Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Authors = David L. Suarez ORCID = 0000-0003-4582-6116

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3068 KiB  
Article
Alginate Microencapsulation as a Tool to Improve Biostimulant Activity Against Water Deficits
by David Jiménez-Arias, Sarai Morales-Sierra, Ana L. García-García, Antonio J. Herrera, Rayco Pérez Schmeller, Emma Suárez, Álvaro Santana-Mayor, Patrícia Silva, João Paulo Borges and Miguel Â. A. Pinheiro de Carvalho
Polymers 2025, 17(12), 1617; https://doi.org/10.3390/polym17121617 - 10 Jun 2025
Viewed by 734
Abstract
Climate change is reducing agricultural productivity through altered weather patterns and extreme events, potentially decreasing yields by 10–25%. Biostimulants like pyroglutamic acid can enhance plant tolerance to water stress, but their rapid degradation in the soil limits effectiveness. Encapsulation in alginate matrices promises [...] Read more.
Climate change is reducing agricultural productivity through altered weather patterns and extreme events, potentially decreasing yields by 10–25%. Biostimulants like pyroglutamic acid can enhance plant tolerance to water stress, but their rapid degradation in the soil limits effectiveness. Encapsulation in alginate matrices promises to be a good solution, protecting the compound and enabling controlled release. This study reports, for the first time, that encapsulated pyroglutamic acid markedly enhances drought tolerance in tomato and maize plants. The encapsulation strategy reduces effective concentration by an order of magnitude while significantly improving water use efficiency, photo-synthetic performance, and overall stress resilience. These findings demonstrate that alginate-based encapsulation substantially increases biostimulant uptake and efficacy, providing a novel and efficient strategy to mitigate water stress in crops, with important implications for climate-resilient agriculture. Two encapsulation methods for generating the alginate microcapsules are compared: ionic gelation with Nisco® system and the electrospray technique. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 255 KiB  
Article
Optimization and Validation of Universal Real-Time RT-PCR Assay to Detect Virulent Newcastle Disease Viruses
by Ellen Ruth Alexander Morris, Megan E. Schroeder, Phelue N. Anderson, Lisa J. Schroeder, Nicholas Monday, Gabriel Senties-Cue, Martin Ficken, Pamela J. Ferro, David L. Suarez and Kiril M. Dimitrov
Viruses 2025, 17(5), 670; https://doi.org/10.3390/v17050670 - 3 May 2025
Viewed by 1088
Abstract
Newcastle disease, caused by virulent strains of avian paramyxovirus 1 (APMV-1), occurs globally and has significant social and economic impact. APMV-1 is a rapidly evolving RNA virus and is genetically divided into class I and class II with almost all virulent viruses being [...] Read more.
Newcastle disease, caused by virulent strains of avian paramyxovirus 1 (APMV-1), occurs globally and has significant social and economic impact. APMV-1 is a rapidly evolving RNA virus and is genetically divided into class I and class II with almost all virulent viruses being of class II. The considerable genetic diversity of the virus adds complexity to maintaining the high sensitivity and specificity of molecular detection assays. The current USDA’s fusion gene rRT-PCR assay was designed for class II APMV-1 isolates with an emphasis on early-2000s US strains. Assessment with globally circulating genotypes confirmed previously described lower sensitivity (sub-genotypes VII.1.1, VII.2) and identified absence of detection (genotype XIV). An additional forward primer and two probes were designed using a comprehensive complete fusion gene sequence database. The optimized multiplex assay detected genotype XIV and improved sensitivity for sub-genotypes VII.1.1 and VII.2, with maintained sensitivity for the remaining genotypes. No near-neighbors or APMV-1 of low virulence were detected. Using field and experimental clinical samples, both the specificity and sensitivity were determined to be 100%, compared to the current assay with 100% and 93%, respectively. The new assay identifies all known chicken virulent APMV-1 genotypes with the benefit of using an exogenous internal positive control, which monitors extraction efficiency and inhibitors. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
15 pages, 2074 KiB  
Article
The ACE2 Receptor from Common Vampire Bat (Desmodus rotundus) and Pallid Bat (Antrozous pallidus) Support Attachment and Limited Infection of SARS-CoV-2 Viruses in Cell Culture
by Abhijeet Bakre, Ryan Sweeney, Edna Espinoza, David L. Suarez and Darrell R. Kapczynski
Viruses 2025, 17(4), 507; https://doi.org/10.3390/v17040507 - 31 Mar 2025
Viewed by 607
Abstract
During the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SC2) infection was confirmed in various animal species demonstrating a wide host range of the virus. Prior studies have shown that the ACE2 protein is the primary receptor used by the virus to [...] Read more.
During the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SC2) infection was confirmed in various animal species demonstrating a wide host range of the virus. Prior studies have shown that the ACE2 protein is the primary receptor used by the virus to gain cellular entry and begin the replication cycle. In previous studies, we demonstrated that human and various bat ACE2 proteins can be utilized by SC2 viruses for entry. Bats are a suspected natural host of SC2 because of genetic homology with other bat coronaviruses. In this work, we demonstrate that expression of ACE2 genes from the common vampire bat (CVB) (Desmodus rotundus) and the pallid bat (PB) (Antrozous pallidus), supports infection and replication of some SC2 viruses in cell culture. Two cell lines were produced, CVB-ACE2 and PB-ACE2, expressing ACE2 from these bat species along with human TMPRSS2, in a model previously established using a non-permissive chicken DF-1 cell line. Results demonstrate that the original Wuhan lineage (WA1) virus and the Delta variant were able to infect and replicate in either of the bat ACE2 cell lines. In contrast, the Lambda and Omicron variant viruses infected both cell lines, but viral titers did not increase following infection. Viral detection using immunofluorescence demonstrated abundant spike (S) protein staining for the WA1 and Delta variants but little signal for the Lambda and Omicron variants. These studies demonstrate that while ACE2 from CVB and PB can be utilized by SC2 viruses to gain entry for infection, later variants (Lambda and Omicron) replicate poorly in these cell lines. These observations suggest more efficient human adaption in later SC2 variants that become less fit for replication in other animal species. Full article
(This article belongs to the Special Issue Multiple Hosts of SARS-CoV-2, 3rd Edition)
Show Figures

