Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Authors = Bisong Yue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 16108 KiB  
Article
Marine-Derived Enterococcus faecalis HY0110 as a Next-Generation Functional Food Probiotic: Comprehensive In Vitro and In Vivo Bioactivity Evaluation and Synergistic Fermentation of Periplaneta americana Extract Powder
by Feiyun Huang, Nan Yang, Qingqing Zhang, Cuiling Luo, Jingheng Wang, Yu Yang, Bisong Yue, Peng Chen and Xiuyue Zhang
Foods 2025, 14(7), 1181; https://doi.org/10.3390/foods14071181 - 28 Mar 2025
Viewed by 1132
Abstract
Addressing the escalating global burdens of inflammatory bowel disease and antimicrobial resistance demanded innovative food-based approaches to fortify gut health and suppress pathogens. We introduced a novel edible probiotic, Enterococcus faecalis HY0110, isolated from marine Thunnus thynnus. Through comprehensive in vitro, in [...] Read more.
Addressing the escalating global burdens of inflammatory bowel disease and antimicrobial resistance demanded innovative food-based approaches to fortify gut health and suppress pathogens. We introduced a novel edible probiotic, Enterococcus faecalis HY0110, isolated from marine Thunnus thynnus. Through comprehensive in vitro, in vivo, and metabolomic analyses, we demonstrated its superior antibacterial effects compared to Lactobacillus rhamnosus GG, along with significantly enhanced antioxidant and free-radical scavenging capacities. Notably, elevated acetic acid production strongly correlated with its antimicrobial efficacy (R ≥ 0.999). HY0110 also exerted antiproliferative effects on HT-29 colorectal cancer cells by attenuating β-catenin and BCL-2 expression while upregulating pro-apoptotic markers P62 and c-PARP. In a DSS-induced colitis model, HY0110 alleviated inflammation, restored gut microbial homeostasis, and enhanced deterministic processes in community assembly dynamics. Furthermore, fermenting Periplaneta americana powder with HY0110 triggered extensive metabolic remodeling, notably a 668.73-fold rise in astragaloside A, plus increases in L-Leucyl-L-Alanine, S-lactoylglutathione, and 16,16-dimethyl prostaglandin A1. These shifts diminished harmful components and amplified essential amino acids and peptides to bolster immune modulation, redox balance, and anti-inflammatory responses. This work established a transformative paradigm for utilizing marine probiotics and novel entomological substrates in functional foods, presenting strategic pathways for precision nutrition and inflammatory disease management. Full article
Show Figures

Graphical abstract

21 pages, 3524 KiB  
Article
Adaptive Expression and ncRNA Regulation of Genes Related to Digestion and Metabolism in Stomach of Red Pandas during Suckling and Adult Periods
by Lu Li, Liang Zhang, Lijun Luo, Fujun Shen, Yanni Zhao, Honglin Wu, Yan Huang, Rong Hou, Bisong Yue and Xiuyue Zhang
Animals 2024, 14(12), 1795; https://doi.org/10.3390/ani14121795 - 15 Jun 2024
Viewed by 1223
Abstract
Red pandas evolved from carnivores to herbivores and are unique within Carnivora. Red pandas and carnivorous mammals consume milk during the suckling period, while they consume bamboo and meat during the adult period, respectively. Red pandas and carnivorous mammal ferrets have a close [...] Read more.
Red pandas evolved from carnivores to herbivores and are unique within Carnivora. Red pandas and carnivorous mammals consume milk during the suckling period, while they consume bamboo and meat during the adult period, respectively. Red pandas and carnivorous mammal ferrets have a close phylogenetic relationship. To further investigate the molecular mechanisms of dietary changes and nutrient utilization in red pandas from suckling to adult, comparative analysis of the whole transcriptome was performed on stomach tissues from red pandas and ferrets during the suckling and adult periods. The main results are as follows: (1) we identified ncRNAs for the first time in stomach tissues of both species, and found significant expression changes of 109 lncRNAs and 106 miRNAs in red pandas and 756 lncRNAs and 109 miRNAs in ferrets between the two periods; (2) up-regulated genes related to amino acid transport regulated by lncRNA-miRNA-mRNA networks may efficiently utilize limited bamboo amino acids in adult red pandas, while up-regulated genes related to amino acid degradation regulated by lncRNAs may maintain the balance of amino acid metabolism due to larger daily intakes in adult ferrets; and (3) some up-regulated genes related to lipid digestion may contribute to the utilization of rich nutrients in milk for the rapid growth and development of suckling red pandas, while up-regulated genes associated with linoleic acid metabolism regulated by lncRNA-miRNA-mRNA networks may promote cholesterol decomposition to reduce health risks for carnivorous adult ferrets. Collectively, our study offers evidence of gene expression adaptation and ncRNA regulation in response to specific dietary changes and nutrient utilization in red pandas during suckling and adult periods. Full article
(This article belongs to the Collection Comparative Animal Nutrition and Metabolism)
Show Figures

