Metabolic Dysfunction-Associated Steatotic Liver Disease: From a Very Low-Density Lipoprotein Perspective
Abstract
1. Introduction
2. The Pathogenesis and Factors of MASLD from VLDL
2.1. Lipid Metabolism
2.2. Insulin Resistance
2.3. Oxidative Stress
2.4. Endoplasmic Reticulum Stress
2.5. Gut Microbiota
2.6. Bile Acid Metabolism
2.7. Mitochondrial Abnormalities
3. The Structure, Biosynthesis, and Influencing Factors of VLDL
3.1. Structural Composition of VLDL
3.2. Biogenesis and Assembly of VLDL
3.3. Factors Affecting VLDL
3.3.1. Impact of MTP
3.3.2. Effects of ApoB-100
3.3.3. Effects of ApoE
3.3.4. Impact of VLDLR
3.3.5. Other Factors
4. Targeted VLDL Delay the Development of MASLD
4.1. Preclinical Studies
4.1.1. Effect of TM6SF2 Gene Knockout on VLDL Lipidation
4.1.2. Effects of GLS1 Inhibition and mTORC1 Activation on VLDL Secretion
4.1.3. Regulation of VLDL Secretion by HNF4α
4.1.4. Inhibition of MDM2–ApoB Interaction
4.2. Clinical Exploration of Targeted VLDL Treatment Methods
4.3. VLDL Quantification: Traditional vs. Modern Approaches
4.3.1. Traditional Methods
4.3.2. Modern Approaches
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
English abbreviation | English full name |
MASLD | metabolic dysfunction-associated steatotic liver disease |
NAFLD | Nonalcoholic Fatty Liver Disease |
VLDL | very low-density lipoprotein |
FFAs | free fatty acids |
FATP2 | Fatty Acid Transport Protein 2 |
FATP5 | Fatty Acid Transport Protein 5 |
CD36 | Cluster of Differentiation 36 |
LCFAs | long-chain fatty acid |
FASN | fatty acid synthase |
DNL | de novo lipogenesis |
SREBP-1C | Sterol Regulatory Element Binding Protein-1C |
ChREBP | Carbohydrate Response Element Binding Protein |
FAO | fatty acid oxidation |
MTTP | microsomal triglyceride transfer protein |
ApoB100 | apolipoprotein B100 |
TGs | triglycerides |
IBD | inflammatory bowel disease |
AUP1 | Ancient Ubiquitous Protein 1 |
HNF4 α | hepatocyte nuclear factor 4 alpha |
VLDL-TG | very low-density lipoprotein-triglyceride |
CYP11B2 | Cytochrome P450 Family 11 Subfamily B Polypeptide 2 |
PKA | Protein Kinase A |
ERK1/2 | Extracellular Signal-Regulated Kinase 1/2 |
JAK-2 | Janus Kinase 2 |
PA | patchouli alcohol |
AD | Alzheimer’s Disease |
IDL | intermediate-density lipoprotein |
sdLDL | small dense low-density lipoprotein |
PPARα | peroxisome proliferator-activated receptor alpha |
CPT-1 | Carnitine Palmitoyltransferase 1 |
LDL | low-density lipoprotein |
VLDLR | low-density lipoprotein receptor |
LXR | Liver X Receptor |
IKKβ | Inhibitory κB Kinase β |
DES1 | Dihydroceramide Desaturase 1 |
OS | oxidative stress |
ROS | reactive oxygen species |
OA | oleic acid |
ATF4 | Activating Transcription Factor 4 |
UPR | Unfolded Protein Response |
GRP78 | glucose-regulated protein 78 |
NLRP3 | NACHT, LRR, and PYD Domains-containing Protein 3 |
IL-6 | Interleukin-6 |
TNF-α | Tumor Necrosis Factor Alpha |
FXR | Farnesoid X Receptor |
TGR5 | Takeda G protein-coupled receptor 5 |
MCD | methionine and choline deficient diet |
HDL | high-density lipoprotein |
CM | chylomicron |
ApoE | Apolipoprotein E |
HTG | hypertriglyceridemia |
pre-VLDL | pre-very low-density lipoprotein |
VTVs | VLDL transport vesicles |
ER | endoplasmic reticulum |
NEFAs | non-esterified fatty acids |
PC | Phosphatidylcholine |
CEs | cholesterol esters |
miRNAs | microRNAs |
IncRNAs | Long non-coding RNAs |
GLS1 | Glutaminase 1 |
mTORC1 | Mechanistic Target of Rapamycin Complex 1 |
ASOs | several antisense oligonucleotides |
TLR4 | toll-like receptor 4 |
BAs | bile acids |
LPS | lipopolysaccharide |
PLA2G12B | Phospholipase A2, Group XIIB |
TIAL1 | TIA1-like 1 |
HUR | Human antigen R |
CCVs | clathrin-coated vesicles |
TGN | trans-Golgi network |
SEC24B | Secretory Carrier Membrane Protein 24B |
SM | sphingomyelin |
PEMT | phosphatidylethanolamine N-methyltransferase |
PERK | protein kinase RNA-like endoplasmic reticulum kinase |
PCSK9 | proprotein converting enzyme subtype 9 |
NMR | nuclear magnetic resonance |
SphK2 | Sphingosine Kinase 2 |
CMA | Chaperone-Mediated Autophagy |
IRE1 | Inositol-Requiring Enzyme 1 |
References
- Qiu, P.; Wang, H.; Zhang, M.; Zhang, M.; Peng, R.; Zhao, Q.; Liu, J. FATP2-Targeted Therapies—A Role Beyond Fatty Liver Disease. Pharmacol. Res. 2020, 161, 105228. [Google Scholar] [CrossRef] [PubMed]
- Falcon, A.; Doege, H.; Fluitt, A.; Tsang, B.; Watson, N.; Kay, M.A.; Stahl, A. Fatp2 Is a Hepatic Fatty Acid Transporter and Peroxisomal Very Long-Chain Acyl-Coa Synthetase. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E384–E393. [Google Scholar] [CrossRef] [PubMed]
- Listenberger, L.L.; Han, X.; Lewis, S.E.; Cases, S.; Farese, R.V., Jr.; Ory, D.S.; Schaffer, J.E. Triglyceride Accumulation Protects against Fatty Acid-Induced Lipotoxicity. Proc. Natl. Acad. Sci. USA 2003, 100, 3077–3082. [Google Scholar] [CrossRef]
- Régnier, M.; Carbinatti, T.; Parlati, L.; Benhamed, F.; Postic, C. The Role of Chrebp in Carbohydrate Sensing and Nafld Development. Nat. Rev. Endocrinol. 2023, 19, 336–349. [Google Scholar] [CrossRef]
- Brocker, C.N.; Patel, D.P.; Velenosi, T.J.; Kim, D.; Yan, T.; Yue, J.; Li, G.; Krausz, K.W.; Gonzalez, F.J. Extrahepatic Pparα Modulates Fatty Acid Oxidation and Attenuates Fasting-Induced Hepatosteatosis in Mice. J. Lipid Res. 2018, 59, 2140–2152. [Google Scholar] [CrossRef] [PubMed]
- van Zwol, W.; van de Sluis, B.; Ginsberg, H.N.; Kuivenhoven, J.A. Vldl Biogenesis and Secretion: It Takes a Village. Circ. Res. 2024, 134, 226–244. [Google Scholar] [CrossRef]
- Perry, R.J.; Samuel, V.T.; Petersen, K.F.; Shulman, G.I. The Role of Hepatic Lipids in Hepatic Insulin Resistance and Type 2 Diabetes. Nature 2014, 510, 84–91. [Google Scholar] [CrossRef]
- Fabbrini, E.; Mohammed, B.S.; Magkos, F.; Korenblat, K.M.; Patterson, B.W.; Klein, S. Alterations in Adipose Tissue and Hepatic Lipid Kinetics in Obese Men and Women with Nonalcoholic Fatty Liver Disease. Gastroenterology 2008, 134, 424–431. [Google Scholar] [CrossRef]
- Liu, Y.; Manchekar, M.; Sun, Z.; Richardson, P.E.; Dashti, N. Apolipoprotein B-Containing Lipoprotein Assembly in Microsomal Triglyceride Transfer Protein-Deficient Mca-Rh7777 Cells. J. Lipid Res. 2010, 51, 2253–2264. [Google Scholar] [CrossRef]
- Taskinen, M.R.; Nikkilä, E.A.; Pelkonen, R.; Sane, T. Plasma Lipoproteins, Lipolytic Enzymes, and Very Low Density Lipoprotein Triglyceride Turnover in Cushing’s Syndrome. J. Clin. Endocrinol. Metab. 1983, 57, 619–626. [Google Scholar] [CrossRef]
