Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (540)

Search Parameters:
Authors = Jiao Wei

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2073 KiB  
Article
Physiological Mechanisms of the Enhanced UV-B Radiation Triggering Plant-Specific Peroxidase-Mediated Antioxidant Defences
by Yijia Gao, Ling Wei, Chenyu Jiang, Shaopu Shi, Jiabing Jiao, Hassam Tahir, Minjie Qian and Kaibing Zhou
Antioxidants 2025, 14(8), 957; https://doi.org/10.3390/antiox14080957 - 4 Aug 2025
Viewed by 141
Abstract
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and [...] Read more.
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and quantitative fluorescence PCR validation, this study preliminarily elucidated the physiological mechanisms of plant-specific peroxidase (POD) in responding to enhanced UV-B radiation stress. Enhanced UV-B treatment significantly inhibited biological tissue growth, particularly during the rapid growth stage. At this stage, the treatment exhibited higher malondialdehyde (MDA) content, indicating increased oxidative stress due to the accumulation of reactive oxygen species (ROS). Despite the inhibition in growth, the treatment showed improvements in the accumulation of organic nutrients as well as the contents of abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). Additionally, an increase in POD activity and lignin content was observed in the treatment, especially during the middle period of the rapid growth period. Transcriptome analysis revealed that two POD multigene family members, LOC123198833 and LOC123225298, were significantly upregulated under enhanced UV-B radiation, which was further validated through qPCR. In general, enhanced UV-B radiation triggered a defence response in biological tissue by upregulating POD genes, which can effectively help to scavenge excess ROS. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

15 pages, 3705 KiB  
Article
Mechanical Properties and Modification Mechanism of Thermosetting Polyurethane-Modified Asphalt
by Wei Zhuang, Tingting Ding, Chuanqin Pang, Xuwang Jiao, Litao Geng and Min Sun
Coatings 2025, 15(8), 912; https://doi.org/10.3390/coatings15080912 - 4 Aug 2025
Viewed by 146
Abstract
To study the mechanical properties and modification mechanism of thermosetting polyurethane (PU)-modified asphalt, the effects of polyurethane dosage on the workability of polyurethane-modified asphalt were analyzed by means of rotational viscosity tests. The mechanical properties of polyurethane-modified asphalt with different polyurethane dosages were [...] Read more.
To study the mechanical properties and modification mechanism of thermosetting polyurethane (PU)-modified asphalt, the effects of polyurethane dosage on the workability of polyurethane-modified asphalt were analyzed by means of rotational viscosity tests. The mechanical properties of polyurethane-modified asphalt with different polyurethane dosages were explored using tensile tests and dynamic mechanical analysis (DMA). In addition, the thermodynamic behavior and micromorphology of polyurethane-modified asphalt were also thoroughly investigated using the test results of differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The results showed that PU obtained the optimum workability when the polyurethane dose was 50%: at 120 min, its rotational viscosity was 1005 cp, which was lower than 2800 cp (40% PU) and 760 cp (60% PU). Additionally, the results of fracture elongation and fracture strength indicated that the PU-modified asphalt had good flexibility and strength. Compared with base asphalt, the tensile strength of 50% PU-modified asphalt increased by 509%, which was significantly higher than 157% (40% PU) and more balanced than 897% (60% PU) in terms of strength and flexibility. Added PU can significantly improve the elasticity of asphalt at high temperatures, while increasing the proportion of asphalt adhesive components, enhancing the deformation ability and temperature stability of asphalt. As the dose of PU increases, the interface between asphalt and PU blended more fully, and the surface became smoother. When the dose of PU was 50% or more, the interface between asphalt and PU was well integrated with a smooth and flat surface, forming a more uniform and stable cross-linked network structure. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