Figure 1

45 pages, 30346 KiB  
Article
Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber
by A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, G. Adamov, M. Adamowski, D. Adams, M. Adinolfi, C. Adriano, A. Aduszkiewicz, J. Aguilar, B. Aimard, F. Akbar, K. Allison, S. Alonso Monsalve, M. Alrashed, A. Alton, R. Alvarez, T. Alves, H. Amar, P. Amedo, J. Anderson, D. A. Andrade, C. Andreopoulos, M. Andreotti, M. P. Andrews, F. Andrianala, S. Andringa, N. Anfimov, A. Ankowski, M. Antoniassi, M. Antonova, A. Antoshkin, A. Aranda-Fernandez, L. Arellano, E. Arrieta Diaz, M. A. Arroyave, J. Asaadi, A. Ashkenazi, D. Asner, L. Asquith, E. Atkin, D. Auguste, A. Aurisano, V. Aushev, D. Autiero, F. Azfar, A. Back, H. Back, J. J. Back, I. Bagaturia, L. Bagby, N. Balashov, S. Balasubramanian, P. Baldi, W. Baldini, J. Baldonedo, B. Baller, B. Bambah, R. Banerjee, F. Barao, G. Barenboim, P. B̃arham Alzás, G. J. Barker, W. Barkhouse, G. Barr, J. Barranco Monarca, A. Barros, N. Barros, D. Barrow, J. L. Barrow, A. Basharina-Freshville, A. Bashyal, V. Basque, C. Batchelor, L. Bathe-Peters, J. B. R. Battat, F. Battisti, F. Bay, M. C. Q. Bazetto, J. L. L. Bazo Alba, J. F. Beacom, E. Bechetoille, B. Behera, E. Belchior, G. Bell, L. Bellantoni, G. Bellettini, V. Bellini, O. Beltramello, N. Benekos, C. Benitez Montiel, D. Benjamin, F. Bento Neves, J. Berger, S. Berkman, J. Bernal, P. Bernardini, A. Bersani, S. Bertolucci, M. Betancourt, A. Betancur Rodríguez, A. Bevan, Y. Bezawada, A. T. Bezerra, T. J. Bezerra, A. Bhat, V. Bhatnagar, J. Bhatt, M. Bhattacharjee, M. Bhattacharya, S. Bhuller, B. Bhuyan, S. Biagi, J. Bian, K. Biery, B. Bilki, M. Bishai, A. Bitadze, A. Blake, F. D. Blaszczyk, G. C. Blazey, E. Blucher, J. Bogenschuetz, J. Boissevain, S. Bolognesi, T. Bolton, L. Bomben, M. Bonesini, C. Bonilla-Diaz, F. Bonini, A. Booth, F. Boran, S. Bordoni, R. Borges Merlo, A. Borkum, N. Bostan, J. Bracinik, D. Braga, B. Brahma, D. Brailsford, F. Bramati, A. Branca, A. Brandt, J. Bremer, C. Brew, S. J. Brice, V. Brio, C. Brizzolari, C. Bromberg, J. Brooke, A. Bross, G. Brunetti, M. Brunetti, N. Buchanan, H. Budd, J. Buergi, D. Burgardt, S. Butchart, G. Caceres V., I. Cagnoli, T. Cai, R. Calabrese, J. Calcutt, M. Calin, L. Calivers, E. Calvo, A. Caminata, A. F. Camino, W. Campanelli, A. Campani, A. Campos Benitez, N. Canci, J. Capó, I. Caracas, D. Caratelli, D. Carber, J. M. Carceller, G. Carini, B. Carlus, M. F. Carneiro, P. Carniti, I. Caro Terrazas, H. Carranza, N. Carrara, L. Carroll, T. Carroll, A. Carter, E. Casarejos, D. Casazza, J. F. Castaño Forero, F. A. Castaño, A. Castillo, C. Castromonte, E. Catano-Mur, C. Cattadori, F. Cavalier, F. Cavanna, S. Centro, G. Cerati, C. Cerna, A. Cervelli, A. Cervera Villanueva, K. Chakraborty, S. Chakraborty, M. Chalifour, A. Chappell, N. Charitonidis, A. Chatterjee, H. Chen, M. Chen, W. C. Chen, Y. Chen, Z. Chen-Wishart, D. Cherdack, C. Chi, R. Chirco, N. Chitirasreemadam, K. Cho, S. Choate, D. Chokheli, P. S. Chong, B. Chowdhury, D. Christian, A. Chukanov, M. Chung, E. Church, M. F. Cicala, M. Cicerchia, V. Cicero, R. Ciolini, P. Clarke, G. Cline, T. E. Coan, A. G. Cocco, J. A. B. Coelho, A. Cohen, J. Collazo, J. Collot, E. Conley, J. M. Conrad, M. Convery, S. Copello, P. Cova, C. Cox, L. Cremaldi, L. Cremonesi, J. I. Crespo-Anadón, M. Crisler, E. Cristaldo, J. Crnkovic, G. Crone, R. Cross, A. Cudd, C. Cuesta, Y. Cui, F. Curciarello, D. Cussans, J. Dai, O. Dalager, R. Dallavalle, W. Dallaway, H. da Motta, Z. A. Dar, R. Darby, L. Da Silva Peres, Q. David, G. S. Davies, S. Davini, J. Dawson, R. De Aguiar, P. De Almeida, P. Debbins, I. De Bonis, M. P. Decowski, A. de Gouvêa, P. C. De Holanda, I. L. De Icaza Astiz, P. De Jong, P. Del Amo Sanchez, A. De la Torre, G. De Lauretis, A. Delbart, D. Delepine, M. Delgado, A. Dell’Acqua, G. Delle Monache, N. Delmonte, P. De Lurgio, R. Demario, G. De Matteis, J. R. T. de Mello Neto, D. M. DeMuth, S. Dennis, C. Densham, P. Denton, G. W. Deptuch, A. De Roeck, V. De Romeri, J. P. Detje, J. Devine, R. Dharmapalan, M. Dias, A. Diaz, J. S. Díaz, F. Díaz, F. Di Capua, A. Di Domenico, S. Di Domizio, S. Di Falco, L. Di Giulio, P. Ding, L. Di Noto, E. Diociaiuti, C. Distefano, R. Diurba, M. Diwan, Z. Djurcic, D. Doering, S. Dolan, F. Dolek, M. J. Dolinski, D. Domenici, L. Domine, S. Donati, Y. Donon, S. Doran, D. Douglas, T. A. Doyle, A. Dragone, F. Drielsma, L. Duarte, D. Duchesneau, K. Duffy, K. Dugas, P. Dunne, B. Dutta, H. Duyang, D. A. Dwyer, A. S. Dyshkant, S. Dytman, M. Eads, A. Earle, S. Edayath, D. Edmunds, J. Eisch, P. Englezos, A. Ereditato, T. Erjavec, C. O. Escobar, J. J. Evans, E. Ewart, A. C. Ezeribe, K. Fahey, L. Fajt, A. Falcone, M. Fani’, C. Farnese, S. Farrell, Y. Farzan, D. Fedoseev, J. Felix, Y. Feng, E. Fernandez-Martinez, G. Ferry, L. Fields, P. Filip, A. Filkins, F. Filthaut, R. Fine, G. Fiorillo, M. Fiorini, S. Fogarty, W. Foreman, J. Fowler, J. Franc, K. Francis, D. Franco, J. Franklin, J. Freeman, J. Fried, A. Friedland, S. Fuess, I. K. Furic, K. Furman, A. P. Furmanski, R. Gaba, A. Gabrielli, A. M. Gago, F. Galizzi, H. Gallagher, A. Gallas, N. Gallice, V. Galymov, E. Gamberini, T. Gamble, F. Ganacim, R. Gandhi, S. Ganguly, F. Gao, S. Gao, D. Garcia-Gamez, M. Á. García-Peris, F. Gardim, S. Gardiner, D. Gastler, A. Gauch, J. Gauvreau, P. Gauzzi, S. Gazzana, G. Ge, N. Geffroy, B. Gelli, S. Gent, L. Gerlach, Z. Ghorbani-Moghaddam, T. Giammaria, D. Gibin, I. Gil-Botella, S. Gilligan, A. Gioiosa, S. Giovannella, C. Girerd, A. K. Giri, C. Giugliano, V. Giusti, D. Gnani, O. Gogota, S. Gollapinni, K. Gollwitzer, R. A. Gomes, L. V. Gomez Bermeo, L. S. Gomez