- Giordano, R.; Picu, A.; Marinazzo, E.; D’Angelo, V.; Berardelli, R.; Karamouzis, I.; Forno, D.; Zinnà, D.; Maccario, M.; Ghigo, E.; et al. Metabolic and Cardiovascular Outcomes in Patients with Cushing’s Syndrome of Different Aetiologies During Active Disease and 1 Year after Remission. Clin. Endocrinol. 2011, 75, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Rainey, W.E.; Apolzan, J.W.; Francone, O.L.; Harris, R.B.; Bollag, W.B. Adrenal Cell Aldosterone Production Is Stimulated by Very-Low-Density Lipoprotein (Vldl). Endocrinology 2012, 153, 721–731. [Google Scholar] [CrossRef]
- Saha, S.; Bornstein, S.R.; Graessler, J.; Kopprasch, S. Very-Low-Density Lipoprotein Mediates Transcriptional Regulation of Aldosterone Synthase in Human Adrenocortical Cells through Multiple Signaling Pathways. Cell Tissue Res. 2012, 348, 71–80. [Google Scholar] [CrossRef]
- Han, S.K.; Baik, S.K.; Kim, M.Y. Non-Alcoholic Fatty Liver Disease: Definition and Subtypes. Clin. Mol. Hepatol. 2023, 29, S5–S16. [Google Scholar] [CrossRef] [PubMed]
- Manzano-Nunez, R.; Rivera-Esteban, J.; Navarro, J.; Bañares, J.; Sena, E.; Schattenberg, J.M.; Lazarus, J.V.; Curran, A.; Pericàs, J.M. Uncovering the Nafld Burden in People Living with Hiv from High- and Middle-Income Nations: A Meta-Analysis with a Data Gap from Subsaharan Africa. J. Int. AIDS Soc. 2023, 26, e26072. [Google Scholar] [CrossRef]
- Ong, J.P.; Younossi, Z.M. Epidemiology and Natural History of Nafld and Nash. Clin. Liver Dis. 2007, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T. Excess Triglycerides in Very Low-Density Lipoprotein (Vldl) Estimated from Vldl-Cholesterol Could Be a Useful Biomarker of Metabolic Dysfunction Associated Steatotic Liver Disease in Patients with Type 2 Diabetes. J. Atheroscler. Thromb. 2025, 32, 253–264. [Google Scholar] [CrossRef]
- Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Human Fatty Liver Disease: Old Questions and New Insights. Science 2011, 332, 1519–1523. [Google Scholar] [CrossRef]
- Kawano, Y.; Cohen, D.E. Mechanisms of Hepatic Triglyceride Accumulation in Non-Alcoholic Fatty Liver Disease. J. Gastroenterol. 2013, 48, 434–441. [Google Scholar] [CrossRef]
- Yao, Z.; Zhou, H.; Figeys, D.; Wang, Y.; Sundaram, M. Microsome-Associated Lumenal Lipid Droplets in the Regulation of Lipoprotein Secretion. Curr. Opin. Lipidol. 2013, 24, 160–170. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Koo, S.H. Nonalcoholic Fatty Liver Disease: Molecular Mechanisms for the Hepatic Steatosis. Clin. Mol. Hepatol. 2013, 19, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Baker, R.D.; Bhatia, T.; Zhu, L.; Baker, S.S. Pathogenesis of Nonalcoholic Steatohepatitis. Cell. Mol. Life Sci. CMLS 2016, 73, 1969–1987. [Google Scholar] [CrossRef]
- Li, P.; Chen, X.; Dong, M.; Luo, J.; Lu, S.; Chen, M.; Zhang, Y.; Zhou, H.; Jiang, H. Gut Inflammation Exacerbates High-Fat Diet Induced Steatosis by Suppressing Vldl-Tg Secretion through Hnf4α Pathway. Free Radic. Biol. Med. 2021, 172, 459–469. [Google Scholar] [CrossRef]
- Whalley, S.; Puvanachandra, P.; Desai, A.; Kennedy, H. Hepatology Outpatient Service Provision in Secondary Care: A Study of Liver Disease Incidence and Resource Costs. Clin. Med. 2007, 7, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Abe, R.A.M.; Masroor, A.; Khorochkov, A.; Prieto, J.; Singh, K.B.; Nnadozie, M.C.; Abdal, M.; Shrestha, N.; Mohammed, L. The Role of Vitamins in Non-Alcoholic Fatty Liver Disease: A Systematic Review. Cureus 2021, 13, e16855. [Google Scholar] [CrossRef]
- Marchesini, G.; Brizi, M.; Morselli-Labate, A.M.; Bianchi, G.; Bugianesi, E.; McCullough, A.J.; Forlani, G.; Melchionda, N. Association of Nonalcoholic Fatty Liver Disease with Insulin Resistance. Am. J. Med. 1999, 107, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Takaki, A.; Kawai, D.; Yamamoto, K. Multiple Hits, Including Oxidative Stress, as Pathogenesis and Treatment Target in Non-Alcoholic Steatohepatitis (Nash). Int. J. Mol. Sci. 2013, 14, 20704–20728. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Gao, W.; Guo, Z.; Wang, K.; Liu, S.; Duan, Z.; Chen, Y. Naringin Improves Lipid Metabolism in a Tissue-Engineered Liver Model of Nafld and the Underlying Mechanisms. Life Sci. 2021, 277, 119487. [Google Scholar] [CrossRef]
- Haas, M.E.; Attie, A.D.; Biddinger, S.B. The Regulation of Apob Metabolism by Insulin. Trends Endocrinol. Metab. TEM 2013, 24, 391–397. [Google Scholar] [CrossRef]
- Kim, D.H.; Zhang, T.; Lee, S.; Calabuig-Navarro, V.; Yamauchi, J.; Piccirillo, A.; Fan, Y.; Uppala, R.; Goetzman, E.; Dong, H.H. Foxo6 Integrates Insulin Signaling with Mtp for Regulating Vldl Production in the Liver. Endocrinology 2014, 155, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Allister, E.M.; Borradaile, N.M.; Edwards, J.Y.; Huff, M.W. Inhibition of Microsomal Triglyceride Transfer Protein Expression and Apolipoprotein B100 Secretion by the Citrus Flavonoid Naringenin and by Insulin Involves Activation of the Mitogen-Activated Protein Kinase Pathway in Hepatocytes. Diabetes 2005, 54, 1676–1683. [Google Scholar] [CrossRef] [PubMed]
- Karimian Pour, N.; Adeli, K. Insulin Silences Apolipoprotein B Mrna Translation by Inducing Intracellular Traffic into Cytoplasmic Rna Granules. Biochemistry 2011, 50, 6942–6950. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The Pi3k/Akt Pathway in Obesity and Type 2 Diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef]
- Khan, R.S.; Bril, F.; Cusi, K.; Newsome, P.N. Modulation of Insulin Resistance in Nonalcoholic Fatty Liver Disease. Hepatology 2019, 70, 711–724. [Google Scholar] [CrossRef]
- Biddinger, S.B.; Hernandez-Ono, A.; Rask-Madsen, C.; Haas, J.T.; Alemán, J.O.; Suzuki, R.; Scapa, E.F.; Agarwal, C.; Carey, M.C.; Stephanopoulos, G.; et al. Hepatic Insulin Resistance Is Sufficient to Produce Dyslipidemia and Susceptibility to Atherosclerosis. Cell Metab. 2008, 7, 125–134. [Google Scholar] [CrossRef]
- Quinn, W.J., 3rd; Wan, M.; Shewale, S.V.; Gelfer, R.; Rader, D.J.; Birnbaum, M.J.; Titchenell, P.M. Mtorc1 Stimulates Phosphatidylcholine Synthesis to Promote Triglyceride Secretion. J. Clin. Investig. 2017, 127, 4207–4215. [Google Scholar] [CrossRef]