23 pages, 2295 KiB  
Review
Advances in Interfacial Engineering and Structural Optimization for Diamond Schottky Barrier Diodes
by Shihao Lu, Xufang Zhang, Shichao Wang, Mingkun Li, Shuopei Jiao, Yuesong Liang, Wei Wang and Jing Zhang
Materials 2025, 18(15), 3657; https://doi.org/10.3390/ma18153657 - 4 Aug 2025
Viewed by 229
Abstract
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant [...] Read more.
Diamond, renowned for its exceptional electrical, physical, and chemical properties, including ultra-wide bandgap, superior hardness, high thermal conductivity, and unparalleled stability, serves as an ideal candidate for next-generation high-power and high-temperature electronic devices. Among diamond-based devices, Schottky barrier diodes (SBDs) have garnered significant attention due to their simple architecture and superior rectifying characteristics. This review systematically summarizes recent advances in diamond SBDs, focusing on both metal–semiconductor (MS) and metal–interlayer–semiconductor (MIS) configurations. For MS structures, we critically analyze the roles of single-layer metals (including noble metals, transition metals, and other metals) and multilayer metals in modulating Schottky barrier height (SBH) and enhancing thermal stability. However, the presence of interface-related issues such as high densities of surface states and Fermi level pinning often leads to poor control of the SBH, limiting device performance and reliability. To address these challenges and achieve high-quality metal/diamond interfaces, researchers have proposed various interface engineering strategies. In particular, the introduction of interfacial layers in MIS structures has emerged as a promising approach. For MIS architectures, functional interlayers—including high-k materials (Al2O3, HfO2, SnO2) and low-work-function materials (LaB6, CeB6)—are evaluated for their efficacy in interface passivation, barrier modulation, and electric field control. Terminal engineering strategies, such as field-plate designs and surface termination treatments, are also highlighted for their role in improving breakdown voltage. Furthermore, we emphasize the limitations in current parameter extraction from current–voltage (I–V) properties and call for a unified new method to accurately determine SBH. This comprehensive analysis provides critical insights into interface engineering strategies and evaluation protocols for high-performance diamond SBDs, paving the way for their reliable deployment in extreme conditions. Full article
Show Figures

Graphical abstract

15 pages, 1987 KiB  
Article
Threshold Effects of Straw Returning Amounts on Bacterial Colonization in Black Soil
by Genzhu Wang, Wei Qin, Zhe Yin, Ziyuan Zhou, Jian Jiao, Xiaohong Xu, Yu Zhang and Xing Han
Microorganisms 2025, 13(8), 1797; https://doi.org/10.3390/microorganisms13081797 - 31 Jul 2025
Viewed by 237
Abstract
Straw returning (ST) significantly improves soil quality and profoundly impacts soil microorganisms. However, the effects of different ST application amounts on the soil bacterial community remain unclear, and more studies on optimal ST application amounts are warranted. This study aimed to investigate the [...] Read more.
Straw returning (ST) significantly improves soil quality and profoundly impacts soil microorganisms. However, the effects of different ST application amounts on the soil bacterial community remain unclear, and more studies on optimal ST application amounts are warranted. This study aimed to investigate the bacterial diversity and composition, as well as physicochemical properties, of soil in a corn field with 5-year ST amounts of 0, 3, 4.5, 5, and 6 t/hm2, respectively. The results indicated that ST significantly reduced soil bulk density and increased soil pH and nutrients. Meanwhile, ST had a significant effect on the bacterial composition, and the bacterial diversity increased significantly after ST. The relative abundance of Proteobacteria and Acidobacteria increased dramatically, whereas that of Actinobacteria significantly decreased after ST. The amount of ST had threshold effects on soil physicochemical properties and the dominant bacterial phyla. Moreover, the co-occurrence networks indicated that bacterial stability first increased and then decreased with the increase in ST amounts. Soil organic carbon and total nitrogen concentrations were the main drivers of bacterial diversity, whereas soil pH and total nitrogen concentrations were the main drivers of bacterial composition. This study strengthens the fact that ST amounts have threshold effects on the soil physicochemical properties and soil microorganisms, and ST amounts of 3–5 t/hm2 were appropriate. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 6495 KiB  
Article
Fractal Characterization of Pore Structures in Marine–Continental Transitional Shale Gas Reservoirs: A Case Study of the Shanxi Formation in the Ordos Basin
by Jiao Zhang, Wei Dang, Qin Zhang, Xiaofeng Wang, Guichao Du, Changan Shan, Yunze Lei, Lindong Shangguan, Yankai Xue and Xin Zhang
Energies 2025, 18(15), 4013; https://doi.org/10.3390/en18154013 - 28 Jul 2025
Viewed by 353
Abstract
Marine–continental transitional shale is a promising unconventional gas reservoir, playing an increasingly important role in China’s energy portfolio. However, compared to marine shale, research on marine–continental transitional shale’s fractal characteristics of pore structure and complete pore size distribution remains limited. In this work, [...] Read more.
Marine–continental transitional shale is a promising unconventional gas reservoir, playing an increasingly important role in China’s energy portfolio. However, compared to marine shale, research on marine–continental transitional shale’s fractal characteristics of pore structure and complete pore size distribution remains limited. In this work, high-pressure mercury intrusion, N2 adsorption, and CO2 adsorption techniques, combined with fractal geometry modeling, were employed to characterize the pore structure of the Shanxi Formation marine–continental transitional shale. The shale exhibits generally high TOC content and abundant clay minerals, indicating strong hydrocarbon-generation potential. The pore size distribution is multi-modal: micropores and mesopores dominate, contributing the majority of the specific surface area and pore volume, whereas macropores display a single-peak distribution. Fractal analysis reveals that micropores have high fractal dimensions and structural regularity, mesopores exhibit dual-fractal characteristics, and macropores show large variations in fractal dimension. Characteristics of pore structure is primarily controlled by TOC content and mineral composition. These findings provide a quantitative basis for evaluating shale reservoir quality, understanding gas storage mechanisms, and optimizing strategies for sustainable of oil and gas development in marine–continental transitional shales. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