Figure 1

20 pages, 3573 KiB  
Article
Transposable Elements Shape the Genome Diversity and the Evolution of Noctuidae Species
by Chunhui Zhang, Lei Wang, Liang Dou, Bisong Yue, Jinchuan Xing and Jing Li
Genes 2023, 14(6), 1244; https://doi.org/10.3390/genes14061244 - 10 Jun 2023
Cited by 3 | Viewed by 2466
Abstract
Noctuidae is known to have high species diversity, although the genomic diversity of Noctuidae species has yet to be studied extensively. Investigation of transposable elements (TEs) in this family can improve our understanding of the genomic diversity of Noctuidae. In this study, we [...] Read more.
Noctuidae is known to have high species diversity, although the genomic diversity of Noctuidae species has yet to be studied extensively. Investigation of transposable elements (TEs) in this family can improve our understanding of the genomic diversity of Noctuidae. In this study, we annotated and characterized genome-wide TEs in ten noctuid species belonging to seven genera. With multiple annotation pipelines, we constructed a consensus sequence library containing 1038–2826 TE consensus. The genome content of TEs showed high variation in the ten Noctuidae genomes, ranging from 11.3% to 45.0%. The relatedness analysis indicated that the TE content, especially the content of LINEs and DNA transposons, is positively correlated with the genome size (r = 0.86, p-value = 0.001). We identified SINE/B2 as a lineage-specific subfamily in Trichoplusia ni, a species-specific expansion of the LTR/Gypsy subfamily in Spodoptera exigua, and a recent expansion of SINE/5S subfamily in Busseola fusca. We further revealed that of the four TE classes, only LINEs showed phylogenetic signals with high confidence. We also examined how the expansion of TEs contributed to the evolution of noctuid genomes. Moreover, we identified 56 horizontal transfer TE (HTT) events among the ten noctuid species and at least three HTT events between the nine Noctuidae species and 11 non-noctuid arthropods. One of the HTT events of a Gypsy transposon might have caused the recent expansion of the Gypsy subfamily in the S. exigua genome. By determining the TE content, dynamics, and HTT events in the Noctuidae genomes, our study emphasized that TE activities and HTT events substantially impacted the Noctuidae genome evolution. Full article
(This article belongs to the Special Issue Mobile-Element-Related Genetic Variation)
Show Figures