- Zhang, S.; Li, G.; He, L.; Wang, F.; Gao, M.; Dai, T.; Su, Y.; Li, L.; Cao, Y.; Zheng, M.; et al. Sphingosine Kinase 2 Deficiency Impairs Vldl Secretion by Inhibiting Mtorc2 Phosphorylation and Activating Chaperone-Mediated Autophagy. Cell Death Differ. 2025. [Google Scholar] [CrossRef]
- Nagashimada, M.; Ota, T. Role of Vitamin E in Nonalcoholic Fatty Liver Disease. IUBMB Life 2019, 71, 516–522. [Google Scholar] [CrossRef]
- Park, E.; Wong, V.; Guan, X.; Oprescu, A.I.; Giacca, A. Salicylate Prevents Hepatic Insulin Resistance Caused by Short-Term Elevation of Free Fatty Acids In Vivo. J. Endocrinol. 2007, 195, 323–331. [Google Scholar] [CrossRef]
- Xia, Q.S.; Lu, F.E.; Wu, F.; Huang, Z.Y.; Dong, H.; Xu, L.J.; Gong, J. New Role for Ceramide in Hypoxia and Insulin Resistance. World J. Gastroenterol. 2020, 26, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of Nafld Development and Therapeutic Strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- Gonzalez, A.; Huerta-Salgado, C.; Orozco-Aguilar, J.; Aguirre, F.; Tacchi, F.; Simon, F.; Cabello-Verrugio, C. Role of Oxidative Stress in Hepatic and Extrahepatic Dysfunctions During Nonalcoholic Fatty Liver Disease (Nafld). Oxidative Med. Cell. Longev. 2020, 2020, 1617805. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, S.; Shao, Y.; Tang, L.; Zhang, C.; Tang, S.; Lu, H. Regulatory Role of Oxidative Stress in Retrorsine - Induced Apoptosis and Autophagy in Primary Rat Hepatocytes. Ecotoxicol. Environ. Saf. 2024, 279, 116515. [Google Scholar] [CrossRef]
- Spahis, S.; Delvin, E.; Borys, J.M.; Levy, E. Oxidative Stress as a Critical Factor in Nonalcoholic Fatty Liver Disease Pathogenesis. Antioxid. Redox Signal. 2017, 26, 519–541. [Google Scholar] [CrossRef] [PubMed]
- Ferro, D.; Baratta, F.; Pastori, D.; Cocomello, N.; Colantoni, A.; Angelico, F.; Del Ben, M. New Insights into the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Gut-Derived Lipopolysaccharides and Oxidative Stress. Nutrients 2020, 12, 2762. [Google Scholar] [CrossRef] [PubMed]
- Mangge, H.; Becker, K.; Fuchs, D.; Gostner, J.M. Antioxidants, Inflammation and Cardiovascular Disease. World J. Cardiol. 2014, 6, 462–477. [Google Scholar] [CrossRef]
- Li, J.; Wang, T.; Liu, P.; Yang, F.; Wang, X.; Zheng, W.; Sun, W. Hesperetin Ameliorates Hepatic Oxidative Stress and Inflammation Via the Pi3k/Akt-Nrf2-Are Pathway in Oleic Acid-Induced Hepg2 Cells and a Rat Model of High-Fat Diet-Induced Nafld. Food Funct. 2021, 12, 3898–3918. [Google Scholar] [CrossRef]
- Xia, M.; Wu, Z.; Wang, J.; Buist-Homan, M.; Moshage, H. The Coumarin-Derivative Esculetin Protects against Lipotoxicity in Primary Rat Hepatocytes via Attenuating Jnk-Mediated Oxidative Stress and Attenuates Free Fatty Acid-Induced Lipid Accumulation. Antioxidants 2023, 12, 1922. [Google Scholar] [CrossRef]
- Welters, H.J.; Tadayyon, M.; Scarpello, J.H.; Smith, S.A.; Morgan, N.G. Mono-Unsaturated Fatty Acids Protect against Beta-Cell Apoptosis Induced by Saturated Fatty Acids, Serum Withdrawal or Cytokine Exposure. FEBS Lett. 2004, 560, 103–108. [Google Scholar] [CrossRef]
- Sano, A.; Kakazu, E.; Hamada, S.; Inoue, J.; Ninomiya, M.; Iwata, T.; Tsuruoka, M.; Sato, K.; Masamune, A. Steatotic Hepatocytes Release Mature Vldl through Methionine and Tyrosine Metabolism in a Keap1-Nrf2-Dependent Manner. Hepatology 2021, 74, 1271–1286. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Zhou, S.; Bai, Y.; Che, Q.; Cao, H.; Guo, J.; Su, Z. Glucosamine Attenuates Alcohol-Induced Acute Liver Injury via Inhibiting Oxidative Stress and Inflammation. Curr. Res. Food Sci. 2024, 8, 100699. [Google Scholar] [CrossRef]
- Ajoolabady, A.; Kaplowitz, N.; Lebeaupin, C.; Kroemer, G.; Kaufman, R.J.; Malhi, H.; Ren, J. Endoplasmic Reticulum Stress in Liver Diseases. Hepatology 2023, 77, 619–639. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.S.; Kaufman, R.J. Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxid. Redox Signal. 2014, 21, 396–413. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Choe, S.S.; Shin, K.C.; Jang, H.; Lee, J.H.; Seong, J.K.; Back, S.H.; Kim, J.B. Endoplasmic Reticulum Stress Induces Hepatic Steatosis Via Increased Expression of the Hepatic Very Low-Density Lipoprotein Receptor. Hepatology 2013, 57, 1366–1377. [Google Scholar] [CrossRef]
- Glimcher, L.H.; Lee, A.H. From Sugar to Fat: How the Transcription Factor Xbp1 Regulates Hepatic Lipogenesis. Ann. N. Y. Acad. Sci. 2009, 1173 (Suppl. S1), E2–E9. [Google Scholar] [CrossRef]
- Ferré, P.; Foufelle, F. Srebp-1c Transcription Factor and Lipid Homeostasis: Clinical Perspective. Horm. Res. 2007, 68, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Kammoun, H.L.; Chabanon, H.; Hainault, I.; Luquet, S.; Magnan, C.; Koike, T.; Ferré, P.; Foufelle, F. Grp78 Expression Inhibits Insulin and Er Stress-Induced Srebp-1c Activation and Reduces Hepatic Steatosis in Mice. J. Clin. Investig. 2009, 119, 1201–1215. [Google Scholar] [CrossRef]
- Lu, X.; Huang, H.; Fu, X.; Chen, C.; Liu, H.; Wang, H.; Wu, D. The Role of Endoplasmic Reticulum Stress and Nlrp3 Inflammasome in Liver Disorders. Int. J. Mol. Sci. 2022, 23, 3528. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, K.; Hou, L.; Liao, J.; Zhang, H.; Han, Q.; Guo, J.; Li, Y.; Hu, L.; Pan, J.; et al. Endoplasmic Reticulum Stress Contributes to Pyroptosis through Nf-Κb/Nlrp3 Pathway in Diabetic Nephropathy. Life Sci. 2023, 322, 121656. [Google Scholar] [CrossRef]
- Wu, X.; Xu, N.; Li, M.; Huang, Q.; Wu, J.; Gan, Y.; Chen, L.; Luo, H.; Li, Y.; Huang, X.; et al. Protective Effect of Patchouli Alcohol against High-Fat Diet Induced Hepatic Steatosis by Alleviating Endoplasmic Reticulum Stress and Regulating Vldl Metabolism in Rats. Front. Pharmacol. 2019, 10, 1134. [Google Scholar] [CrossRef] [PubMed]
- Houghton, D.; Stewart, C.J.; Day, C.P.; Trenell, M. Gut Microbiota and Lifestyle Interventions in Nafld. Int. J. Mol. Sci. 2016, 17, 447. [Google Scholar] [CrossRef] [PubMed]
- Boulangé, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M.E. Impact of the Gut Microbiota on Inflammation, Obesity, and Metabolic Disease. Genome Med. 2016, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Wieland, A.; Frank, D.N.; Harnke, B.; Bambha, K. Systematic Review: Microbial Dysbiosis and Nonalcoholic Fatty Liver Disease. Aliment. Pharmacol. Ther. 2015, 42, 1051–1063. [Google Scholar] [CrossRef]