15 pages, 6637 KiB  
Article
Toxic Effects of Povidone-Iodine on Macrobrachium rosenbergii: Concentration-Dependent Responses in Oxidative Stress, Immunosuppression, and Recovery Potential
by Tianhui Jiao, Yakun Wang, Jie Wei, Sikai Xu, Qiaoyan Zhou, Xidong Mu and Lingyun Yu
Animals 2025, 15(15), 2196; https://doi.org/10.3390/ani15152196 - 25 Jul 2025
Viewed by 236
Abstract
Povidone-iodine (PVP-I), a widely used aquaculture disinfectant, remains poorly understood in terms of sublethal toxicity and damage reversibility. This study employed Macrobrachium rosenbergii as the model organism to evaluate the acute toxicity and sublethal effects of PVP-I through a 4-day exposure experiment followed [...] Read more.
Povidone-iodine (PVP-I), a widely used aquaculture disinfectant, remains poorly understood in terms of sublethal toxicity and damage reversibility. This study employed Macrobrachium rosenbergii as the model organism to evaluate the acute toxicity and sublethal effects of PVP-I through a 4-day exposure experiment followed by a 7-day depuration period. Acute toxicity tests enabled the determination of 24–96 h median lethal concentrations (LC50), with the 96 h LC50 being 5.67 mg/L and the safe concentration (SC) being 1.37 mg/L. Based on this, three sublethal concentrations (1.14, 1.89, and 2.84 mg/L) were tested over a 4-day exposure followed by a 7-day depuration period. Investigated endpoints included gill ultrastructure, apoptosis, and antioxidant and immune-related gene expression. Subacute exposure at 1.89 and 2.84 mg/L induced mitochondrial vacuolization, upregulated apoptosis-related genes (Cyt-c, Caspase-3, Bok), and downregulated antioxidant gene expression (SOD, CAT, GSH-Px). The high-concentration group also showed sustained Toll-like receptor (Toll) gene overexpression and acid phosphatase (ACP) gene suppression. After depuration, antioxidant gene expression normalized; however, apoptotic markers in gill tissue remained impaired. Overall, high PVP-I concentrations cause irreversible gill damage via mitochondrial-mediated apoptosis, whereas lower concentrations (≤1.14 mg/L) allow for greater recovery. These results offer crucial toxicodynamic insights for safer PVP-I use and risk assessment in M. rosenbergii aquaculture. Full article
(This article belongs to the Special Issue Ecotoxicology in Aquatic Animals: 2nd Edition)
Show Figures