Fajardo, F. Gonnella, D. Gonzalez-Diaz, M. Gonzalez-Lopez, M. C. Goodman, S. Goswami, C. Gotti, J. Goudeau, E. Goudzovski, C. Grace, E. Gramellini, R. Gran, E. Granados, P. Granger, C. Grant, D. R. Gratieri, G. Grauso, P. Green, S. Greenberg, J. Greer, W. C. Griffith, F. T. Groetschla, K. Grzelak, L. Gu, W. Gu, V. Guarino, M. Guarise, R. Guenette, E. Guerard, M. Guerzoni, D. Guffanti, A. Guglielmi, B. Guo, Y. Guo, A. Gupta, V. Gupta, G. Gurung, D. Gutierrez, P. Guzowski, M. M. Guzzo, S. Gwon, A. Habig, H. Hadavand, L. Haegel, R. Haenni, L. Hagaman, A. Hahn, J. Haiston, J. Hakenmueller, T. Hamernik, P. Hamilton, J. Hancock, F. Happacher, D. A. Harris, J. Hartnell, T. Hartnett, J. Harton, T. Hasegawa, C. Hasnip, R. Hatcher, K. Hayrapetyan, J. Hays, E. Hazen, M. He, A. Heavey, K. M. Heeger, J. Heise, S. Henry, M. A. Hernandez Morquecho, K. Herner, V. Hewes, A. Higuera, C. Hilgenberg, S. J. Hillier, A. Himmel, E. Hinkle, L. R. Hirsch, J. Ho, J. Hoff, A. Holin, T. Holvey, E. Hoppe, S. Horiuchi, G. A. Horton-Smith, M. Hostert, T. Houdy, B. Howard, R. Howell, I. Hristova, M. S. Hronek, J. Huang, R. G. Huang, Z. Hulcher, M. Ibrahim, G. Iles, N. Ilic, A. M. Iliescu, R. Illingworth, G. Ingratta, A. Ioannisian, B. Irwin, L. Isenhower, M. Ismerio Oliveira, R. Itay, C. M. Jackson, V. Jain, E. James, W. Jang, B. Jargowsky, D. Jena, I. Jentz, X. Ji, C. Jiang, J. Jiang, L. Jiang, A. Jipa, F. R. Joaquim, W. Johnson, C. Jollet, B. Jones, R. Jones, D. José Fernández, N. Jovancevic, M. Judah, C. K. Jung, T. Junk, Y. Jwa, M. Kabirnezhad, A. C. Kaboth, I. Kadenko, I. Kakorin, A. Kalitkina, D. Kalra, M. Kandemir, D. M. Kaplan, G. Karagiorgi, G. Karaman, A. Karcher, Y. Karyotakis, S. Kasai, S. P. Kasetti, L. Kashur, I. Katsioulas, A. Kauther, N. Kazaryan, L. Ke, E. Kearns, P. T. Keener, K. J. Kelly, E. Kemp, O. Kemularia, Y. Kermaidic, W. Ketchum, S. H. Kettell, M. Khabibullin, N. Khan, A. Khvedelidze, D. Kim, J. Kim, M. Kim, B. King, B. Kirby, M. Kirby, A. Kish, J. Klein, J. Kleykamp, A. Klustova, T. Kobilarcik, L. Koch, K. Koehler, L. W. Koerner, D. H. Koh, L. Kolupaeva, D. Korablev, M. Kordosky, T. Kosc, U. Kose, V. A. Kostelecký, K. Kothekar, I. Kotler, M. Kovalcuk, V. Kozhukalov, W. Krah, R. Kralik, M. Kramer, L. Kreczko, F. Krennrich, I. Kreslo, T. Kroupova, S. Kubota, M. Kubu, Y. Kudenko, V. A. Kudryavtsev, G. Kufatty, S. Kuhlmann, J. Kumar, P. Kumar, S. Kumaran, P. Kunze, J. Kunzmann, R. Kuravi, N. Kurita, C. Kuruppu, V. Kus, T. Kutter, J. Kvasnicka, T. Labree, T. Lackey, A. Lambert, B. J. Land, C. E. Lane, N. Lane, K. Lang, T. Langford, M. Langstaff, F. Lanni, O. Lantwin, J. Larkin, P. Lasorak, D. Last, A. Laudrain, A. Laundrie, G. Laurenti, E. Lavaut, A. Lawrence, P. Laycock, I. Lazanu, M. Lazzaroni, T. Le, S. Leardini, J. Learned, T. LeCompte, C. Lee, V. Legin, G. Lehmann Miotto, R. Lehnert, M. A. Leigui de Oliveira, M. Leitner, D. Leon Silverio, L. M. Lepin, J.-Y. Li, S. W. Li, Y. Li, H. Liao, C. S. Lin, D. Lindebaum, S. Linden, R. A. Lineros, J. Ling, A. Lister, B. R. Littlejohn, H. Liu, J. Liu, Y. Liu, S. Lockwitz, M. Lokajicek, I. Lomidze, K. Long, T. V. Lopes, J. Lopez, I. López de Rego, N. López-March, T. Lord, J. M. LoSecco, W. C. Louis, A. Lozano Sanchez, X.-G. Lu, K. B. Luk, B. Lunday, X. Luo, E. Luppi, J. Maalmi, D. MacFarlane, A. A. Machado, P. Machado, C. T. Macias, J. R. Macier, M. MacMahon, A. Maddalena, A. Madera, P. Madigan, S. Magill, C. Magueur, K. Mahn, A. Maio, A. Major, K. Majumdar, M. Man, R. C. Mandujano, J. Maneira, S. Manly, A. Mann, K. Manolopoulos, M. Manrique Plata, S. Manthey Corchado, V. N. Manyam, M. Marchan, A. Marchionni, W. Marciano, D. Marfatia, C. Mariani, J. Maricic, F. Marinho, A. D. Marino, T. Markiewicz, F. Das Chagas Marques, C. Marquet, D. Marsden, M. Marshak, C. M. Marshall, J. Marshall, L. Martina, J. Martín-Albo, N. Martinez, D. A. Martinez Caicedo, F. Martínez López, P. Martínez Miravé, S. Martynenko, V. Mascagna, C. Massari, A. Mastbaum, F. Matichard, S. Matsuno, G. Matteucci, J. Matthews, C. Mauger, N. Mauri, K. Mavrokoridis, I. Mawby, R. Mazza, A. Mazzacane, T. McAskill, N. McConkey, K. S. McFarland, C. McGrew, A. McNab, L. Meazza, V. C. N. Meddage, B. Mehta, P. Mehta, P. Melas, O. Mena, H. Mendez, P. Mendez, D. P. Méndez, A. Menegolli, G. Meng, A. C. E. A. Mercuri, A. Meregaglia, M. D. Messier, S. Metallo, J. Metcalf, W. Metcalf, M. Mewes, H. Meyer, T. Miao, A. Miccoli, G. Michna, V. Mikola, R. Milincic, F. Miller, G. Miller, W. Miller, O. Mineev, A. Minotti, L. Miralles, O. G. Miranda, C. Mironov, S. Miryala, S. Miscetti, C. S. Mishra, S. R. Mishra, A. Mislivec, M. Mitchell, D. Mladenov, I. Mocioiu, A. Mogan, N. Moggi, R. Mohanta, T. A. Mohayai, N. Mokhov, J. Molina, L. Molina Bueno, E. Montagna, A. Montanari, C. Montanari, D. Montanari, D. Montanino, L. M. Montaño Zetina, M. Mooney, A. F. Moor, Z. Moore, D. Moreno, O. Moreno-Palacios, L. Morescalchi, D. Moretti, R. Moretti, C. Morris, C. Mossey, M. Mote, C. A. Moura, G. Mouster, W. Mu, L. Mualem, J. Mueller, M. Muether, F. Muheim, A. Muir, M. Mulhearn, D. Munford, L. J. Munteanu, H. Muramatsu, J. Muraz, M. Murphy, T. Murphy, J. Muse, A. Mytilinaki, J. Nachtman, Y. Nagai, S. Nagu, R. Nandakumar, D. Naples, S. Narita, A. Nath, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, A. Nehm, J. K. Nelson, O. Neogi, J. Nesbit, M. Nessi, D. Newbold, M. Newcomer, R. Nichol, F. Nicolas-Arnaldos, A. Nikolica, J. Nikolov, E. Niner, K. Nishimura, A. Norman, A. Norrick, P. Novella, J. A. Nowak, M. Oberling, J. P. Ochoa-Ricoux, S. Oh, S. B. Oh, A. Olivier, A. Olshevskiy, T. Olson, Y. Onel, Y. Onishchuk, A. Oranday, M. Osbiston, J. A. Osorio Vélez, L. Otiniano Ormachea, J. Ott, L. Pagani, G. Palacio, O. Palamara, S. Palestini, J. M. Paley, M. Pallavicini, C. Palomares, S. Pan, P. Panda, W. Panduro Vazquez, E. Pantic, V. Paolone, V. Papadimitriou, R. Papaleo, A. Papanestis, D. Papoulias, S. Paramesvaran, A. Paris, S. Parke, E. Parozzi, S. Parsa, Z. Parsa, S. Parveen, M. Parvu, D. Pasciuto, S. Pascoli, L. Pasqualini, J. Pasternak, C. Patrick, L. Patrizii, R. B. Patterson, T. Patzak, A. Paudel, L. Paulucci, Z. Pavlovic, G. Pawloski, D. Payne, V. Pec, E. Pedreschi, S. J. M. Peeters, W. Pellico, A. Pena