- Hooper, L.V.; Gordon, J.I. Commensal Host-Bacterial Relationships in the Gut. Science 2001, 292, 1115–1118. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial Ecology: Human Gut Microbes Associated with Obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Henao-Mejia, J.; Elinav, E.; Jin, C.; Hao, L.; Mehal, W.Z.; Strowig, T.; Thaiss, C.A.; Kau, A.L.; Eisenbarth, S.C.; Jurczak, M.J.; et al. Inflammasome-Mediated Dysbiosis Regulates Progression of Nafld and Obesity. Nature 2012, 482, 179–185. [Google Scholar] [CrossRef]
- Fang, J.; Yu, C.H.; Li, X.J.; Yao, J.M.; Fang, Z.Y.; Yoon, S.H.; Yu, W.Y. Gut Dysbiosis in Nonalcoholic Fatty Liver Disease: Pathogenesis, Diagnosis, and Therapeutic Implications. Front. Cell. Infect. Microbiol. 2022, 12, 997018. [Google Scholar] [CrossRef] [PubMed]
- Urdaneta, V.; Casadesús, J. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Front. Med. 2017, 4, 163. [Google Scholar] [CrossRef]
- Smirnova, E.; Muthiah, M.D.; Narayan, N.; Siddiqui, M.S.; Puri, P.; Luketic, V.A.; Contos, M.J.; Idowu, M.; Chuang, J.C.; Billin, A.N.; et al. Metabolic Reprogramming of the Intestinal Microbiome with Functional Bile Acid Changes Underlie the Development of Nafld. Hepatology 2022, 76, 1811–1824. [Google Scholar] [CrossRef]
- Lun, W.; Yan, Q.; Guo, X.; Zhou, M.; Bai, Y.; He, J.; Cao, H.; Che, Q.; Guo, J.; Su, Z. Mechanism of Action of the Bile Acid Receptor Tgr5 in Obesity. Acta Pharm. Sin. B 2024, 14, 468–491. [Google Scholar] [CrossRef]
- Mouzaki, M.; Wang, A.Y.; Bandsma, R.; Comelli, E.M.; Arendt, B.M.; Zhang, L.; Fung, S.; Fischer, S.E.; McGilvray, I.G.; Allard, J.P. Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease. PLoS ONE 2016, 11, e0151829. [Google Scholar] [CrossRef] [PubMed]
- Aranha, M.M.; Cortez-Pinto, H.; Costa, A.; da Silva, I.B.; Camilo, M.E.; de Moura, M.C.; Rodrigues, C.M. Bile Acid Levels Are Increased in the Liver of Patients with Steatohepatitis. Eur. J. Gastroenterol. Hepatol. 2008, 20, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, D.; Goossens, G.H.; Hermes, G.D.; Neis, E.P.; van der Beek, C.M.; Most, J.; Holst, J.J.; Lenaerts, K.; Kootte, R.S.; Nieuwdorp, M.; et al. Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial. Cell Metab. 2016, 24, 63–74. [Google Scholar] [CrossRef]
- Lei, Y.; Tang, L.; Chen, Q.; Wu, L.; He, W.; Tu, D.; Wang, S.; Chen, Y.; Liu, S.; Xie, Z.; et al. Disulfiram Ameliorates Nonalcoholic Steatohepatitis by Modulating the Gut Microbiota and Bile Acid Metabolism. Nat. Commun. 2022, 13, 6862. [Google Scholar] [CrossRef] [PubMed]
- Begriche, K.; Igoudjil, A.; Pessayre, D.; Fromenty, B. Mitochondrial Dysfunction in Nash: Causes, Consequences and Possible Means to Prevent It. Mitochondrion 2006, 6, 1–28. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S.; Wu, J.; Wang, Y. Mitochondrial Metabolic Dysfunction and Non-Alcoholic Fatty Liver Disease: New Insights from Pathogenic Mechanisms to Clinically Targeted Therapy. J. Transl. Med. 2023, 21, 510. [Google Scholar] [CrossRef]
- Amorim, R.; Magalhães, C.C.; Borges, F.; Oliveira, P.J.; Teixeira, J. From Non-Alcoholic Fatty Liver to Hepatocellular Carcinoma: A Story of (Mal)Adapted Mitochondria. Biology 2023, 12, 595. [Google Scholar] [CrossRef]
- Su, Z.; Guo, Y.; Huang, X.; Feng, B.; Tang, L.; Zheng, G.; Zhu, Y. Phytochemicals: Targeting Mitophagy to Treat Metabolic Disorders. Front. Cell Dev. Biol. 2021, 9, 686820. [Google Scholar] [CrossRef]
- Fromenty, B.; Roden, M. Mitochondrial Alterations in Fatty Liver Diseases. J. Hepatol. 2023, 78, 415–429. [Google Scholar] [CrossRef]
- Ramanathan, R.; Ali, A.H.; Ibdah, J.A. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2022, 23, 7280. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Du, W.; Li, Y.; Shi, C.; Hu, N.; Ma, S.; Wang, W.; Ren, J. Effects of Melatonin on Fatty Liver Disease: The Role of Nr4a1/DNA-Pkcs/P53 Pathway, Mitochondrial Fission, and Mitophagy. J. Pineal Res. 2024, 76, e12946. [Google Scholar] [CrossRef] [PubMed]
- DeBose-Boyd, R.A. Feedback Regulation of Cholesterol Synthesis: Sterol-Accelerated Ubiquitination and Degradation of Hmg Coa Reductase. Cell Res. 2008, 18, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, P.; Rutland, N.; Iyer, M.R. Targeting Sterol O-Acyltransferase/Acyl-Coa:Cholesterol Acyltransferase (Acat): A Perspective on Small-Molecule Inhibitors and Their Therapeutic Potential. J. Med. Chem. 2022, 65, 16062–16098. [Google Scholar] [CrossRef]
- Wu, N.; Li, R.Q.; Li, L. Soat1 Deficiency Attenuates Atherosclerosis by Regulating Inflammation and Cholesterol Transportation Via Ho-1 Pathway. Biochem. Biophys. Res. Commun. 2018, 501, 343–350. [Google Scholar] [CrossRef]
- Mitrofanova, A.; Merscher, S.; Fornoni, A. Kidney Lipid Dysmetabolism and Lipid Droplet Accumulation in Chronic Kidney Disease. Nat. Rev. Nephrol. 2023, 19, 629–645. [Google Scholar] [CrossRef]
- Sun, H.Y.; Chen, T.Y.; Tan, Y.C.; Wang, C.H.; Young, K.C. Sterol O-Acyltransferase 2 Chaperoned by Apolipoprotein J Facilitates Hepatic Lipid Accumulation Following Viral and Nutrient Stresses. Commun. Biol. 2021, 4, 564. [Google Scholar] [CrossRef]
- Noga, A.A.; Zhao, Y.; Vance, D.E. An Unexpected Requirement for Phosphatidylethanolamine N-Methyltransferase in the Secretion of Very Low Density Lipoproteins. J. Biol. Chem. 2002, 277, 42358–42365. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, B.; Jacobs, R.L.; Kennedy, B.; Francis, G.A.; Waddington, E.; Brosnan, J.T.; Vance, J.E.; Vance, D.E. Lack of Phosphatidylethanolamine N-Methyltransferase Alters Plasma Vldl Phospholipids and Attenuates Atherosclerosis in Mice. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1349–1355. [Google Scholar] [CrossRef]
- Vance, J.E.; Vance, D.E. The Role of Phosphatidylcholine Biosynthesis in the Secretion of Lipoproteins from Hepatocytes. Can. J. Biochem. Cell Biol. 1985, 63, 870–881. [Google Scholar] [CrossRef]
- Yao, Z.M.; Vance, D.E. The Active Synthesis of Phosphatidylcholine Is Required for Very Low Density Lipoprotein Secretion from Rat Hepatocytes. J. Biol. Chem. 1988, 263, 2998–3004. [Google Scholar] [CrossRef]