Figure 1

20 pages, 18517 KiB  
Article
A Highly Sensitive Low-Temperature N-Butanol Gas Sensor Based on a Co-Doped MOF-ZnO Nanomaterial Under UV Excitation
by Yinzhong Liu, Xiaoshun Wei, Yun Guo, Lingchao Wang, Hui Guo, Qingjie Wang, Yiyu Qiao, Xiaotao Zhu, Xuechun Yang, Lingli Cheng and Zheng Jiao
Sensors 2025, 25(14), 4480; https://doi.org/10.3390/s25144480 - 18 Jul 2025
Viewed by 384
Abstract
Volatile organic compounds (VOCs) are presently posing a rather considerable threat to both human health and environmental sustainability. Among these, n-butanol is commonly identified as bringing potential hazards to environmental integrity and individual health. This study presents the creation of a highly sensitive [...] Read more.
Volatile organic compounds (VOCs) are presently posing a rather considerable threat to both human health and environmental sustainability. Among these, n-butanol is commonly identified as bringing potential hazards to environmental integrity and individual health. This study presents the creation of a highly sensitive n-butanol gas sensor utilizing cobalt-doped zinc oxide (ZnO) derived from a metal–organic framework (MOF). A series of x-Co/MOF-ZnO (x = 1, 3, 5, 7 wt%) nanomaterials with varying Co ratios were generated using the homogeneous co-precipitation method and assessed for their gas-sensing performances under a low operating temperature (191 °C) and UV excitation (220 mW/cm2). These findings demonstrated that the 5-Co/MOF-ZnO sensor presented the highest oxygen vacancy (Ov) concentration and the largest specific surface area (SSA), representing the optimal reactivity, selectivity, and durability for n-butanol detection. Regarding the sensor’s response to 100 ppm n-butanol under UV excitation, it achieved a value of 1259.06, 9.80 times greater than that of pure MOF-ZnO (128.56) and 2.07 times higher than that in darkness (608.38). Additionally, under UV illumination, the sensor achieved a rapid response time (11 s) and recovery rate (23 s). As a strategy to transform the functionality of ZnO-based sensors for n-butanol gas detection, this study also investigated potential possible redox reactions occurring during the detection process. Full article
(This article belongs to the Special Issue New Sensors Based on Inorganic Material)
Show Figures

Figure 1

31 pages, 1572 KiB  
Review
Metabolic Dysfunction-Associated Steatotic Liver Disease: From a Very Low-Density Lipoprotein Perspective
by Yan Chen, Kaiwen Lei, Yanglong Liu, Jianshen Liu, Kunhua Wei, Jiao Guo and Zhengquan Su
Biomolecules 2025, 15(7), 990; https://doi.org/10.3390/biom15070990 - 11 Jul 2025
Viewed by 681
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by excessive accumulation of triglycerides and other lipids within liver cells and is closely associated with cardiovascular disease and metabolic syndrome. Very low-density lipoprotein (VLDL) is a lipoprotein synthesized and secreted by the liver and [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by excessive accumulation of triglycerides and other lipids within liver cells and is closely associated with cardiovascular disease and metabolic syndrome. Very low-density lipoprotein (VLDL) is a lipoprotein synthesized and secreted by the liver and is primarily responsible for transporting triglycerides from the liver to peripheral tissues. Therefore, there is a strong association between MASLD and VLDL. Studies have found that excess production and abnormal metabolism of VLDL can lead to elevated blood triglyceride levels, which in turn promote fat deposition in the liver, leading to MASLD. During the pathophysiological process of MASLD, adipokines and inflammatory mediators secreted by adipose tissue can affect the metabolic network of the liver, further aggravating VLDL metabolic disorders. This paper reviews the effects of VLDL synthesis and metabolism on the development of MASLD, including the changes in VLDL structure and composition, the biosynthesis of VLDL, and the mechanism of underlying VLDL-associated damage, in an attempt to elucidate the intricate crosstalk between MASLD and VLDL, in order to provide new perspectives and methods for the prevention and treatment of related diseases. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