Perez, E. Pennacchio, A. Penzo, O. L. G. Peres, Y. F. Perez Gonzalez, L. Pérez-Molina, C. Pernas, J. Perry, D. Pershey, G. Pessina, G. Petrillo, C. Petta, R. Petti, M. Pfaff, V. Pia, L. Pickering, F. Pietropaolo, V. L. Pimentel, G. Pinaroli, J. Pinchault, K. Pitts, K. Plows, R. Plunkett, C. Pollack, T. Pollman, D. Polo-Toledo, F. Pompa, X. Pons, N. Poonthottathil, V. Popov, F. Poppi, J. Porter, M. Potekhin, R. Potenza, J. Pozimski, M. Pozzato, T. Prakash, C. Pratt, M. Prest, F. Psihas, D. Pugnere, X. Qian, J. L. Raaf, V. Radeka, J. Rademacker, B. Radics, A. Rafique, E. Raguzin, M. Rai, S. Rajagopalan, M. Rajaoalisoa, I. Rakhno, L. Rakotondravohitra, L. Ralte, M. A. Ramirez Delgado, B. Ramson, A. Rappoldi, G. Raselli, P. Ratoff, R. Ray, H. Razafinime, E. M. Rea, J. S. Real, B. Rebel, R. Rechenmacher, M. Reggiani-Guzzo, J. Reichenbacher, S. D. Reitzner, H. Rejeb Sfar, E. Renner, A. Renshaw, S. Rescia, F. Resnati, D. Restrepo, C. Reynolds, M. Ribas, S. Riboldi, C. Riccio, G. Riccobene, J. S. Ricol, M. Rigan, E. V. Rincón, A. Ritchie-Yates, S. Ritter, D. Rivera, R. Rivera, A. Robert, J. L. Rocabado Rocha, L. Rochester, M. Roda, P. Rodrigues, M. J. Rodriguez Alonso, J. Rodriguez Rondon, S. Rosauro-Alcaraz, P. Rosier, D. Ross, M. Rossella, M. Rossi, M. Ross-Lonergan, N. Roy, P. Roy, C. Rubbia, A. Ruggeri, G. Ruiz Ferreira, B. Russell, D. Ruterbories, A. Rybnikov, A. Saa-Hernandez, R. Saakyan, S. Sacerdoti, S. K. Sahoo, N. Sahu, P. Sala, N. Samios, O. Samoylov, M. C. Sanchez, A. Sánchez Bravo, P. Sanchez-Lucas, V. Sandberg, D. A. Sanders, S. Sanfilippo, D. Sankey, D. Santoro, N. Saoulidou, P. Sapienza, C. Sarasty, I. Sarcevic, I. Sarra, G. Savage, V. Savinov, G. Scanavini, A. Scaramelli, A. Scarff, T. Schefke, H. Schellman, S. Schifano, P. Schlabach, D. Schmitz, A. W. Schneider, K. Scholberg, A. Schukraft, B. Schuld, A. Segade, E. Segreto, A. Selyunin, C. R. Senise, J. Sensenig, M. H. Shaevitz, P. Shanahan, P. Sharma, R. Kumar, K. Shaw, T. Shaw, K. Shchablo, J. Shen, C. Shepherd-Themistocleous, A. Sheshukov, W. Shi, S. Shin, S. Shivakoti, I. Shoemaker, D. Shooltz, R. Shrock, B. Siddi, M. Siden, J. Silber, L. Simard, J. Sinclair, G. Sinev, Jaydip Singh, J. Singh, L. Singh, P. Singh, V. Singh, S. Singh Chauhan, R. Sipos, C. Sironneau, G. Sirri, K. Siyeon, K. Skarpaas, J. Smedley, E. Smith, J. Smith, P. Smith, J. Smolik, M. Smy, M. Snape, E. L. Snider, P. Snopok, D. Snowden-Ifft, M. Soares Nunes, H. Sobel, M. Soderberg, S. Sokolov, C. J. Solano Salinas, S. Söldner-Rembold, S. R. Soleti, N. Solomey, V. Solovov, W. E. Sondheim, M. Sorel, A. Sotnikov, J. Soto-Oton, A. Sousa, K. Soustruznik, F. Spinella, J. Spitz, N. J. C. Spooner, K. Spurgeon, D. Stalder, M. Stancari, L. Stanco, J. Steenis, R. Stein, H. M. Steiner, A. F. Steklain Lisbôa, A. Stepanova, J. Stewart, B. Stillwell, J. Stock, F. Stocker, T. Stokes, M. Strait, T. Strauss, L. Strigari, A. Stuart, J. G. Suarez, J. Subash, A. Surdo, L. Suter, C. M. Sutera, K. Sutton, Y. Suvorov, R. Svoboda, S. K. Swain, B. Szczerbinska, A. M. Szelc, A. Sztuc, A. Taffara, N. Talukdar, J. Tamara, H. A. Tanaka, S. Tang, N. Taniuchi, A. M. Tapia Casanova, B. Tapia Oregui, A. Tapper, S. Tariq, E. Tarpara, E. Tatar, R. Tayloe, D. Tedeschi, A. M. Teklu, J. Tena Vidal, P. Tennessen, M. Tenti, K. Terao, F. Terranova, G. Testera, T. Thakore, A. Thea, A. Thiebault, S. Thomas, A. Thompson, C. Thorn, S. C. Timm, E. Tiras, V. Tishchenko, N. Todorović, L. Tomassetti, A. Tonazzo, D. Torbunov, M. Torti, M. Tortola, F. Tortorici, N. Tosi, D. Totani, M. Toups, C. Touramanis, D. Tran, R. Travaglini, J. Trevor, E. Triller, S. Trilov, J. Truchon, D. Truncali, W. H. Trzaska, Y. Tsai, Y.-T. Tsai, Z. Tsamalaidze, K. V. Tsang, N. Tsverava, S. Z. Tu, S. Tufanli, C. Tunnell, J. Turner, M. Tuzi, J. Tyler, E. Tyley, M. Tzanov, M. A. Uchida, J. Ureña González, J. Urheim, T. Usher, H. Utaegbulam, S. Uzunyan, M. R. Vagins, P. Vahle, S. Valder, G. A. Valdiviesso, E. Valencia, R. Valentim, Z. Vallari, E. Vallazza, J. W. F. Valle, R. Van Berg, R. G. Van de Water, D. V. Forero, A. Vannozzi, M. Van Nuland-Troost, F. Varanini, D. Vargas Oliva, S. Vasina, N. Vaughan, K. Vaziri, A. Vázquez-Ramos, J. Vega, S. Ventura, A. Verdugo, S. Vergani, M. Verzocchi, K. Vetter, M. Vicenzi, H. Vieira de Souza, C. Vignoli, C. Vilela, E. Villa, S. Viola, B. Viren, A. Vizcaya-Hernandez, T. Vrba, Q. Vuong, A. V. Waldron, M. Wallbank, J. Walsh, T. Walton, H. Wang, J. Wang, L. Wang, M. H. L. S. Wang, X. Wang, Y. Wang, K. Warburton, D. Warner, L. Warsame, M. O. Wascko, D. Waters, A. Watson, K. Wawrowska, A. Weber, C. M. Weber, M. Weber, H. Wei, A. Weinstein, H. Wenzel, S. Westerdale, M. Wetstein, K. Whalen, J. Whilhelmi, A. White, A. White, L. H. Whitehead, D. Whittington, M. J. Wilking, A. Wilkinson, C. Wilkinson, F. Wilson, R. J. Wilson, P. Winter, W. Wisniewski, J. Wolcott, J. Wolfs, T. Wongjirad, A. Wood, K. Wood, E. Worcester, M. Worcester, M. Wospakrik, K. Wresilo, C. Wret, S. Wu, W. Wu, W. Wu, M. Wurm, J. Wyenberg, Y. Xiao, I. Xiotidis, B. Yaeggy, N. Yahlali, E. Yandel, K. Yang, T. Yang, A. Yankelevich, N. Yershov, K. Yonehara, T. Young, B. Yu, H. Yu, J. Yu, Y. Yu, W. Yuan, R. Zaki, J. Zalesak, L. Zambelli, B. Zamorano, A. Zani, O. Zapata, L. Zazueta, G. P. Zeller, J. Zennamo, K. Zeug, C. Zhang, S. Zhang, M. Zhao, E. Zhivun, E. D. Zimmerman, S. Zucchelli, J. Zuklin, V. Zutshi, R. Zwaska and on behalf of the DUNE Collaborationadd Show full author list remove Hide full author list
Instruments 2024, 8(3), 41; https://doi.org/10.3390/instruments8030041 - 11 Sep 2024
Cited by 4 | Viewed by 3807
Abstract
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection [...] Read more.
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements and provide comparisons to detector simulations. Full article
Show Figures