- Cole, L.K.; Vance, J.E.; Vance, D.E. Phosphatidylcholine Biosynthesis and Lipoprotein Metabolism. Biochim. Biophys. Acta 2012, 1821, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R. Introduction to Lipids and Lipoproteins. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Sundaram, M.; Zhong, S.; Bou Khalil, M.; Links, P.H.; Zhao, Y.; Iqbal, J.; Hussain, M.M.; Parks, R.J.; Wang, Y.; Yao, Z. Expression of Apolipoprotein C-Iii in Mca-Rh7777 Cells Enhances Vldl Assembly and Secretion under Lipid-Rich Conditions. J. Lipid Res. 2010, 51, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.G.; Robson, S.C.; Yao, Z. Lipoprotein Metabolism in Nonalcoholic Fatty Liver Disease. J. Biomed. Res. 2013, 27, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kohan, A.B. Apolipoprotein C-Iii: A Potent Modulator of Hypertriglyceridemia and Cardiovascular Disease. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 119–125. [Google Scholar] [CrossRef]
- Olofsson, S.O.; Borèn, J. Apolipoprotein B: A Clinically Important Apolipoprotein Which Assembles Atherogenic Lipoproteins and Promotes the Development of Atherosclerosis. J. Intern. Med. 2005, 258, 395–410. [Google Scholar] [CrossRef]
- Weisgraber, K.H. Apolipoprotein E: Structure-Function Relationships. Adv. Protein Chem. 1994, 45, 249–302. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q.; Wang, J. Topology of Human Apolipoprotein E3 Uniquely Regulates Its Diverse Biological Functions. Proc. Natl. Acad. Sci. USA 2011, 108, 14813–14818. [Google Scholar] [CrossRef]
- Hauser, P.S.; Narayanaswami, V.; Ryan, R.O. Apolipoprotein E: From Lipid Transport to Neurobiology. Prog. Lipid Res. 2011, 50, 62–74. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, X.Q.; Rall, S.C., Jr.; Taylor, J.M.; von Eckardstein, A.; Assmann, G.; Mahley, R.W. Overexpression and Accumulation of Apolipoprotein E as a Cause of Hypertriglyceridemia. J. Biol. Chem. 1998, 273, 26388–26393. [Google Scholar] [CrossRef]
- Shou, J.W.; Ma, J.; Wang, X.; Li, X.X.; Chen, S.C.; Kang, B.H.; Shaw, P.C. Free Cholesterol-Induced Liver Injury in Non-Alcoholic Fatty Liver Disease: Mechanisms and a Therapeutic Intervention Using Dihydrotanshinone I. Adv. Sci. 2025, 12, e2406191. [Google Scholar] [CrossRef]
- Van Herck, M.A.; Vonghia, L.; Francque, S.M. Animal Models of Nonalcoholic Fatty Liver Disease—A Starter’s Guide. Nutrients 2017, 9, 1072. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Wang, H.; Pan, X.; Little, P.J.; Xu, S.; Weng, J. Mouse Models of Nonalcoholic Fatty Liver Disease (Nafld): Pathomechanisms and Pharmacotherapies. Int. J. Biol. Sci. 2022, 18, 5681–5697. [Google Scholar] [CrossRef]
- Yao, Z.M.; Vance, D.E. Reduction in Vldl, but Not Hdl, in Plasma of Rats Deficient in Choline. Biochem. Cell Biol. 1990, 68, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, S.O.; Stillemark-Billton, P.; Asp, L. Intracellular Assembly of Vldl: Two Major Steps in Separate Cell Compartments. Trends Cardiovasc. Med. 2000, 10, 338–345. [Google Scholar] [CrossRef]
- Hrizo, S.L.; Gusarova, V.; Habiel, D.M.; Goeckeler, J.L.; Fisher, E.A.; Brodsky, J.L. The Hsp110 Molecular Chaperone Stabilizes Apolipoprotein B from Endoplasmic Reticulum-Associated Degradation (Erad). J. Biol. Chem. 2007, 282, 32665–32675. [Google Scholar] [CrossRef]
- Mobin, M.B.; Gerstberger, S.; Teupser, D.; Campana, B.; Charisse, K.; Heim, M.H.; Manoharan, M.; Tuschl, T.; Stoffel, M. The Rna-Binding Protein Vigilin Regulates Vldl Secretion through Modulation of Apob Mrna Translation. Nat. Commun. 2016, 7, 12848. [Google Scholar] [CrossRef]
- Zhang, Z.; Zong, C.; Jiang, M.; Hu, H.; Cheng, X.; Ni, J.; Yi, X.; Jiang, B.; Tian, F.; Chang, M.W.; et al. Hepatic Hur Modulates Lipid Homeostasis in Response to High-Fat Diet. Nat. Commun. 2020, 11, 3067. [Google Scholar] [CrossRef] [PubMed]
- Rustaeus, S.; Lindberg, K.; Stillemark, P.; Claesson, C.; Asp, L.; Larsson, T.; Borén, J.; Olofsson, S.O. Assembly of Very Low Density Lipoprotein: A Two-Step Process of Apolipoprotein B Core Lipidation. J. Nutr. 1999, 129, 463s–466s. [Google Scholar] [CrossRef]
- Pan, M.; Liang Js, J.S.; Fisher, E.A.; Ginsberg, H.N. The Late Addition of Core Lipids to Nascent Apolipoprotein B100, Resulting in the Assembly and Secretion of Triglyceride-Rich Lipoproteins, Is Independent of Both Microsomal Triglyceride Transfer Protein Activity and New Triglyceride Synthesis. J. Biol. Chem. 2002, 277, 4413–4421. [Google Scholar] [CrossRef]
- Chen, A.; Nguyen, K.; Jiang, X.; Yu, X.; Xie, Y.; Liu, W.; Davidson, N.O.; Ding, W.X.; Ni, H.M. Distinct yet Overlapping Functions of Vmp1 and Tmem41b in Modulating Hepatic Lipoprotein Secretion and Autophagy in Mash. bioRxiv 2025, preprint. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, A.; Ding, W.X.; Ni, H.M. Vmp1 Regulates Hepatic Lipoprotein Secretion and Nash Independent of Autophagy. Autophagy 2023, 19, 367–369. [Google Scholar] [CrossRef]
- Higgins, J.A. Evidence That During Very Low Density Lipoprotein Assembly in Rat Hepatocytes Most of the Triacylglycerol and Phospholipid Are Packaged with Apolipoprotein B in the Golgi Complex. FEBS Lett. 1988, 232, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Boström, K.; Borén, J.; Wettesten, M.; Sjöberg, A.; Bondjers, G.; Wiklund, O.; Carlsson, P.; Olofsson, S.O. Studies on the Assembly of Apo B-100-Containing Lipoproteins in Hepg2 Cells. J. Biol. Chem. 1988, 263, 4434–4442. [Google Scholar] [CrossRef]
- Rahim, A.; Nafi-valencia, E.; Siddiqi, S.; Basha, R.; Runyon, C.C.; Siddiqi, S.A. Proteomic Analysis of the Very Low Density Lipoprotein (Vldl) Transport Vesicles. J. Proteom. 2012, 75, 2225–2235. [Google Scholar] [CrossRef]
- Tiwari, S.; Siddiqi, S.; Siddiqi, S.A. Cideb Protein Is Required for the Biogenesis of Very Low Density Lipoprotein (Vldl) Transport Vesicle. J. Biol. Chem. 2013, 288, 5157–5165. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.M. The Role of Factors That Regulate the Synthesis and Secretion of Very-Low-Density Lipoprotein by Hepatocytes. Crit. Rev. Clin. Lab. Sci. 1998, 35, 461–487. [Google Scholar] [CrossRef]
- White, D.A.; Bennett, A.J.; Billett, M.A.; Salter, A.M. The Assembly of Triacylglycerol-Rich Lipoproteins: An Essential Role for the Microsomal Triacylglycerol Transfer Protein. Br. J. Nutr. 1998, 80, 219–229. [Google Scholar] [CrossRef]
- Takahashi, S.; Suzuki, J.; Kohno, M.; Oida, K.; Tamai, T.; Miyabo, S.; Yamamoto, T.; Nakai, T. Enhancement of the Binding of Triglyceride-Rich Lipoproteins to the Very Low Density Lipoprotein Receptor by Apolipoprotein E and Lipoprotein Lipase. J. Biol. Chem. 1995, 270, 15747–15754. [Google Scholar] [CrossRef]