13 pages, 849 KiB  
Article
Beyond Pairwise Interactions: How Other Species Regulate Competition Between Two Plants?
by Wang-Xin Cheng, Wei Xue, Jie-Jie Jiao, Hao-Ming Yuan, Lin-Xuan He, Xiao-Mei Zhang, Tao Xu and Fei-Hai Yu
Plants 2025, 14(13), 2018; https://doi.org/10.3390/plants14132018 - 1 Jul 2025
Viewed by 264
Abstract
A plant species in a community often grows with some other plant species. While many studies have assessed interspecific interactions between two target plant species, few have considered the impacts of the other plant species (e.g., the third, fourth, and fifth plant species) [...] Read more.
A plant species in a community often grows with some other plant species. While many studies have assessed interspecific interactions between two target plant species, few have considered the impacts of the other plant species (e.g., the third, fourth, and fifth plant species) on these interactions. To assess the impacts, we grew one seedling of each of the five herbaceous plant species that are common in China (Cynodon dactylon, Plantago asiatica, Taraxacum mongolicum, Nepeta cataria, and Leonurus japonicus) alone (no competition) or with one seedling of one, two, three, or four of the other species. The presence of a neighbor plant generally reduced the growth of the target species, suggesting that the interspecific relationships were mostly competitive. The presence of other neighbor species (the third, fourth, and fifth species) could alter the interspecific interactions between two target species, but such effects varied depending on both the identity of the target species and the identity of the other species. Additionally, the effects of the third species depended little on the presence of the fourth and fifth species. We conclude that interspecific interactions between two plant species are commonly regulated by the presence of other species, facilitating species coexistence. However, our findings do not support the idea that the impacts of the fourth and fifth species on interactions among three plant species are common. This study highlights the complex interactions among multiple plant species within a community and also the importance of including these high-order interactions when modelling community dynamics and species coexistence. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

1 pages, 111 KiB  
Retraction
RETRACTED: Jiao et al. Application Research of CFD-MOEA/D Optimization Algorithm in Large-Scale Reservoir Flood Control Scheduling. Processes 2022, 10, 2318
by Hongbo Jiao, Huaibin Wei, Qi Yang and Min Li
Processes 2025, 13(7), 2081; https://doi.org/10.3390/pr13072081 - 1 Jul 2025
Viewed by 201
Abstract
The Journal retracts the article titled “Application Research of CFD-MOEA/D Optimization Algorithm in Large-scale Reservoir Flood Control Scheduling” [...] Full article
15 pages, 4884 KiB  
Article
Influence of Cable Spacing on Flame Interaction and Combustion Characteristics of Parallel Thermoplastic Cables
by Rongshui Qin, Xiangxiang Zhang, Yuyao Li, Jinchao Wei, Chao Ding and Yan Jiao
Fire 2025, 8(7), 258; https://doi.org/10.3390/fire8070258 - 30 Jun 2025
Viewed by 357
Abstract
Cable fires pose significant risks to electrical infrastructures, and cable spacing plays a crucial role in influencing fire propagation behaviors. In this study, the combustion characteristics of two parallel thermoplastic cables under varying spacing conditions were systematically investigated through controlled experiments. Key parameters, [...] Read more.
Cable fires pose significant risks to electrical infrastructures, and cable spacing plays a crucial role in influencing fire propagation behaviors. In this study, the combustion characteristics of two parallel thermoplastic cables under varying spacing conditions were systematically investigated through controlled experiments. Key parameters, including flame merging behavior, flame morphology, mass loss rate, flame spread rate, flame temperature, and radiant heat flux, were analyzed. The results revealed that cable spacing critically affects flame interaction, with three distinct flame merging modes—continuous merging, intermittent merging, and non-merging—identified as spacing increases. A critical spacing of 2.5 mm was found, at which the flame spread rate and mass loss rate reached their maximum, approximately 1.7 times higher than that of a single cable. At intermediate spacings (2.5–12.5 mm), enhanced flame interaction and radiative feedback significantly intensified combustion, leading to higher flame temperatures and radiant heat peaks. Conversely, insufficient oxygen supply at zero spacing and reduced flame interaction at large spacings (15 mm) resulted in diminished combustion efficiency. These findings highlight the importance of cable spacing as a key design parameter for mitigating fire hazards in electrical installations, providing valuable insights for fire safety engineering and risk assessment. Full article
(This article belongs to the Special Issue Cable and Wire Fires)
Show Figures