Figure 1

20 pages, 2115 KiB  
Article
Evaluation of Commercial RNA Extraction Protocols for Avian Influenza Virus Using Nanopore Metagenomic Sequencing
by Maria Chaves, Amro Hashish, Onyekachukwu Osemeke, Yuko Sato, David L. Suarez and Mohamed El-Gazzar
Viruses 2024, 16(9), 1429; https://doi.org/10.3390/v16091429 - 7 Sep 2024
Cited by 2 | Viewed by 3289
Abstract
Avian influenza virus (AIV) is a significant threat to the poultry industry, necessitating rapid and accurate diagnosis. The current AIV diagnostic process relies on virus identification via real-time reverse transcription–polymerase chain reaction (rRT-PCR). Subsequently, the virus is further characterized using genome sequencing. This [...] Read more.
Avian influenza virus (AIV) is a significant threat to the poultry industry, necessitating rapid and accurate diagnosis. The current AIV diagnostic process relies on virus identification via real-time reverse transcription–polymerase chain reaction (rRT-PCR). Subsequently, the virus is further characterized using genome sequencing. This two-step diagnostic process takes days to weeks, but it can be expedited by using novel sequencing technologies. We aim to optimize and validate nucleic acid extraction as the first step to establishing Oxford Nanopore Technologies (ONT) as a rapid diagnostic tool for identifying and characterizing AIV from clinical samples. This study compared four commercially available RNA extraction protocols using AIV-known-positive clinical samples. The extracted RNA was evaluated using total RNA concentration, viral copies as measured by rRT-PCR, and purity as measured by a 260/280 absorbance ratio. After NGS testing, the number of total and influenza-specific reads and quality scores of the generated sequences were assessed. The results showed that no protocol outperformed the others on all parameters measured; however, the magnetic particle-based method was the most consistent regarding CT value, purity, total yield, and AIV reads, and it was less error-prone. This study highlights how different RNA extraction protocols influence ONT sequencing performance. Full article
(This article belongs to the Special Issue Recent Advances of Avian Viruses Research)
Show Figures

Figure 1

9 pages, 690 KiB  
Article
Epidemiology of Neuro-Behçet’s Disease in Northern Spain 1999–2019: A Population-Based Study
by Alba Herrero-Morant, José Luis Martín-Varillas, Carmen Álvarez-Reguera, Lara Sánchez-Bilbao, David Martínez-López, Guillermo Suárez-Amorín, Raúl Fernández-Ramón, Iván Ferraz-Amaro, Santos Castañeda, José L. Hernández and Ricardo Blanco
J. Clin. Med. 2024, 13(17), 5270; https://doi.org/10.3390/jcm13175270 - 5 Sep 2024
Cited by 2 | Viewed by 1035
Abstract
Background/Objectives: Neuro-Behçet’s disease (NBD) is one of the most severe complications of Behçet’s disease (BD). The incidence of NBD varies widely worldwide. This study aimed to estimate its current incidence in Northern Spain. Methods: This was a retrospective population-based cohort study [...] Read more.
Background/Objectives: Neuro-Behçet’s disease (NBD) is one of the most severe complications of Behçet’s disease (BD). The incidence of NBD varies widely worldwide. This study aimed to estimate its current incidence in Northern Spain. Methods: This was a retrospective population-based cohort study of 120 patients in Northern Spain diagnosed with BD according to the 2013 International Criteria for BD (ICBD) between 1 January 1999 and 31 December 2019. NBD diagnoses were made according to International Consensus Recommendation (ICR) criteria. Overall, 96 patients were included, and their demographic and clinical data were collected. The incidence of NBD was estimated by age, gender, and year of diagnosis between 1999–2019. Results: NBD was diagnosed in 23 of 96 (24%) patients (15 women/8 men) (mean age: 44 ± 13.9 years). HLA-B51 was positive in 5 of 13 (38.4%) cases tested. A total of 10 (43.5%) patients had parenchymatous NBD, 10 (43.5%) had non-parenchymatous NBD, and 3 (13%) had mixed NBD. Incidence during the study period was 0.13 (95% CI, 0.11–0.26) per 100,000 people-years. There were no significant differences in gender in the incidence rate stratified by age (p > 0.05). Furthermore, there was a linear relationship with a mild decrease in age at diagnosis over time. Conclusions: Epidemiological characteristics of NBD in Northern Spain are similar to those of neighboring countries, except female gender predominance. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