- Wetterau, J.R.; Zilversmit, D.B. Purification and Characterization of Microsomal Triglyceride and Cholesteryl Ester Transfer Protein from Bovine Liver Microsomes. Chem. Phys. Lipids 1985, 38, 205–222. [Google Scholar] [CrossRef]
- Wetterau, J.R.; Aggerbeck, L.P.; Laplaud, P.M.; McLean, L.R. Structural Properties of the Microsomal Triglyceride-Transfer Protein Complex. Biochemistry 1991, 30, 4406–4412. [Google Scholar] [CrossRef] [PubMed]
- Bakillah, A.; El Abbouyi, A. The Role of Microsomal Triglyceride Transfer Protein in Lipoprotein Assembly: An Update. Front. Biosci. A J. Virtual Libr. 2003, 8, d294–d305. [Google Scholar] [CrossRef]
- Hussain, M.M.; Rava, P.; Walsh, M.; Rana, M.; Iqbal, J. Multiple Functions of Microsomal Triglyceride Transfer Protein. Nutr. Metab. 2012, 9, 14. [Google Scholar] [CrossRef]
- Hussain, M.M.; Bakillah, A.; Nayak, N.; Shelness, G.S. Amino Acids 430-570 in Apolipoprotein B Are Critical for Its Binding to Microsomal Triglyceride Transfer Protein. J. Biol. Chem. 1998, 273, 25612–25615. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Chen, Q.; Cui, K.; Chen, Q.; Li, X.; Xu, N.; Mai, K.; Ai, Q. Lipid Overload Impairs Hepatic Vldl Secretion Via Oxidative Stress-Mediated Pkcδ-Hnf4α-Mtp Pathway in Large Yellow Croaker (Larimichthys crocea). Free Radic. Biol. Med. 2021, 172, 213–225. [Google Scholar] [CrossRef]
- Hendriks, D.; Brouwers, J.F.; Hamer, K.; Geurts, M.H.; Luciana, L.; Massalini, S.; López-Iglesias, C.; Peters, P.J.; Rodríguez-Colman, M.J.; Chuva de Sousa Lopes, S.; et al. Engineered Human Hepatocyte Organoids Enable Crispr-Based Target Discovery and Drug Screening for Steatosis. Nat. Biotechnol. 2023, 41, 1567–1581. [Google Scholar] [CrossRef]
- Chan, L. Apolipoprotein B, the Major Protein Component of Triglyceride-Rich and Low Density Lipoproteins. J. Biol. Chem. 1992, 267, 25621–25624. [Google Scholar] [CrossRef] [PubMed]
- Avramoglu, R.K.; Qiu, W.; Adeli, K. Mechanisms of Metabolic Dyslipidemia in Insulin Resistant States: Deregulation of Hepatic and Intestinal Lipoprotein Secretion. Front. Biosci. A J. Virtual Libr. 2003, 8, 464–476. [Google Scholar] [CrossRef]
- Young, S.G. Recent Progress in Understanding Apolipoprotein B. Circulation 1990, 82, 1574–1594. [Google Scholar] [CrossRef]
- Gordon, D.A.; Jamil, H.; Sharp, D.; Mullaney, D.; Yao, Z.; Gregg, R.E.; Wetterau, J. Secretion of Apolipoprotein B-Containing Lipoproteins from Hela Cells Is Dependent on Expression of the Microsomal Triglyceride Transfer Protein and Is Regulated by Lipid Availability. Proc. Natl. Acad. Sci. USA 1994, 91, 7628–7632. [Google Scholar] [CrossRef]
- Lee, J.; Hegele, R.A. Abetalipoproteinemia and Homozygous Hypobetalipoproteinemia: A Framework for Diagnosis and Management. J. Inherit. Metab. Dis. 2014, 37, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Jin, U.H.; Kang, S.K.; Abekura, F.; Park, J.Y.; Kwon, K.M.; Suh, S.J.; Cho, S.H.; Ha, K.T.; Lee, Y.C.; et al. Monosialyl Ganglioside Gm3 Decreases Apolipoprotein B-100 Secretion in Liver Cells. J. Cell. Biochem. 2017, 118, 2168–2181. [Google Scholar] [CrossRef] [PubMed]
- Klemm, E.J.; Spooner, E.; Ploegh, H.L. Dual Role of Ancient Ubiquitous Protein 1 (Aup1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (Er) Protein Quality Control. J. Biol. Chem. 2011, 286, 37602–37614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zamani, M.; Thiele, C.; Taher, J.; Amir Alipour, M.; Yao, Z.; Adeli, K. Aup1 (Ancient Ubiquitous Protein 1) Is a Key Determinant of Hepatic Very-Low-Density Lipoprotein Assembly and Secretion. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 633–642. [Google Scholar] [CrossRef]
- Zannis, V.I.; Breslow, J.L.; Utermann, G.; Mahley, R.W.; Weisgraber, K.H.; Havel, R.J.; Goldstein, J.L.; Brown, M.S.; Schonfeld, G.; Hazzard, W.R.; et al. Proposed Nomenclature of Apoe Isoproteins, Apoe Genotypes, and Phenotypes. J. Lipid Res. 1982, 23, 911–914. [Google Scholar] [CrossRef]
- Mensenkamp, A.R.; Havekes, L.M.; Romijn, J.A.; Kuipers, F. Hepatic Steatosis and Very Low Density Lipoprotein Secretion: The Involvement of Apolipoprotein E. J. Hepatol. 2001, 35, 816–822. [Google Scholar] [CrossRef]
- Kuipers, F.; Jong, M.C.; Lin, Y.; Eck, M.; Havinga, R.; Bloks, V.; Verkade, H.J.; Hofker, M.H.; Moshage, H.; Berkel, T.J.; et al. Impaired Secretion of Very Low Density Lipoprotein-Triglycerides by Apolipoprotein E- Deficient Mouse Hepatocytes. J. Clin. Investig. 1997, 100, 2915–2922. [Google Scholar] [CrossRef]
- Morton, R.E.; Liu, Y. The Lipid Transfer Properties of Cetp Define the Concentration and Composition of Plasma Lipoproteins. J. Lipid Res. 2020, 61, 1168–1179. [Google Scholar] [CrossRef]
- Mensenkamp, A.R.; Jong, M.C.; van Goor, H.; van Luyn, M.J.; Bloks, V.; Havinga, R.; Voshol, P.J.; Hofker, M.H.; van Dijk, K.W.; Havekes, L.M.; et al. Apolipoprotein E Participates in the Regulation of Very Low Density Lipoprotein-Triglyceride Secretion by the Liver. J. Biol. Chem. 1999, 274, 35711–35718. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, K.; Maugeais, C.; Glick, J.M.; Rader, D.J. Markedly Increased Secretion of Vldl Triglycerides Induced by Gene Transfer of Apolipoprotein E Isoforms in Apoe-Deficient Mice. J. Lipid Res. 2000, 41, 253–259. [Google Scholar] [CrossRef]
- Getz, G.S.; Reardon, C.A. Apoprotein E as a Lipid Transport and Signaling Protein in the Blood, Liver, and Artery Wall. J. Lipid Res. 2009, 50, S156–S161. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Yang, X.; Yang, L.; Dai, J.; Qin, H.; Zhou, Y.; Huang, Y.; Wang, Y.; Wu, D.; Shuai, Q.; et al. Lipid Nanoparticle-Mediated Hepatocyte Delivery of Sirna and Silibinin in Metabolic Dysfunction-Associated Steatotic Liver Disease. J. Control. Release 2024, 373, 385–398. [Google Scholar] [CrossRef]
- Kim, Y.; Yoon, S.; Lee, S.B.; Han, H.W.; Oh, H.; Lee, W.J.; Lee, S.M. Fermentation of Soy Milk Via Lactobacillus Plantarum Improves Dysregulated Lipid Metabolism in Rats on a High Cholesterol Diet. PLoS ONE 2014, 9, e88231. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Barroso, E.; Palomer, X.; Dai, J.; Rada, P.; Quesada-López, T.; Escolà-Gil, J.C.; Cedó, L.; Zali, M.R.; Molaei, M.; et al. Hepatic Regulation of Vldl Receptor by Pparβ/Δ and Fgf21 Modulates Non-Alcoholic Fatty Liver Disease. Mol. Metab. 2018, 8, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, H.; Nie, X.; Yin, Z.; Zhao, Y.; Chen, C.; Wen Wang, D. Mir-30c-5p Ameliorates Hepatic Steatosis in Leptin Receptor-Deficient (Db/Db) Mice Via Down-Regulating Fasn. Oncotarget 2017, 8, 13450–13463. [Google Scholar] [CrossRef]