Figure 1

18 pages, 4883 KiB  
Article
A Pilot-Scale Study on Cross-Tube Ozone Catalytic Oxidation of Biochemical Tailwater in an Industrial Park in Suzhou (China)
by Pengyu Wei, Kangping Cui, Shijie Sun and Jiao Wang
Water 2025, 17(13), 1953; https://doi.org/10.3390/w17131953 - 29 Jun 2025
Viewed by 339
Abstract
Aiming at the defects of the low mass transfer efficiency and large floor space of the traditional ozone process, a cross-tube ozone catalytic oxidation pilot plant was designed and developed. By implementing lateral aeration and a modular series configuration, the gas–liquid mass transfer [...] Read more.
Aiming at the defects of the low mass transfer efficiency and large floor space of the traditional ozone process, a cross-tube ozone catalytic oxidation pilot plant was designed and developed. By implementing lateral aeration and a modular series configuration, the gas–liquid mass transfer pathways were optimized, achieving a hydraulic retention time of 25 min and maintaining an ozone dosage of 43 mg/L, which significantly improved the ozone utilization efficiency. During the pilot operation in an industrial park in Suzhou, Anhui Province, the average COD removal efficiency of the device for the actual biochemical tail water (COD 82.5~29.7 mg/L) reached 35.47%, and the effluent concentration was stably lower than 50 mg/L, which meets the stricter discharge standard. The intermediate products in the system were also analyzed by liquid chromatography–mass spectrometry (LC-MS), and the key pollutants were selected for degradation path analysis. Compared to the original tower process in the park, the ozone dosage was reduced by 46%, the reaction residence time was reduced by 60%, and the cost of water treatment was reduced to 0.067 USD, which is both economical and applicable to engineering. This process provides an efficient and low-cost solution for the deep treatment of wastewater in industrial parks, and has a broad engineering application prospect. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 1579 KiB  
Article
Probability Analysis of Overtopping During Construction Period of Dam Based on Improved Interval Non-Probabilistic Reliability
by Xinyan Guo, Zongkun Li, Wei Ge, Fuheng Ma, Yadong Zhang, Heqiang Sun, Yutie Jiao and Jianyou Wang
Appl. Sci. 2025, 15(13), 7242; https://doi.org/10.3390/app15137242 - 27 Jun 2025
Viewed by 431
Abstract
Probabilistic analysis of overtopping is an important aspect of dam construction, and the uncertainty in the construction progress complicates the calculation of overtopping probabilities. Construction progress is significantly influenced by human factors, making it difficult to assign an accurate probability distribution. Although the [...] Read more.
Probabilistic analysis of overtopping is an important aspect of dam construction, and the uncertainty in the construction progress complicates the calculation of overtopping probabilities. Construction progress is significantly influenced by human factors, making it difficult to assign an accurate probability distribution. Although the interval non-probabilistic reliability (INPR) method can estimate the likelihood of events with unknown probability distributions, its calculation results for the overtopping probability have significant errors. To improve the rationality of the results, we developed a method that adopted flood frequency of the upstream flood level to correct the traditional INPR calculations, developing an improved model. Taking the Qianping Reservoir as an example, the overtopping probabilities for three construction schedules were calculated, and the results were compared with a flood routing calculation. The results indicated that the improved approach significantly improves the rationality of the calculations, and the results effectively reflected the impact of construction progress uncertainty on overtopping probabilities. Full article
Show Figures