16 pages, 297 KiB  
Article
Feasibility and Short-Term Outcomes in Liver-First Approach: A Spanish Snapshot Study (the RENACI Project)
by Mario Serradilla-Martín, Celia Villodre, Laia Falgueras-Verdaguer, Natalia Zambudio-Carroll, José T. Castell-Gómez, Juan L. Blas-Laina, Vicente Borrego-Estella, Carlos Domingo-del-Pozo, Gabriel García-Plaza, Francisco J. González-Rodríguez, Eva M. Montalvá-Orón, Ángel Moya-Herraiz, Sandra Paterna-López, Miguel A. Suárez-Muñoz, Maialen Alkorta-Zuloaga, Gerardo Blanco-Fernández, Enrique Dabán-Collado, Miguel A. Gómez-Bravo, José I. Miota-de-Llamas, Fernando Rotellar, Belinda Sánchez-Pérez, Santiago Sánchez-Cabús, David Pacheco-Sánchez, Juan C. Rodríguez-Sanjuan, María A. Varona-Bosque, Lucía Carrión-Álvarez, Sofía de la Serna-Esteban, Cristina Dopazo, Elena Martín-Pérez, David Martínez-Cecilia, María J. Castro-Santiago, Dimitri Dorcaratto, Marta L. Gutiérrez-Díaz, José M. Asencio-Pascual, Fernando Burdío-Pinilla, Roberto Carracedo-Iglesias, Alfredo Escartín-Arias, Benedetto Ielpo, Gonzalo Rodríguez-Laiz, Andrés Valdivieso-López, Emilio De-Vicente-López, Vicente Alonso-Orduña and José M. Ramiaadd Show full author list remove Hide full author list
Cancers 2024, 16(9), 1676; https://doi.org/10.3390/cancers16091676 - 26 Apr 2024
Viewed by 1731
Abstract
(1) Background: The liver-first approach may be indicated for colorectal cancer patients with synchronous liver metastases to whom preoperative chemotherapy opens a potential window in which liver resection may be undertaken. This study aims to present the data of feasibility and short-term outcomes [...] Read more.
(1) Background: The liver-first approach may be indicated for colorectal cancer patients with synchronous liver metastases to whom preoperative chemotherapy opens a potential window in which liver resection may be undertaken. This study aims to present the data of feasibility and short-term outcomes in the liver-first approach. (2) Methods: A prospective observational study was performed in Spanish hospitals that had a medium/high-volume of HPB surgeries from 1 June 2019 to 31 August 2020. (3) Results: In total, 40 hospitals participated, including a total of 2288 hepatectomies, 1350 for colorectal liver metastases, 150 of them (11.1%) using the liver-first approach, 63 (42.0%) in hospitals performing <50 hepatectomies/year. The proportion of patients as ASA III was significantly higher in centers performing ≥50 hepatectomies/year (difference: 18.9%; p = 0.0213). In 81.1% of the cases, the primary tumor was in the rectum or sigmoid colon. In total, 40% of the patients underwent major hepatectomies. The surgical approach was open surgery in 87 (58.0%) patients. Resection margins were R0 in 78.5% of the patients. In total, 40 (26.7%) patients had complications after the liver resection and 36 (27.3%) had complications after the primary resection. One-hundred and thirty-two (89.3%) patients completed the therapeutic regime. (4) Conclusions: There were no differences in the surgical outcomes between the centers performing <50 and ≥50 hepatectomies/year. Further analysis evaluating factors associated with clinical outcomes and determining the best candidates for this approach will be subsequently conducted. Full article
23 pages, 8756 KiB  
Article
The Solar Particle Acceleration Radiation and Kinetics (SPARK) Mission Concept
by Hamish A. S. Reid, Sophie Musset, Daniel F. Ryan, Vincenzo Andretta, Frédéric Auchère, Deborah Baker, Federico Benvenuto, Philippa Browning, Éric Buchlin, Ariadna Calcines Rosario, Steven D. Christe, Alain Jody Corso, Joel Dahlin, Silvia Dalla, Giulio Del Zanna, Carsten Denker, Jaroslav Dudík, Robertus Erdélyi, Ilaria Ermolli, Lyndsay Fletcher, Andrzej Fludra, Lucie M. Green, Mykola Gordovskyy, Salvo L. Guglielmino, Iain Hannah, Richard Harrison, Laura A. Hayes, Andrew R. Inglis, Natasha L. S. Jeffrey, Jana Kašparová, Graham S. Kerr, Christian Kintziger, Eduard P. Kontar, Säm Krucker, Timo Laitinen, Philippe Laurent, Olivier Limousin, David M. Long, Shane A. Maloney, Paolo Massa, Anna Maria Massone, Sarah Matthews, Tomasz Mrozek, Valery M. Nakariakov, Susanna Parenti, Michele Piana, Vanessa Polito, Melissa Pesce-Rollins, Paolo Romano, Alexis P. Rouillard, Clementina Sasso, Albert Y. Shih, Marek Stęślicki, David Orozco Suárez, Luca Teriaca, Meetu Verma, Astrid M. Veronig, Nicole Vilmer, Christian Vocks and Alexander Warmuthadd Show full author list remove Hide full author list
Aerospace 2023, 10(12), 1034; https://doi.org/10.3390/aerospace10121034 - 15 Dec 2023
Cited by 7 | Viewed by 3840
Abstract
Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for [...] Read more.
Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure. Full article
(This article belongs to the Special Issue Space Telescopes & Payloads)
Show Figures

Figure 1

20 pages, 1056 KiB  
Article
Pathogenicity in Chickens and Turkeys of a 2021 United States H5N1 Highly Pathogenic Avian Influenza Clade 2.3.4.4b Wild Bird Virus Compared to Two Previous H5N8 Clade 2.3.4.4 Viruses
by Mary J. Pantin-Jackwood, Erica Spackman, Christina Leyson, Sungsu Youk, Scott A. Lee, Linda M. Moon, Mia K. Torchetti, Mary L. Killian, Julianna B. Lenoch, Darrell R. Kapczynski, David E. Swayne and David L. Suarez
Viruses 2023, 15(11), 2273; https://doi.org/10.3390/v15112273 - 18 Nov 2023
Cited by 11 | Viewed by 3616
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5 of the Gs/GD/96 lineage remain a major threat to poultry due to endemicity in wild birds. H5N1 HPAIVs from this lineage were detected in 2021 in the United States (U.S.) and since then have [...] Read more.
Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5 of the Gs/GD/96 lineage remain a major threat to poultry due to endemicity in wild birds. H5N1 HPAIVs from this lineage were detected in 2021 in the United States (U.S.) and since then have infected many wild and domestic birds. We evaluated the pathobiology of an early U.S. H5N1 HPAIV (clade 2.3.4.4b, 2021) and two H5N8 HPAIVs from previous outbreaks in the U.S. (clade 2.3.4.4c, 2014) and Europe (clade 2.3.4.4b, 2016) in chickens and turkeys. Differences in clinical signs, mean death times (MDTs), and virus transmissibility were found between chickens and turkeys. The mean bird infective dose (BID50) of the 2021 H5N1 virus was approximately 2.6 log10 50% embryo infective dose (EID50) in chickens and 2.2 log10 EID50 in turkeys, and the virus transmitted to contact-exposed turkeys but not chickens. The BID50 for the 2016 H5N8 virus was also slightly different in chickens and turkeys (4.2 and 4.7 log10 EID50, respectively); however, the BID50 for the 2014 H5N8 virus was higher for chickens than turkeys (3.9 and ~0.9 log10 EID50, respectively). With all viruses, turkeys took longer to die (MDTs of 2.6–8.2 days for turkeys and 1–4 days for chickens), which increased the virus shedding period and facilitated transmission to contacts. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 2744 KiB  
Article
Molecular Characterization of Complete Genome Sequence of an Avian Coronavirus Identified in a Backyard Chicken from Tanzania
by Henry M. Kariithi, Jeremy D. Volkening, Gaspar H. Chiwanga, Iryna V. Goraichuk, Peter L. M. Msoffe and David L. Suarez
Genes 2023, 14(10), 1852; https://doi.org/10.3390/genes14101852 - 23 Sep 2023
Cited by 2 | Viewed by 2171
Abstract
A complete genome sequence of an avian coronavirus (AvCoV; 27,663 bp excluding 3′ poly(A) tail) was determined using nontargeted next-generation sequencing (NGS) of an oropharyngeal swab from a backyard chicken in a live bird market in Arusha, Tanzania. The open reading frames (ORFs) [...] Read more.
A complete genome sequence of an avian coronavirus (AvCoV; 27,663 bp excluding 3′ poly(A) tail) was determined using nontargeted next-generation sequencing (NGS) of an oropharyngeal swab from a backyard chicken in a live bird market in Arusha, Tanzania. The open reading frames (ORFs) of the Tanzanian strain TZ/CA127/19 are organized as typical of gammaCoVs (Coronaviridae family): 5′UTR-[ORFs 1a/1b encoding replicase complex (Rep1ab) non-structural peptides nsp2-16]-[spike (S) protein]-[ORFs 3a/3b]-[small envelop (E) protein]-[membrane (M) protein]-[ORFs 4a/4c]-[ORFs 5a/5b]-[nucleocapsid (N) protein]-[ORF6b]-3′UTR. The structural (S, E, M and N) and Rep1ab proteins of TZ/CA127/19 contain features typically conserved in AvCoVs, including the cleavage sites and functional motifs in Rep1ab and S. Its genome backbone (non-spike region) is closest to Asian GI-7 and GI-19 infectious bronchitis viruses (IBVs) with 87.2–89.7% nucleotide (nt) identities, but it has a S gene closest (98.9% nt identity) to the recombinant strain ck/CN/ahysx-1/16. Its 3a, 3b E and 4c sequences are closest to the duck CoV strain DK/GD/27/14 at 99.43%, 100%, 99.65% and 99.38% nt identities, respectively. Whereas its S gene phylogenetically cluster with North American TCoVs and French guineafowl COVs, all other viral genes group monophyletically with Eurasian GI-7/GI-19 IBVs and Chinese recombinant AvCoVs. Detection of a 4445 nt-long recombinant fragment with breakpoints at positions 19,961 and 24,405 (C- and N-terminus of nsp16 and E, respectively) strongly suggested that TZ/CA127/19 acquired its genome backbone from an LX4-type (GI-19) field strain via recombination with an unknown AvCoV. This is the first report of AvCoV in Tanzania and leaves unanswered the questions of its emergence and the biological significance. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 12626 KiB  
Article
Genome Sequences and Characterization of Chicken Astrovirus and Avian Nephritis Virus from Tanzanian Live Bird Markets
by Henry M. Kariithi, Jeremy D. Volkening, Gaspar H. Chiwanga, Mary J. Pantin-Jackwood, Peter L. M. Msoffe and David L. Suarez
Viruses 2023, 15(6), 1247; https://doi.org/10.3390/v15061247 - 25 May 2023
Cited by 6 | Viewed by 2464
Abstract
The enteric chicken astrovirus (CAstV) and avian nephritis virus (ANV) are the type species of the genus Avastrovirus (AAstV; Astroviridae family), capable of causing considerable production losses in poultry. Using next-generation sequencing of a cloacal swab from a backyard chicken in Tanzania, we [...] Read more.
The enteric chicken astrovirus (CAstV) and avian nephritis virus (ANV) are the type species of the genus Avastrovirus (AAstV; Astroviridae family), capable of causing considerable production losses in poultry. Using next-generation sequencing of a cloacal swab from a backyard chicken in Tanzania, we assembled genome sequences of ANV and CAstV (6918 nt and 7318 nt in length, respectively, excluding poly(A) tails, which have a typical AAstV genome architecture (5′-UTR-ORF1a-ORF1b-ORF2-‘3-UTR). They are most similar to strains ck/ANV/BR/RS/6R/15 (82.72%) and ck/CAstV/PL/G059/14 (82.23%), respectively. Phylogenetic and sequence analyses of the genomes and the three open reading frames (ORFs) grouped the Tanzanian ANV and CAstV strains with Eurasian ANV-5 and CAstV-Aii viruses, respectively. Compared to other AAstVs, the Tanzanian strains have numerous amino acid variations (substitutions, insertions and deletions) in the spike region of the capsid protein. Furthermore, CAstV-A has a 4018 nt recombinant fragment in the ORF1a/1b genomic region, predicted to be from Eurasian CAstV-Bi and Bvi parental strains. These data should inform future epidemiological studies and options for AAstV diagnostics and vaccines. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 28795 KiB  
Article
Unique Variants of Avian Coronaviruses from Indigenous Chickens in Kenya
by Henry M. Kariithi, Jeremy D. Volkening, Iryna V. Goraichuk, Leonard O. Ateya, Dawn Williams-Coplin, Tim L. Olivier, Yatinder S. Binepal, Claudio L. Afonso and David L. Suarez
Viruses 2023, 15(2), 264; https://doi.org/10.3390/v15020264 - 17 Jan 2023
Cited by 14 | Viewed by 3178
Abstract
The avian gamma-coronavirus infectious bronchitis virus (AvCoV, IBV; Coronaviridae family) causes upper respiratory disease associated with severe economic losses in the poultry industry worldwide. Here, we report for the first time in Kenya and the Eastern African region two novel AvCoVs, designated IBV/ck/KE/1920/A374/2017 [...] Read more.
The avian gamma-coronavirus infectious bronchitis virus (AvCoV, IBV; Coronaviridae family) causes upper respiratory disease associated with severe economic losses in the poultry industry worldwide. Here, we report for the first time in Kenya and the Eastern African region two novel AvCoVs, designated IBV/ck/KE/1920/A374/2017 (A374/17) and AvCoV/ck/KE/1922/A376/2017 (A376/17), inadvertently discovered using random nontargeted next-generation sequencing (NGS) of cloacal swabs collected from indigenous chickens. Despite having genome organization (5′UTR-[Rep1a/1ab-S-3a-3b-E-M-4b-4c-5a-5b-N-6b]-3′UTR), canonical conservation of essential genes and size (~27.6 kb) typical of IBVs, the Kenyan isolates do not phylogenetically cluster with any genotypes of the 37 IBV lineages and 26 unique variants (UVs). Excluding the spike gene, genome sequences of A374/17 and A376/17 are only 93.1% similar to each other and 86.7–91.4% identical to genomes of other AvCoVs. All five non-spike genes of the two isolates phylogenetically cluster together and distinctly from other IBVs and turkey coronaviruses (TCoVs), including the indigenous African GI-26 viruses, suggesting a common origin of the genome backbone of the Kenyan isolates. However, isolate A376/17 contains a TCoV-like spike (S) protein coding sequence and is most similar to Asian TCoVs (84.5–85.1%) compared to other TCoVs (75.6–78.5%), whereas isolate A374/17 contains an S1 gene sequence most similar to the globally distributed lineage GI-16 (78.4–79.5%) and the Middle Eastern lineage GI-23 (79.8–80.2%) viruses. Unanswered questions include the actual origin of the Kenyan AvCoVs, the potential pathobiological significance of their genetic variations, whether they have indeed established themselves as independent variants and subsequently spread within Kenya and to the neighboring east/central African countries that have porous live poultry trade borders, and whether the live-attenuated Mass-type (lineage GI-1)-based vaccines currently used in Kenya and most of the African countries provide protection against these genetically divergent field variants. Full article
(This article belongs to the Special Issue Infectious Bronchitis Virus)
Show Figures

Figure 1

23 pages, 3988 KiB  
Article
Detection and Genome Sequence Analysis of Avian Metapneumovirus Subtype A Viruses Circulating in Commercial Chicken Flocks in Mexico
by Henry M. Kariithi, Nancy Christy, Eduardo L. Decanini, Stéphane Lemiere, Jeremy D. Volkening, Claudio L. Afonso and David L. Suarez
Vet. Sci. 2022, 9(10), 579; https://doi.org/10.3390/vetsci9100579 - 19 Oct 2022
Cited by 18 | Viewed by 3865
Abstract
Avian metapneumoviruses (aMPV subtypes A-D) are respiratory and reproductive pathogens of poultry. Since aMPV-A was initially reported in Mexico in 2014, there have been no additional reports of its detection in the country. Using nontargeted next-generation sequencing (NGS) of FTA card-spotted respiratory samples [...] Read more.
Avian metapneumoviruses (aMPV subtypes A-D) are respiratory and reproductive pathogens of poultry. Since aMPV-A was initially reported in Mexico in 2014, there have been no additional reports of its detection in the country. Using nontargeted next-generation sequencing (NGS) of FTA card-spotted respiratory samples from commercial chickens in Mexico, seven full genome sequences of aMPV-A (lengths of 13,288–13,381 nucleotides) were de novo assembled. Additionally, complete coding sequences of genes N (n = 2), P and M (n = 7 each), F and L (n = 1 each), M2 (n = 6), SH (n = 5) and G (n = 2) were reference-based assembled from another seven samples. The Mexican isolates phylogenetically group with, but in a distinct clade separate from, other aMPV-A strains. The genome and G-gene nt sequences of the Mexican aMPVs are closest to strain UK/8544/06 (97.22–97.47% and 95.07–95.83%, respectively). Various amino acid variations distinguish the Mexican isolates from each other, and other aMPV-A strains, most of which are in the G (n = 38), F (n = 12), and L (n = 19) proteins. Using our sequence data and publicly available aMPV-A data, we revised a previously published rRT-PCR test, which resulted in different cycling and amplification conditions for aMPV-A to make it more compatible with other commonly used rRT-PCR diagnostic cycling conditions. This is the first comprehensive sequence analysis of aMPVs in Mexico and demonstrates the value of nontargeted NGS to identify pathogens where targeted virus surveillance is likely not routinely performed. Full article
Show Figures

Figure 1

17 pages, 1053 KiB  
Review
Respiratory Subsets in Patients with Moderate to Severe Acute Respiratory Distress Syndrome for Early Prediction of Death
by Jesús Villar, Cristina Fernández, Jesús M. González-Martín, Carlos Ferrando, José M. Añón, Ana M. del Saz-Ortíz, Ana Díaz-Lamas, Ana Bueno-González, Lorena Fernández, Ana M. Domínguez-Berrot, Eduardo Peinado, David Andaluz-Ojeda, Elena González-Higueras, Anxela Vidal, M. Mar Fernández, Juan M. Mora-Ordoñez, Isabel Murcia, Concepción Tarancón, Eleuterio Merayo, Alba Pérez, Miguel A. Romera, Francisco Alba, David Pestaña, Pedro Rodríguez-Suárez, Rosa L. Fernández, Ewout W. Steyerberg, Lorenzo Berra, Arthur S. Slutsky and The Spanish Initiative for Epidemiology, Stratification and Therapies of ARDS (SIESTA) Networkadd Show full author list remove Hide full author list
J. Clin. Med. 2022, 11(19), 5724; https://doi.org/10.3390/jcm11195724 - 27 Sep 2022
Cited by 10 | Viewed by 3211
Abstract
Introduction: In patients with acute respiratory distress syndrome (ARDS), the PaO2/FiO2 ratio at the time of ARDS diagnosis is weakly associated with mortality. We hypothesized that setting a PaO2/FiO2 threshold in 150 mm Hg at 24 h [...] Read more.
Introduction: In patients with acute respiratory distress syndrome (ARDS), the PaO2/FiO2 ratio at the time of ARDS diagnosis is weakly associated with mortality. We hypothesized that setting a PaO2/FiO2 threshold in 150 mm Hg at 24 h from moderate/severe ARDS diagnosis would improve predictions of death in the intensive care unit (ICU). Methods: We conducted an ancillary study in 1303 patients with moderate to severe ARDS managed with lung-protective ventilation enrolled consecutively in four prospective multicenter cohorts in a network of ICUs. The first three cohorts were pooled (n = 1000) as a testing cohort; the fourth cohort (n = 303) served as a confirmatory cohort. Based on the thresholds for PaO2/FiO2 (150 mm Hg) and positive end-expiratory pressure (PEEP) (10 cm H2O), the patients were classified into four possible subsets at baseline and at 24 h using a standardized PEEP-FiO2 approach: (I) PaO2/FiO2 ≥ 150 at PEEP < 10, (II) PaO2/FiO2 ≥ 150 at PEEP ≥ 10, (III) PaO2/FiO2 < 150 at PEEP < 10, and (IV) PaO2/FiO2 < 150 at PEEP ≥ 10. Primary outcome was death in the ICU. Results: ICU mortalities were similar in the testing and confirmatory cohorts (375/1000, 37.5% vs. 112/303, 37.0%, respectively). At baseline, most patients from the testing cohort (n = 792/1000, 79.2%) had a PaO2/FiO2 < 150, with similar mortality among the four subsets (p = 0.23). When assessed at 24 h, ICU mortality increased with an advance in the subset: 17.9%, 22.8%, 40.0%, and 49.3% (p < 0.0001). The findings were replicated in the confirmatory cohort (p < 0.0001). However, independent of the PEEP levels, patients with PaO2/FiO2 < 150 at 24 h followed a distinct 30-day ICU survival compared with patients with PaO2/FiO2 ≥ 150 (hazard ratio 2.8, 95% CI 2.2–3.5, p < 0.0001). Conclusions: Subsets based on PaO2/FiO2 thresholds of 150 mm Hg assessed after 24 h of moderate/severe ARDS diagnosis are clinically relevant for establishing prognosis, and are helpful for selecting adjunctive therapies for hypoxemia and for enrolling patients into therapeutic trials. Full article
(This article belongs to the Special Issue New Insights into Acute Respiratory Distress Syndrome)
Show Figures

Figure 1

25 pages, 3046 KiB  
Article
Human Cytomegalovirus Infection Elicits Global Changes in Host Transcription by RNA Polymerases I, II, and III
by Christopher B. Ball, Mrutyunjaya Parida, Ming Li, Benjamin M. Spector, Gustavo A. Suarez, Jeffery L. Meier and David H. Price
Viruses 2022, 14(4), 779; https://doi.org/10.3390/v14040779 - 9 Apr 2022
Cited by 12 | Viewed by 3387
Abstract
How human cytomegalovirus (HCMV) infection impacts the transcription of the host genome remains incompletely understood. Here, we examine the global consequences of infection of primary human foreskin fibroblasts (HFFs) on transcription by RNA polymerase I, II, and III over the course of a [...] Read more.
How human cytomegalovirus (HCMV) infection impacts the transcription of the host genome remains incompletely understood. Here, we examine the global consequences of infection of primary human foreskin fibroblasts (HFFs) on transcription by RNA polymerase I, II, and III over the course of a lytic infection using PRO-Seq. The expected rapid induction of innate immune response genes is observed with specific subsets of genes exhibiting dissimilar expression kinetics. We find minimal effects on Pol II initiation, but increased rates of the release of paused Pol II into productive elongation are detected by 24 h postinfection and pronounced at late times postinfection. Pol I transcription increases during infection and we provide evidence for a potential Pol I elongation control mechanism. Pol III transcription of tRNA genes is dramatically altered, with many induced and some repressed. All effects are partially dependent on viral genome replication, suggesting a link to viral mRNA levels and/or a viral early–late or late gene product. Changes in tRNA transcription are connected to distinct alterations in the chromatin state around tRNA genes, which were probed with high-resolution DFF-ChIP. Additionally, evidence is provided that the Pol III PIC stably contacts an upstream −1 nucleosome. Finally, we compared and contrasted our HCMV data with results from published experiments with HSV-1, EBV, KSHV, and MHV68. We report disparate effects on Pol II transcription and potentially similar effects on Pol III transcription. Full article
Show Figures

Figure 1

Back to TopTop