- Hanin, G.; Yayon, N.; Tzur, Y.; Haviv, R.; Bennett, E.R.; Udi, S.; Krishnamoorthy, Y.R.; Kotsiliti, E.; Zangen, R.; Efron, B.; et al. miRNA-132 Induces Hepatic Steatosis and Hyperlipidaemia by Synergistic Multitarget Suppression. Gut 2018, 67, 1124–1134. [Google Scholar] [CrossRef]
- Price, N.L.; Goedeke, L.; Suárez, Y.; Fernández-Hernando, C. miR-33 in Cardiometabolic Diseases: Lessons Learned from Novel Animal Models and Approaches. EMBO Mol. Med. 2021, 13, e12606. [Google Scholar] [CrossRef]
- Long, J.K.; Dai, W.; Zheng, Y.W.; Zhao, S.P. miR-122 Promotes Hepatic Lipogenesis Via Inhibiting the Lkb1/Ampk Pathway by Targeting Sirt1 in Non-Alcoholic Fatty Liver Disease. Mol. Med. 2019, 25, 26. [Google Scholar] [CrossRef]
- Zhang, J.; Jazii, F.R.; Haghighi, M.M.; Alvares, D.; Liu, L.; Khosraviani, N.; Adeli, K. miR-130b Is a Potent Stimulator of Hepatic Very-Low-Density Lipoprotein Assembly and Secretion Via Marked Induction of Microsomal Triglyceride Transfer Protein. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E262–E275. [Google Scholar] [CrossRef]
- Wang, K.C.; Chang, H.Y. Molecular Mechanisms of Long Noncoding RNAs. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef]
- van Solingen, C.; Scacalossi, K.R.; Moore, K.J. Long Noncoding RNAs in Lipid Metabolism. Curr. Opin. Lipidol. 2018, 29, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Sallam, T.; Jones, M.C.; Gilliland, T.; Zhang, L.; Wu, X.; Eskin, A.; Sandhu, J.; Casero, D.; Vallim, T.Q.; Hong, C.; et al. Feedback Modulation of Cholesterol Metabolism by the Lipid-Responsive Non-Coding RNA Lexis. Nature 2016, 534, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Sallam, T.; Jones, M.; Thomas, B.J.; Wu, X.; Gilliland, T.; Qian, K.; Eskin, A.; Casero, D.; Zhang, Z.; Sandhu, J.; et al. Transcriptional Regulation of Macrophage Cholesterol Efflux and Atherogenesis by a Long Noncoding RNA. Nat. Med. 2018, 24, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fang, X.; Yang, Z.; Li, X.; Cheng, M.; Cheng, L.; Wang, G.; Li, W.; Liu, L. LncRP11-675F6.3 Responds to Rapamycin Treatment and Reduces Triglyceride Accumulation Via Interacting with Hk1 in Hepatocytes by Regulating Autophagy and Vldl-Related Proteins. Acta Biochim. Biophys. Sin. 2023, 55, 1606–1617. [Google Scholar] [CrossRef]
- Janero, D.R.; Lane, M.D. Sequential Assembly of Very Low Density Lipoprotein Apolipoproteins, Triacylglycerol, and Phosphoglycerides by the Intact Liver Cell. J. Biol. Chem. 1983, 258, 14496–14504. [Google Scholar] [CrossRef]
- Vance, J.E.; Vance, D.E. Does Rat Liver Golgi Have the Capacity to Synthesize Phospholipids for Lipoprotein Secretion? J. Biol. Chem. 1988, 263, 5898–5909. [Google Scholar] [CrossRef]
- Agren, J.J.; Kurvinen, J.P.; Kuksis, A. Isolation of Very Low Density Lipoprotein Phospholipids Enriched in Ethanolamine Phospholipids from Rats Injected with Triton Wr 1339. Biochim. Biophys. Acta 2005, 1734, 34–43. [Google Scholar] [CrossRef]
- Nilsson, A.; Duan, R.D. Absorption and Lipoprotein Transport of Sphingomyelin. J. Lipid Res. 2006, 47, 154–171. [Google Scholar] [CrossRef]
- Sundler, R.; Akesson, B. Regulation of Phospholipid Biosynthesis in Isolated Rat Hepatocytes. Effect of Different Substrates. J. Biol. Chem. 1975, 250, 3359–3367. [Google Scholar] [CrossRef]
- Jump, D.B.; Botolin, D.; Wang, Y.; Xu, J.; Christian, B.; Demeure, O. Fatty Acid Regulation of Hepatic Gene Transcription. J. Nutr. 2005, 135, 2503–2506. [Google Scholar] [CrossRef]
- Donnelly, K.L.; Smith, C.I.; Schwarzenberg, S.J.; Jessurun, J.; Boldt, M.D.; Parks, E.J. Sources of Fatty Acids Stored in Liver and Secreted Via Lipoproteins in Patients with Nonalcoholic Fatty Liver Disease. J. Clin. Investig. 2005, 115, 1343–1351. [Google Scholar] [CrossRef]
- Parks, E.J.; Krauss, R.M.; Christiansen, M.P.; Neese, R.A.; Hellerstein, M.K. Effects of a Low-Fat, High-Carbohydrate Diet on Vldl-Triglyceride Assembly, Production, and Clearance. J. Clin. Investig. 1999, 104, 1087–1096. [Google Scholar] [CrossRef]
- Kissebah, A.H.; Alfarsi, S.; Adams, P.W.; Seed, M.; Folkard, J.; Wynn, V. Transport Kinetics of Plasma Free Fatty Acid, Very Low Density Lipoprotein Triglycerides and Apoprotein in Patients with Endogenous Hypertriglyceridaemia: Effects of 2,2-Dimethyl, 5(2, 5-Xylyoxy) Valeric Acid Therapy. Atherosclerosis 1976, 24, 199–218. [Google Scholar] [CrossRef]
- Julius, U. Influence of Plasma Free Fatty Acids on Lipoprotein Synthesis and Diabetic Dyslipidemia. Exp. Clin. Endocrinol. Diabetes 2003, 111, 246–250. [Google Scholar] [CrossRef]
- Nielsen, S.; Karpe, F. Determinants of Vldl-Triglycerides Production. Curr. Opin. Lipidol. 2012, 23, 321–326. [Google Scholar] [CrossRef]
- Krag, M.B.; Gormsen, L.C.; Guo, Z.; Christiansen, J.S.; Jensen, M.D.; Nielsen, S.; Jørgensen, J.O. Growth Hormone-Induced Insulin Resistance Is Associated with Increased Intramyocellular Triglyceride Content but Unaltered Vldl-Triglyceride Kinetics. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E920–E927. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Li, Y.; Guan, Y.; Song, Y.; Yin, L.; Chen, H.; Lei, L.; Liu, J.; Li, X.; et al. Effects of Nonesterified Fatty Acids on the Synthesis and Assembly of Very Low Density Lipoprotein in Bovine Hepatocytes In Vitro. J. Dairy Sci. 2014, 97, 1328–1335. [Google Scholar] [CrossRef]
- Simon, J.; Nuñez-García, M.; Fernández-Tussy, P.; Barbier-Torres, L.; Fernández-Ramos, D.; Gómez-Santos, B.; Buqué, X.; Lopitz-Otsoa, F.; Goikoetxea-Usandizaga, N.; Serrano-Macia, M.; et al. Targeting Hepatic Glutaminase 1 Ameliorates Non-Alcoholic Steatohepatitis by Restoring Very-Low-Density Lipoprotein Tri-glyceride Assembly. Cell Metab. 2020, 31, 605–622.e610. [Google Scholar] [CrossRef]
- Newberry, E.P.; Hall, Z.; Xie, Y.; Molitor, E.A.; Bayguinov, P.O.; Strout, G.W.; Fitzpatrick, J.A.J.; Brunt, E.M.; Griffin, J.L.; Davidson, N.O. Liver-Specific Deletion of Mouse Tm6sf2 Promotes Steatosis, Fibrosis, and Hepatocellular Cancer. Hepatology 2021, 74, 1203–1219. [Google Scholar] [CrossRef]