Figure 1

20 pages, 3244 KiB  
Article
Thangka Element Semantic Segmentation with an Integrated Multi-Scale Attention Mechanism
by Tiejun Wang, Jiao Wu, Xiaoran Guo, Tianjiao Duan, Yanjiao Wei and Chaoyang Wu
Electronics 2025, 14(13), 2533; https://doi.org/10.3390/electronics14132533 - 23 Jun 2025
Viewed by 307
Abstract
Thangka images contain complex and interconnected elements that often share similar hues. Traditional segmentation algorithms struggle to capture fine details, which renders them poorly adaptable to this characteristic of Thangka images. Additionally, the highly saturated and high-contrast color features in Thangka images can [...] Read more.
Thangka images contain complex and interconnected elements that often share similar hues. Traditional segmentation algorithms struggle to capture fine details, which renders them poorly adaptable to this characteristic of Thangka images. Additionally, the highly saturated and high-contrast color features in Thangka images can induce issues such as “over-segmentation” or “edge misclassification” during the segmentation process. This paper proposes a semantic segmentation approach that integrates HRNet with a multi-scale convolutional attention mechanism to improve the accuracy of detail segmentation in Thangka imagery. A Coordinate Attention mechanism is integrated into the bottleneck section of HRNet to enhance the model’s perception of spatial and channel information. After feature extraction, a SENet module is appended to improve the model’s ability to adaptively adjust channel weights, whereas the HRNet framework is streamlined to optimize overall network efficiency. Moreover, an atrous convolutional attention mechanism module is used to capture and fuse multi-scale features from the processed feature maps, achieving more precise semantic segmentation. Compared with the original model, the modified model achieves a 32% reduction in parameter volume. Concurrently, the mIoU improves from 80.33% to 84.83% on the Thangka dataset and from 77.04% to 78.58% on the Cityscapes dataset. Full article
Show Figures

Figure 1

17 pages, 4596 KiB  
Article
OsMYBR1, a 1R-MYB Family Transcription Factor Regulates Starch Biosynthesis in Rice Endosperm
by Kunyong Huang, Long Chen, Guiai Jiao, Zheyan Ruan, Xinwei Li, Shaoqing Tang, Peisong Hu and Xiangjin Wei
Life 2025, 15(6), 962; https://doi.org/10.3390/life15060962 - 16 Jun 2025
Viewed by 560
Abstract
Starch is the primary component of the endosperm and plays a crucial role in rice quality. Although the enzymes involved in starch synthesis have been extensively studied, the transcription factors that regulate these enzymes remain largely unknown. Here, we identified a MYB family [...] Read more.
Starch is the primary component of the endosperm and plays a crucial role in rice quality. Although the enzymes involved in starch synthesis have been extensively studied, the transcription factors that regulate these enzymes remain largely unknown. Here, we identified a MYB family transcription factor, OsMYBR1, that regulates starch biosynthesis in rice. OsMYBR1 is highly expressed during endosperm development. Mutations of OsMYBR1 result in reduced grain thickness and a decrease in 1000-grain weight. The endosperm of osmybr1 mutants exhibit rounded and loosely packed starch granules, decreased amylose content, altered fine structure of amylopectin, and modified physicochemical properties. The analysis of RT-qPCR showed that the expression of several starch-synthesis enzyme-coding genes (SSEGs), including OsGBSSⅠ, OsAGPL1, OsAGPL2, OsBEⅡb, OsISA1, PHOL, and OsSSⅢa, is altered in osmybr1 mutants. Further experiments indicated that OsMYBR1 directly binds to the promoters of OsGBSSⅠ, OsAGPL1, OsAGPL2, OsISA1, OsBEⅡb, and PHOL, resulting in an increase in the expression of OsGBSSⅠ but a decrease in the expression of OsAGPL2, OsISA1, and OsSSⅢa. In contrast, OsMYBR1-overexpressing endosperm appears normal, with starch granule morphology, increased amylopectin content, and improved alkali spreading value, indicating enhanced rice eating and cooking quality (ECQ). These findings suggest that the overexpression of OsMYBR1 could be a promising strategy for improving rice ECQ. Full article
(This article belongs to the Special Issue Recent Advances in Crop Genetics and Breeding)
Show Figures

Figure 1

Back to TopTop