Figure 1

15 pages, 7245 KiB  
Article
Comparative Analysis of Olfactory Receptor Repertoires Sheds Light on the Diet Adaptation of the Bamboo-Eating Giant Panda Based on the Chromosome-Level Genome
by Chuang Zhou, Yi Liu, Guangqing Zhao, Zhengwei Liu, Qian Chen, Bisong Yue, Chao Du and Xiuyue Zhang
Animals 2023, 13(6), 979; https://doi.org/10.3390/ani13060979 - 8 Mar 2023
Cited by 6 | Viewed by 3885
Abstract
The giant panda (Ailuropoda melanoleuca) is the epitome of a flagship species for wildlife conservation and also an ideal model of adaptive evolution. As an obligate bamboo feeder, the giant panda relies on the olfaction for food recognition. The number of [...] Read more.
The giant panda (Ailuropoda melanoleuca) is the epitome of a flagship species for wildlife conservation and also an ideal model of adaptive evolution. As an obligate bamboo feeder, the giant panda relies on the olfaction for food recognition. The number of olfactory receptor (OR) genes and the rate of pseudogenes are the main factors affecting the olfactory ability of animals. In this study, we used the chromosome-level genome of the giant panda to identify OR genes and compared the genome sequences of OR genes with five other Ursidae species (spectacled bear (Tremarctos ornatus), American black bear (Ursus americanus), brown bear (Ursus arctos), polar bear (Ursus maritimus) and Asian black bear (Ursus thibetanus)). The giant panda had 639 OR genes, including 408 functional genes, 94 partial OR genes and 137 pseudogenes. Among them, 222 OR genes were detected and distributed on 18 chromosomes, and chromosome 8 had the most OR genes. A total of 448, 617, 582, 521 and 792 OR genes were identified in the spectacled bear, American black bear, brown bear, polar bear and Asian black bear, respectively. Clustering analysis based on the OR protein sequences of the six species showed that the OR genes distributed in 69 families and 438 subfamilies based on sequence similarity, and the six mammals shared 72 OR gene subfamilies, while the giant panda had 31 unique OR gene subfamilies (containing 35 genes). Among the 35 genes, there are 10 genes clustered into 8 clusters with 10 known human OR genes (OR8J3, OR51I1, OR10AC1, OR1S2, OR1S1, OR51S1, OR4M1, OR4M2, OR51T1 and OR5W2). However, the kind of odor molecules can be recognized by the 10 known human OR genes separately, which needs further research. The phylogenetic tree showed that 345 (about 84.56%) functional OR genes were clustered as Class-II, while only 63 (about 15.44%) functional OR genes were clustered as Class-I, which required further and more in-depth research. The potential odor specificity of some giant panda OR genes was identified through the similarity to human protein sequences. Sequences similar to OR2B1, OR10G3, OR11H6 and OR11H7P were giant panda-specific lacking, which may be related to the transformation and specialization from carnivore to herbivore of the giant panda. Since our reference to flavoring agents comes from human research, the possible flavoring agents from giant panda-specific OR genes need further investigation. Moreover, the conserved motifs of OR genes were highly conserved in Ursidae species. This systematic study of OR genes in the giant panda will provide a solid foundation for further research on the olfactory function and variation of the giant panda. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 9134 KiB  
Article
Comprehensive Comparative Analysis Sheds Light on the Patterns of Microsatellite Distribution across Birds Based on the Chromosome-Level Genomes
by Kaize Feng, Chuang Zhou, Lei Wang, Chunhui Zhang, Zhixiong Yang, Zhengrui Hu, Bisong Yue and Yongjie Wu
Animals 2023, 13(4), 655; https://doi.org/10.3390/ani13040655 - 13 Feb 2023
Cited by 3 | Viewed by 3717
Abstract
Microsatellites (SSRs) are widely distributed in the genomes of organisms and are an important genetic basis for genome evolution and phenotypic adaptation. Although the distribution patterns of microsatellites have been investigated in many phylogenetic lineages, they remain unclear within the morphologically and physiologically [...] Read more.
Microsatellites (SSRs) are widely distributed in the genomes of organisms and are an important genetic basis for genome evolution and phenotypic adaptation. Although the distribution patterns of microsatellites have been investigated in many phylogenetic lineages, they remain unclear within the morphologically and physiologically diverse avian clades. Here, based on high-quality chromosome-level genomes, we examined the microsatellite distribution patterns for 53 birds from 16 orders. The results demonstrated that each type of SSR had the same ratio between taxa. For example, the frequency of imperfect SSRs (I-SSRs) was 69.90–84.61%, while perfect SSRs (P-SSRs) were 14.86–28.13% and compound SSRs (C-SSRs) were 0.39–2.24%. Mononucleotide SSRs were dominant for perfect SSRs (32.66–76.48%) in most bird species (98.11%), and A(n) was the most abundant repeat motifs of P-SSRs in all birds (5.42–68.22%). Our study further confirmed that the abundance and diversity of microsatellites were less effected by evolutionary history but its length. The number of P-SSRs decreased with increasing repeat times, and longer P-SSRs motifs had a higher variability coefficient of the repeat copy number and lower diversity, indicating that longer motifs tended to have more stable preferences in avian genomes. We also found that P-SSRs were mainly distributed at the gene ends, and the functional annotation for these genes demonstrated that they were related to signal transduction and cellular process. In conclusion, our research provided avian SSR distribution patterns, which will help to explore the genetic basis for phenotypic diversity in birds. Full article
Show Figures

