising biological activities, were chosen for bactericidal assay. Peptides P1 to P4 showed antimicrobial activity against E. coli, with P2 and P4 being particularly effective. All peptides inhibited S. aureus growth. P2 and P4 also exhibited significant anti-V. parahaemolyticus effects, while P1 and P3 were non-cytotoxic to HEK293T cells at detectable concentrations. Minimal hemolytic activity was observed for all peptides even at high concentrations. This study highlights the potent antimicrobial properties of naturally occurring oyster mucus peptides, emphasizing their low cytotoxicity and lack of hemolytic effects. Machine learning accurately predicted biological activity, showcasing its potential in peptide drug discovery. Full article
(This article belongs to the Special Issue Bioactive Proteins and Peptides from Marine Mollusks)
Show Figures

Figure 1

39 pages, 3668 KiB  
Review
Progress on the Anti-Inflammatory Activity and Structure–Efficacy Relationship of Polysaccharides from Medical and Edible Homologous Traditional Chinese Medicines
by Yuanyuan Zhang, Xiulian Lin, Li Xia, Suhui Xiong, Bohou Xia, Jingchen Xie, Yan Lin, Limei Lin and Ping Wu
Molecules 2024, 29(16), 3852; https://doi.org/10.3390/molecules29163852 - 14 Aug 2024
Cited by 12 | Viewed by 3924
Abstract
Medicinal food varieties developed according to the theory of medical and edible homologues are effective at preventing and treating chronic diseases and in health care. As of 2022, 110 types of traditional Chinese medicines from the same source of medicine and food have [...] Read more.
Medicinal food varieties developed according to the theory of medical and edible homologues are effective at preventing and treating chronic diseases and in health care. As of 2022, 110 types of traditional Chinese medicines from the same source of medicine and food have been published by the National Health Commission. Inflammation is the immune system’s first response to injury, infection, and stress. Chronic inflammation is closely related to many diseases such as atherosclerosis and cancer. Therefore, timely intervention for inflammation is the mainstay treatment for other complex diseases. However, some traditional anti-inflammatory drugs on the market are commonly associated with a number of adverse effects, which seriously affect the health and safety of patients. Therefore, the in-depth development of new safe, harmless, and effective anti-inflammatory drugs has become a hot topic of research and an urgent clinical need. Polysaccharides, one of the main active ingredients of medical and edible homologous traditional Chinese medicines (MEHTCMs), have been confirmed by a large number of studies to exert anti-inflammatory effects through multiple targets and are considered potential natural anti-inflammatory drugs. In addition, the structure of medical and edible homologous traditional Chinese medicines’ polysaccharides (MEHTCMPs) may be the key factor determining their anti-inflammatory activity, which makes the underlying the anti-inflammatory effects of polysaccharides and their structure–efficacy relationship hot topics of domestic and international research. However, due to the limitations of the current analytical techniques and tools, the structures have not been fully elucidated and the structure–efficacy relationship is relatively ambiguous, which are some of the difficulties in the process of developing and utilizing MEHTCMPs as novel anti-inflammatory drugs in the future. For this reason, this paper summarizes the potential anti-inflammatory mechanisms of MEHTCMPs, such as the regulation of the Toll-like receptor-related signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, NLRP3 signaling pathway, PI3K-AKT signaling pathway, PPAR-γ signaling pathway, Nrf2-HO-1 signaling pathway, and the regulation of intestinal flora, and it systematically analyzes and evaluates the relationships between the anti-inflammatory activity of MEHTCMPs and their structures. Full article
(This article belongs to the Collection Advances in Glycosciences)
Show Figures

Graphical abstract

19 pages, 5543 KiB  
Article
Experimental Study on the Gelling Properties of Nano-Silica Sol and Its Spontaneous Imbibition Grouting Mudstone
by Yiming Zhao, Zhe Xiang, Nong Zhang and Jingchen Dai
Processes 2024, 12(5), 983; https://doi.org/10.3390/pr12050983 - 12 May 2024
Cited by 2 | Viewed by 1583
Abstract
The low-permeability argillaceous rock mass is an unfavorable geological body commonly found in the construction process of underground engineering conditions such as roadways and tunnels. Due to the compact structure and low permeability of the rock mass, grouting with conventional materials cannot effectively [...] Read more.
The low-permeability argillaceous rock mass is an unfavorable geological body commonly found in the construction process of underground engineering conditions such as roadways and tunnels. Due to the compact structure and low permeability of the rock mass, grouting with conventional materials cannot effectively seal the micro-cracks of the rock mass. Based on the low efficiency of high-pressure grouting of nano-silica sol, this paper preliminarily explores the regularities and mechanism of grouting and pore sealing of low-permeability rock mass under the action of silica sol imbibition from the aspects of gelling properties of silica sol, core pore structure, imbibition law, and pore sealing characteristics. The results show the following: (1) The increase in particle size during the gel process reduced the injectability and wettability of the silica sol. The imbibition properties of silica sol were time-varying, and the deterioration inflection points of injectability and wettability appeared at 10 h and 9 h, respectively. (2) Catalyst, temperature, gel process, and rock mass permeability will affect the law of core imbibition, and the injectability and capillary force of the grouting material and rock mass will jointly affect the imbibition process of silica sol. (3) Silica sol imbibition changed the pore size distribution of the core, the pore volume above 50 nm decreased, and the pore volume below 50 nm increased. Silica sol has multiple effects such as filling, adsorption, and percolation in the imbibition process of the micro-pores of rock mass, and the adsorption and percolation of silica are related to the nano micro-pores. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop