Experimental Study on the Gelling Properties of Nano-Silica Sol and Its Spontaneous Imbibition Grouting Mudstone
Abstract
:1. Introduction
2. Experimental Design
2.1. Experimental Materials and Equipment
- (1)
- Nano Silica Sol
- (2)
- Artificial core
- (3)
- Experimental equipment
2.2. Test Method
2.2.1. Gelling Properties Test of Silica Sol
- (1)
- Gel time test of silica sol
- (2)
- Particle size distribution test of silica sol
- (3)
- Contact angle test
2.2.2. Test of the Imbibition Law of Silica Sol
2.2.3. Sealing Test of Rock Micro-Cracks by Imbibition Grouting
- (1)
- Macroscopic porosity test
- (2)
- Microscopic pore size distribution test
3. Results and Discussion
3.1. Gelling Properties of Silica Sol
3.1.1. Gel Time of Silica Sol
3.1.2. Time-Varying Characteristics of Injectability of Silica Sol in the Gel Process
3.1.3. Time-Varying Characteristics of Wettability of Silica Sol in the Gel Process
3.2. Characteristics of Imbibition Grouting under Multiple Factors
3.2.1. Effect of Catalyst and Temperature on Imbibition
3.2.2. Effect of the Gel Process on Imbibition
3.2.3. Effect of Rock Mass Permeability on Imbibition
3.3. Pore Closure Characteristics of Rock Mass by Imbibition Grouting
4. Conclusions
- (1)
- Adding a strong electrolyte-type catalyst can adjust the gel time of the silica sol, and the catalyst ratio was distributed exponentially with the gel time. The particle size growth during the gelation process of silica sol resulted in a significant change in the injectability and wettability of the silica sol. The deterioration inflection points of injectability and wettability appeared at 10 h and 9 h, respectively.
- (2)
- The catalyst and temperature can prolong or shorten the overall imbibition time by affecting the gel time. The injectability and capillary force of grouting material and rock mass will jointly affect the imbibition process of silica sol in the permeability range of 0.1–40 mD.
- (3)
- The imbibition of silica sol changes the pore size distribution of the core, the pore volume >50 nm decreased, and the pore volume <50 nm increased. The complex process of nano silica sol filling, adsorption, percolation, retention, and other complex processes to the micropores of the rock mass reduced the size of the main pores of the rock mass after imbibition to about 7 nm.
- (4)
- Limitations of research and future work: In this article, artificial low-permeability rocks were used instead of muddy rock masses to conduct experiments, without considering the impact of changes in physical properties such as rock swelling and mud formation after mud absorption on the infiltration of muddy rock masses.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, Y.; Han, L.; Guo, H.; Yang, S.; Su, S.; Liu, Z.; Wang, S. Mechanical and macro-microscopic failure characteristics of grouted mudstone considering grout dehydration effect. Eng. Fail. Anal. 2022, 142, 106662. [Google Scholar] [CrossRef]
- Tian, H.; Chen, W.; Tan, X.; Shu, X. Failure of rigid support and yielding support solution in large deformation tunnels: A case study. Eng. Fail. Anal. 2022, 140, 106598. [Google Scholar] [CrossRef]
- Koralegedara, N.H.; Maynard, J.B. Chemical, mineralogical and textural properties of the kope formation mudstones: How they affect its durability. Eng. Geol. 2017, 228, 312–322. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, S.; Jiang, D.; Liu, R.; Wu, J.; Jiang, X. Influence of wetting-drying cycles on the pore structure and mechanical properties of mudstone from simian mountain. Constr. Build. Mater. 2018, 191, 923–931. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, T.; Wang, B.; Li, C.; Ran, J.; Zhang, H. A case study on the deformation and failure mechanism of a soft rock mining roadway in the Xin’Shang’Hai No. 1 coal mine, China. Eng. Fail. Anal. 2023, 146, 107136. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Q.; Wang, S.; Subramanian, S.S.; Wang, L.; Qi, X. Formation and chemo-mechanical characteristics of weak clay interlayers between alternative mudstone and sandstone sequence of gently inclined landslides in Nanjiang, SW China. Bull. Eng. Geol. Environ. 2020, 79, 4701–4715. [Google Scholar] [CrossRef]
- Wang, L.L.; Bornert, M.; Héripré, E.; Chanchole, S.; Pouya, A.; Halphen, B. The mechanisms of deformation and damage of mudstones: A micro-scale study combining ESEM and DIC. Rock Mech. Rock Eng. 2015, 48, 1913–1926. [Google Scholar] [CrossRef]
- Liu, B.; Yang, H.; Karekal, S. Effect of water content on argillization of mudstone during the tunnelling process. Rock Mech. Rock Eng. 2020, 53, 799–813. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Liu, G.; Meng, X. Mechanism analysis and control technology of surrounding rock failure in deep soft rock roadway. Eng. Fail. Anal. 2020, 115, 104611. [Google Scholar] [CrossRef]
- Sandbak, L.A.; Rai, A.R. Ground support strategies at the turquoise ridge joint venture, Nevada. Rock Mech. Rock Eng. 2013, 46, 437–454. [Google Scholar] [CrossRef]
- Xiong, H. Geotechnical Engineering Chemistry; Science Press: Beijing, China, 2009. [Google Scholar]
- Kim, M.; Corapcioglu, M. Gel barrier formation in unsaturated porous media. J. Contam. Hydrol. 2002, 56, 75–98. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, M. Mechanical tests on a new non-cementitious grout, silica sol: A laboratory study of the material characteristics. Tunn. Undergr. Space Technol. 2006, 21, 554–560. [Google Scholar] [CrossRef]
- Kutzner, C. Grouting of Rock and Soil; Balkema: Rotterdam, The Netherlands, 1996. [Google Scholar]
- Liu, C. Development of Modified Silica Sol Grouting Material and Its Sand Grouting Simulation. Master’s Thesis, Tianjin University, Tianjin, China, 2018. [Google Scholar]
- Sögaard, C.; Funehag, J.; Abbas, Z. Silica sol as grouting material: A physio-chemical analysis. Nano Converg. 2018, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Q.; Feng, P. Grouting Technology of Underground Engineering; Science Press: Beijing, China, 2008. [Google Scholar]
- Funehag, J.; Gustafson, G. Design of grouting with silica sol in hard rock—New methods for calculation of penetration length, Part I. Tunn. Undergr. Space Technol. 2008, 23, 1–8. [Google Scholar] [CrossRef]
- Funehag, J.; Gustafson, G. Design of grouting with silica sol in hard rock—New design criteria tested in the field, Part II. Tunn. Undergr. Space Technol. 2008, 23, 9–17. [Google Scholar] [CrossRef]
- Butrón, C.; Gustafson, G.; Fransson, Å.; Funehag, J. Drip sealing of tunnels in hard rock: A new concept for the design and evaluation of permeation grouting. Tunn. Undergr. Space Technol. 2010, 25, 114–121. [Google Scholar] [CrossRef]
- Wang, Q.C.; Li, H.; Zhu, N. Research on water plugging with nanoscale grunting material and high-property concrete in slope shaft. Coal Min. Technol. 2013, 18, 97–108. [Google Scholar] [CrossRef]
- Holter, K.; Hognestad, H. Modern pre-injection in underground construction with rapid-setting microcements and colloidal silica—Applications in conventional and TBM-tunnelling. Geomech. Tunn. 2012, 5, 49–56. [Google Scholar] [CrossRef]
- Date, K.; Narita, N.; Yokota, Y.; Takuji, Y.; Sakamaki, S.; Kashiwaya, M. Pre-grouting and chemical injection for preserving groundwater environment and safe tunnelling. In World Tunnel Congress, Underground: The Way to the Future; Taylor & Francis Group: Geneva, Switzerland, 2013. [Google Scholar]
- Pan, D.; Hong, K.; Fu, H.; Zhou, J.; Zhang, N.; Lu, G. Influence characteristics and mechanism of fragmental size of broken coal mass on the injection regularity of silica sol grouting. Constr. Build. Mater. 2020, 269, 121251. [Google Scholar] [CrossRef]
- Pan, D.J. Study on Permeability Law of Silica Sol Grouting and Long-Term Consolidation Stability of Loose Coal; China University of Mining and Technology: Beijing, China, 2018. [Google Scholar]
- Guo, F.; Xie, Z.; Zhang, N.; Zhang, C.; Guo, H.; Cui, G.; Xiang, Z. Study on the Pore-throat structure characterization and nano grouting law of the Low-permeability mudstone based on NMR-RSM methods. Constr. Build. Mater. 2022, 342, 127913. [Google Scholar] [CrossRef]
- Sun, X.T.; Zhou, H.W.; Xue, D.J. Experimental study of spontaneous imbibition of low-permeability coal based on NMR. J. China Univ. Min. Technol. 2021, 50, 804–812. [Google Scholar] [CrossRef]
- Shun, L.; Jun, N.; Xianli, W.; Xiong, L.; Zhaoqin, H.; Desheng, Z.; Pengju, R. A dual-porous and dual-permeable media model for imbibition in tight sandstone reservoirs. J. Pet. Sci. Eng. 2020, 194, 107477. [Google Scholar] [CrossRef]
- Qiu, R.D.; Gu, C.Y.; Xue, P.Y.; Xu, D.X.; Gu, M. Imbibition characteristics of sandstone cores with different permeabilities in nanofluids. Pet. Explor. Dev. 2022, 49, 374–381. [Google Scholar] [CrossRef]
- Su, Z.; Wang, Z.; Zhang, D.; Wei, T. Study on rheological behavior and surface properties of epoxy resin chemical grouting material considering time variation. Materials 2019, 12, 3277. [Google Scholar] [CrossRef]
- Gong, J. Research on Osmotic Dynamics of Epoxy Slurry for Low-Permeability Bad Geological Body; Changjiang River Scientific Research Institute: Wuhan, China, 2018. [Google Scholar]
- Tamar, Y.; Sasson, Y. Examination of the regime controlling sol–gel based colloidal silica aggregation. J. Non-Cryst. Solids 2013, 380, 35–41. [Google Scholar] [CrossRef]
- Simonsson, I.; Sögaard, C.; Rambaran, M.; Abbas, Z. The specific co-ion effect on gelling and surface charging of silica nanoparticles: Speculation or reality? Colloid Surf. A 2018, 559, 334–341. [Google Scholar] [CrossRef]
- Metin, C.O.; Bonnecaze, R.T.; Lake, L.W.; Miranda, C.R.; Nguyen, Q.P. Aggregation kinetics and shear rheology of aqueous silica suspensions. Appl. Nanosci. 2014, 4, 169–178. [Google Scholar] [CrossRef]
- Metin, C.O.; Lake, L.W.; Miranda, C.R.; Nguyen, Q.P. Stability of aqueous silica nanoparticle dispersions. J. Nanoparticle Res. 2011, 13, 839–850. [Google Scholar] [CrossRef]
- Yang, K. Diagenesis of Carboniferous Batamayineshan Formation Volcanic Reservoir in Eastern Junggar Basin. Ph.D. Thesis, Jilin University, Changchun, China, 2019. [Google Scholar]
- Holtta, P.; Lahtinen, M.; Hakanen, M.; Lehto, J.; Juhola, P. The influence of groundwater on the stability of silica colloids. Mater. Res. Soc. 2009, 1193, 437. [Google Scholar] [CrossRef]
- Pedrotti, M.; Wong, C.; El Mountassir, G.; Lunn, R. An analytical model for the control of silica grout penetration in natural groundwater systems. Tunn. Undergr. Space Technol. 2017, 70, 105–113. [Google Scholar] [CrossRef]
- He, Z.; Wang, L.G.; Liu, B. Theory and Application of Grouting in Rock Mass; Geological Press: Beijing, China, 2006. [Google Scholar]
- Cui, J.J.; Cui, X.Q. Grouting Technology of Tunnel and Underground Engineering; China Construction Industry Press: Beijing, China, 2011. [Google Scholar]
- Pan, D.; Zhang, N.; Xie, Z.; Feng, X.; Kong, Y. Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones. Materials 2016, 9, 940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C. Study on the Diffusion Law of Nano Slurry Based on Three-Dimensional Characterization of Coal-Measure Mudstone Pores and Fractures. Master’s Thesis, China University of Mining and Technology, Beijing, China, 2019. [Google Scholar]
- Fu, T.-F.; Xu, T.; Heap, M.J.; Meredith, P.G.; Yang, T.-H.; Mitchell, T.M.; Nara, Y. Analysis of capillary water imbibition in sandstone via a combination of nuclear magnetic resonance imaging and numerical DEM modeling. Eng. Geol. 2021, 285, 106070. [Google Scholar] [CrossRef]
- Xu, L.; Li, Q.; Myers, M.; Tan, Y. Effects of bedding direction on brine imbibition in Lower Shaximiao tight sandstone: An NMR analysis. J. Pet. Sci. Eng. 2022, 210, 110006. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, T.; Hu, Z. Exploration of damage evolution in marble due to lateral unloading using nuclear magnetic resonance. Eng. Geol. 2018, 244, 75–85. [Google Scholar] [CrossRef]
- Golsanami, N.; Sun, J.; Zhang, Z. A review on the applications of the nuclear magnetic resonance (NMR) technology for investigating fractures. J. Appl. Geophys. 2016, 133, 30–38. [Google Scholar] [CrossRef]
- Zhai, C.; Wu, S.; Liu, S.; Qin, L.; Xu, J. Experimental study on coal pore structure deterioration under freeze–thaw cycles. Environ. Earth Sci. 2017, 76, 507. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, D.; Pan, Z.; Yao, Y.; Li, J.; Qiu, Y. Petrophysical characterization of Chinese coal cores with heat treatment by nuclear magnetic resonance. Fuel 2013, 108, 292–302. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Yan, T. Geological and hydrogeological controls on the accumulation of coalbed methane in the Weibei field, southeastern Ordos Basin. Int. J. Coal Geol. 2014, 121, 148–159. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Zheng, K.; Liu, Y.; Huang, W.; Zhou, J.; Cui, D. Reverse filling cementitious materials based on dense packing: The concept and application. Powder Technol. 2020, 359, 152–160. [Google Scholar] [CrossRef]
- Chai, Z.; Liu, X.; Yang, P.; Guo, R.; Yang, Z. Experimental study on physical properties of silica soil and grouting modified mudstone. Chin. J. Rock Mech. Eng. 2021, 40 (Suppl. S1), 2682–2691. [Google Scholar]
pH | Density (g/cm3) | Average Particle Size (nm) | SiO2 Concentration (%) | Na2O Concentration (%) |
---|---|---|---|---|
9.55 | 1.203 | 9.6 | 30% | 0.31 |
Permeability (mD) | Measured Permeability (mD) | Height (mm) | Diameter (mm) | Porosity (%) |
---|---|---|---|---|
0.1 | 0.11 | 49.66 | 25.4 | 4.21 |
1 | 1.08 | 50.44 | 24.88 | 6.19 |
20 | 21.41 | 50.35 | 25.27 | 8.71 |
40 | 39.13 | 50.14 | 25.34 | 10.11 |
Experimental Equipment | Model Number | Function and Testing Content |
---|---|---|
Nanoparticle size analyzer | Zetasizer Nano ZSE | Measurement of particle size distribution in the process of silica sol gel |
Contact angle analyzer | DSA100 | Test the contact angle between silica sol and mudstone to characterize wettability |
Specific surface area and pore size analyzer | TriStarII3020 | Test the pore size distribution of rocks before and after silica sol imbibition |
Thermostatic water bath | HH-6 | Maintain consistent temperature of silica sol during the testing process |
Low-field NMR | MacroMR12-150H-I | Test the pore size distribution at the macro and micro scales of rock cores |
Vacuum pressure saturation device | ZYB-Ⅱ | Perform saturation water treatment on the rock core |
Dehydrator | DHG-9003 | Drying the core to calculate porosity |
Category | d95/nm | 3d95/nm | R3d95/% | |
---|---|---|---|---|
Silica sol | 0 h | 17.59 | 52.77 | 51.38 |
2 h | 168 | 504 | 44.53 | |
4 h | 178 | 534 | 44.36 | |
6 h | 219 | 657 | 43.56 | |
8 h | 341 | 1023 | 41.47 | |
10 h | 2366 | 7098 | 29.41 | |
Micro-fine cement | 16,262 | 48,787 | 19.2 | |
Ordinary cement | 58,561 | 175,684 | 9.18 |
Time/h | Right CA/° | Left CA/° | Average CA/° | Photo | Time/h | Right CA/° | Left CA/° | Average CA/° | Photo |
---|---|---|---|---|---|---|---|---|---|
1 | 26.27 | 27.19 | 28.21 | 3 | 33.89 | 37.15 | 37.80 | ||
33.69 | 32.20 | 41.12 | 39.13 | ||||||
22.40 | 27.50 | 37.15 | 38.35 | ||||||
5 | 47.23 | 45.58 | 51.35 | 7 | 67.20 | 63.44 | 61.51 | ||
60.44 | 63.44 | 74.36 | 59.49 | ||||||
47.44 | 43.96 | 57.38 | 47.16 | ||||||
8 | 65.94 | 74.44 | 63.44 | 9 | 82.28 | 76.43 | 84.02 | ||
60.46 | 55.01 | 83.93 | 82.19 | ||||||
61.03 | 63.75 | 91.17 | 88.09 | ||||||
9.5 | 91.17 | 90.20 | 94.06 | 10 | 100.71 | 98.62 | 99.74 | ||
96.01 | 96.23 | 102.89 | 95.10 | ||||||
97.13 | 93.63 | 100.01 | 101.11 |
Rock Core/mD | Original Porosity/% | Final Porosity/% | Reduction /% | Reduction Rate/% |
---|---|---|---|---|
0.1 | 4.21 | 4.06 | 0.15 | 3.56 |
1 | 6.19 | 5.92 | 0.27 | 4.36 |
20 | 8.71 | 7.86 | 0.85 | 9.76 |
40 | 10.11 | 9.89 | 0.22 | 2.18 |
Rock Cores | >50 nm | <50 nm | |||
---|---|---|---|---|---|
Pore Volume (×103 cm3/g) | Percentage (%) | Pore Volume (×103 cm3/g) | Percentage (%) | ||
0.1 mD | Before imbibition | 2.07 | 16.28 | 10.62 | 83.72 |
After imbibition | 1.01 | 7.96 | 11.63 | 92.04 | |
1 mD | Before imbibition | 4.43 | 28.92 | 10.88 | 71.08 |
After imbibition | 1.49 | 10.4 | 12.8 | 89.6 | |
20 mD | Before imbibition | 3.92 | 24.66 | 11.97 | 75.34 |
After imbibition | 1.08 | 8.85 | 11.17 | 91.15 | |
40 mD | Before imbibition | 5.45 | 31.97 | 11.6 | 68.03 |
After imbibition | 2.77 | 17.93 | 12.69 | 82.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Xiang, Z.; Zhang, N.; Dai, J. Experimental Study on the Gelling Properties of Nano-Silica Sol and Its Spontaneous Imbibition Grouting Mudstone. Processes 2024, 12, 983. https://doi.org/10.3390/pr12050983
Zhao Y, Xiang Z, Zhang N, Dai J. Experimental Study on the Gelling Properties of Nano-Silica Sol and Its Spontaneous Imbibition Grouting Mudstone. Processes. 2024; 12(5):983. https://doi.org/10.3390/pr12050983
Chicago/Turabian StyleZhao, Yiming, Zhe Xiang, Nong Zhang, and Jingchen Dai. 2024. "Experimental Study on the Gelling Properties of Nano-Silica Sol and Its Spontaneous Imbibition Grouting Mudstone" Processes 12, no. 5: 983. https://doi.org/10.3390/pr12050983
APA StyleZhao, Y., Xiang, Z., Zhang, N., & Dai, J. (2024). Experimental Study on the Gelling Properties of Nano-Silica Sol and Its Spontaneous Imbibition Grouting Mudstone. Processes, 12(5), 983. https://doi.org/10.3390/pr12050983