- Yu, D.; Feng, J.; You, H.; Zhou, S.; Bai, Y.; He, J.; Cao, H.; Che, Q.; Guo, J.; Su, Z. The Microstructure, Antibacterial and Antitumor Activities of Chitosan Oligosaccharides and Derivatives. Mar. Drugs 2022, 20, 69. [Google Scholar] [CrossRef]
- Luo, F.; Smagris, E.; Martin, S.A.; Vale, G.; McDonald, J.G.; Fletcher, J.A.; Burgess, S.C.; Hobbs, H.H.; Cohen, J.C. Hepatic Tm6sf2 Is Required for Lipidation of Vldl in a Pre-Golgi Compartment in Mice and Rats. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 879–899. [Google Scholar] [CrossRef]
- Uehara, K.; Sostre-Colón, J.; Gavin, M.; Santoleri, D.; Leonard, K.A.; Jacobs, R.L.; Titchenell, P.M. Activation of Liver Mtorc1 Protects against Nash Via Dual Regulation of Vldl-Tag Secretion and De Novo Lipogenesis. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 1625–1647. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, Y.; Hu, S.; Xu, Y.; Stroup, D.; Pan, X.; Bawa, F.C.; Chen, S.; Gopoju, R.; Yin, L.; et al. Hepatocyte Nuclear Factor 4α Prevents the Steatosis-to-Nash Progression by Regulating P53 and Bile Acid Signaling (in Mice). Hepatology 2021, 73, 2251–2265. [Google Scholar] [CrossRef]
- Yin, L.; Ma, H.; Ge, X.; Edwards, P.A.; Zhang, Y. Hepatic Hepatocyte Nuclear Factor 4α Is Essential for Maintaining Triglyceride and Cholesterol Homeostasis. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 328–336. [Google Scholar] [CrossRef]
- Hayhurst, G.P.; Lee, Y.H.; Lambert, G.; Ward, J.M.; Gonzalez, F.J. Hepatocyte Nuclear Factor 4alpha (Nuclear Receptor 2a1) Is Essential for Maintenance of Hepatic Gene Expression and Lipid Homeostasis. Mol. Cell. Biol. 2001, 21, 1393–1403. [Google Scholar] [CrossRef]
- Lin, H.; Wang, L.; Liu, Z.; Long, K.; Kong, M.; Ye, D.; Chen, X.; Wang, K.; Wu, K.K.; Fan, M.; et al. Hepatic Mdm2 Causes Metabolic Associated Fatty Liver Disease by Blocking Triglyceride-Vldl Secretion Via Apob Degradation. Adv. Sci. 2022, 9, e2200742. [Google Scholar] [CrossRef]
- Rizzo, M. Lomitapide, a Microsomal Triglyceride Transfer Protein Inhibitor for the Treatment of Hypercholesterolemia. IDrugs Investig. Drugs J. 2010, 13, 103–111. [Google Scholar]
- Smith, B.K.; Marcinko, K.; Desjardins, E.M.; Lally, J.S.; Ford, R.J.; Steinberg, G.R. Treatment of Nonalcoholic Fatty Liver Disease: Role of Ampk. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E730–E740. [Google Scholar] [CrossRef]
- Green, C.J.; Marjot, T.; Walsby-Tickle, J.; Charlton, C.; Cornfield, T.; Westcott, F.; Pinnick, K.E.; Moolla, A.; Hazlehurst, J.M.; McCullagh, J.; et al. Metformin Maintains Intrahepatic Triglyceride Content Through Increased Hepatic De Novo Lipogenesis. Eur. J. Endocrinol. 2022, 186, 367–377. [Google Scholar] [CrossRef]
- Han, L.; Wu, L.; Yin, Q.; Li, L.; Zheng, X.; Du, S.; Huang, X.; Bai, L.; Wang, Y.; Bian, Y. A Promising Therapy for Fatty Liver Disease: Pcsk9 Inhibitors. Phytomed. Int. J. Phytother. Phytopharm. 2024, 128, 155505. [Google Scholar] [CrossRef]
- Lebeau, P.F.; Platko, K.; Byun, J.H.; Makda, Y.; Austin, R.C. The Emerging Roles of Intracellular Pcsk9 and Their Implications in Endoplasmic Reticulum Stress and Metabolic Diseases. Metabolites 2022, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Krauss, R.M.; Chang, J.T.; Teng, B.B. Pcsk9 Deficiency Reduces Atherosclerosis, Apolipoprotein B Secretion, and Endothelial Dysfunction. J. Lipid Res. 2018, 59, 207–223. [Google Scholar] [CrossRef]
- Sun, H.; Samarghandi, A.; Zhang, N.; Yao, Z.; Xiong, M.; Teng, B.B. Proprotein Convertase Subtilisin/Kexin Type 9 Interacts with Apolipoprotein B and Prevents Its Intracellular Degradation, Irrespective of the Low-Density Lipoprotein Receptor. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1585–1595. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Blaha, M.J.; Elshazly, M.B.; Brinton, E.A.; Toth, P.P.; McEvoy, J.W.; Joshi, P.H.; Kulkarni, K.R.; Mize, P.D.; Kwiterovich, P.O.; et al. Friedewald-Estimated Versus Directly Measured Low-Density Lipoprotein Cholesterol and Treatment Implications. J. Am. Coll. Cardiol. 2013, 62, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Giugliano, R.P.; Murphy, S.A.; Wasserman, S.M.; Stein, E.A.; Ceška, R.; López-Miranda, J.; Georgiev, B.; Lorenzatti, A.J.; Tikkanen, M.J.; et al. Comparison of Low-Density Lipoprotein Cholesterol Assessment by Martin/Hopkins Estimation, Friedewald Estimation, and Preparative Ultracentrifugation: Insights from the Fourier Trial. JAMA Cardiol. 2018, 3, 749–753. [Google Scholar] [CrossRef]
- Julve, J.; Rossell, J.; Correig, E.; Rojo-Lopez, M.I.; Amigó, N.; Hernández, M.; Traveset, A.; Carbonell, M.; Alonso, N.; Mauricio, D.; et al. Predictive Value of the Advanced Lipoprotein Profile and Glycated Proteins on Diabetic Retinopathy. Nutrients 2022, 14, 3932. [Google Scholar] [CrossRef]
- Fukuyama, N.; Homma, K.; Wakana, N.; Kudo, K.; Suyama, A.; Ohazama, H.; Tsuji, C.; Ishiwata, K.; Eguchi, Y.; Nakazawa, H.; et al. Validation of the Friedewald Equation for Evaluation of Plasma Ldl-Cholesterol. J. Clin. Biochem. Nutr. 2008, 43, 1–5. [Google Scholar] [CrossRef]
- Iso, H.; Imano, H.; Yamagishi, K.; Ohira, T.; Cui, R.; Noda, H.; Sato, S.; Kiyama, M.; Okada, T.; Hitsumoto, S.; et al. Fasting and Non-Fasting Triglycerides and Risk of Ischemic Cardiovascular Disease in Japanese Men and Women: The Circulatory Risk in Communities Study (Circs). Atherosclerosis 2014, 237, 361–368. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Lei, K.; Liu, Y.; Liu, J.; Wei, K.; Guo, J.; Su, Z. Metabolic Dysfunction-Associated Steatotic Liver Disease: From a Very Low-Density Lipoprotein Perspective. Biomolecules 2025, 15, 990. https://doi.org/10.3390/biom15070990
Chen Y, Lei K, Liu Y, Liu J, Wei K, Guo J, Su Z. Metabolic Dysfunction-Associated Steatotic Liver Disease: From a Very Low-Density Lipoprotein Perspective. Biomolecules. 2025; 15(7):990. https://doi.org/10.3390/biom15070990
Chicago/Turabian StyleChen, Yan, Kaiwen Lei, Yanglong Liu, Jianshen Liu, Kunhua Wei, Jiao Guo, and Zhengquan Su. 2025. "Metabolic Dysfunction-Associated Steatotic Liver Disease: From a Very Low-Density Lipoprotein Perspective" Biomolecules 15, no. 7: 990. https://doi.org/10.3390/biom15070990
APA StyleChen, Y., Lei, K., Liu, Y., Liu, J., Wei, K., Guo, J., & Su, Z. (2025). Metabolic Dysfunction-Associated Steatotic Liver Disease: From a Very Low-Density Lipoprotein Perspective. Biomolecules, 15(7), 990. https://doi.org/10.3390/biom15070990