Figure 1

17 pages, 22768 KiB  
Article
Comparative Analyses Reveal the Genetic Mechanism of Ambergris Production in the Sperm Whale Based on the Chromosome-Level Genome
by Chuang Zhou, Kexin Peng, Yi Liu, Rusong Zhang, Xiaofeng Zheng, Bisong Yue, Chao Du and Yongjie Wu
Animals 2023, 13(3), 361; https://doi.org/10.3390/ani13030361 - 20 Jan 2023
Cited by 1 | Viewed by 4013
Abstract
Sperm whales are a marine mammal famous for the aromatic substance, the ambergris, produced from its colon. Little is known about the biological processes of ambergris production, and this study aims to investigate the genetic mechanism of ambergris production in the sperm whale [...] Read more.
Sperm whales are a marine mammal famous for the aromatic substance, the ambergris, produced from its colon. Little is known about the biological processes of ambergris production, and this study aims to investigate the genetic mechanism of ambergris production in the sperm whale based on its chromosome-level genome. Comparative genomics analyses found 1207 expanded gene families and 321 positive selected genes (PSGs) in the sperm whale, and functional enrichment analyses suggested revelatory pathways and terms related to the metabolism of steroids, terpenoids, and aldosterone, as well as microbiota interaction and immune network in the intestine. Furthermore, two sperm-whale-specific missense mutations (Tyr393His and Leu567Val) were detected in the PSG LIPE, which has been reported to play vital roles in lipid and cholesterol metabolism. In total, 46 CYP genes and 22 HSD genes were annotated, and then mapped to sperm whale chromosomes. Furthermore, phylogenetic analysis of CYP genes in six mammals found that CYP2E1, CYP51A and CYP8 subfamilies exhibited relative expansion in the sperm whale. Our results could help understand the genetic mechanism of ambergris production, and further reveal the convergent evolution pattern among animals that produce similar odorants. Full article
(This article belongs to the Special Issue Adaptive Evolution and Trait Formation of Animals)
Show Figures

Figure 1

18 pages, 5785 KiB  
Article
Characterization of Seventeen Complete Mitochondrial Genomes: Structural Features and Phylogenetic Implications of the Lepidopteran Insects
by Meiling Cheng, Yi Liu, Xiaofeng Zheng, Rusong Zhang, Kaize Feng, Bisong Yue, Chao Du and Chuang Zhou
Insects 2022, 13(11), 998; https://doi.org/10.3390/insects13110998 - 31 Oct 2022
Cited by 5 | Viewed by 2956
Abstract
Lepidoptera (moths and butterflies) are widely distributed in the world, but high-level phylogeny in Lepidoptera remains uncertain. More mitochondrial genome (mitogenome) data can help to conduct comprehensive analysis and construct a robust phylogenetic tree. Here, we sequenced and annotated 17 complete moth mitogenomes [...] Read more.
Lepidoptera (moths and butterflies) are widely distributed in the world, but high-level phylogeny in Lepidoptera remains uncertain. More mitochondrial genome (mitogenome) data can help to conduct comprehensive analysis and construct a robust phylogenetic tree. Here, we sequenced and annotated 17 complete moth mitogenomes and made comparative analysis with other moths. The gene order of trnM-trnI-trnQ in 17 moths was different from trnI-trnQ-trnM of ancestral insects. The number, type, and order of genes were consistent with reported moths. The length of newly sequenced complete mitogenomes ranged from 14,231 bp of Rhagastis albomarginatus to 15,756 bp of Numenes albofascia. These moth mitogenomes were typically with high A+T contents varied from 76.0% to 81.7% and exhibited negative GC skews. Among 13 protein coding genes (PCGs), some unusual initiations and terminations were found in part of newly sequenced moth mitogenomes. Three conserved gene-overlapping regions and one conserved intergenic region were detected among 17 mitogenomes. The phylogenetic relationship of major superfamilies in Macroheterocera was as follows: (Bombycoidea + Lasiocampoidea) + ((Drepanoidea + Geometroidea) + Noctuoidea)), which was different from previous studies. Moreover, the topology of Noctuoidea as (Notodontidae + (Erebidae + Noctuidae)) was supported by high Bayesian posterior probabilities (BPP = 1.0) and bootstrapping values (BSV = 100). This study greatly enriched the mitogenome database of moth and strengthened the high-level phylogenetic relationships of Lepidoptera. Full article
(This article belongs to the Special Issue Systematics, Ecology and Evolution of Lepidoptera)
Show Figures

Figure 1

20 pages, 25860 KiB  
Article
Enhanced Resolution of Evolution and Phylogeny of the Moths Inferred from Nineteen Mitochondrial Genomes
by Xiaofeng Zheng, Rusong Zhang, Bisong Yue, Yongjie Wu, Nan Yang and Chuang Zhou
Genes 2022, 13(9), 1634; https://doi.org/10.3390/genes13091634 - 12 Sep 2022
Cited by 4 | Viewed by 3156
Abstract
The vast majority (approximately 90%) of Lepidoptera species belong to moths whose phylogeny has been widely discussed and highly controversial. For the further understanding of phylogenetic relationships of moths, nineteen nearly complete mitochondrial genomes (mitogenomes) of moths involved in six major lineages were [...] Read more.
The vast majority (approximately 90%) of Lepidoptera species belong to moths whose phylogeny has been widely discussed and highly controversial. For the further understanding of phylogenetic relationships of moths, nineteen nearly complete mitochondrial genomes (mitogenomes) of moths involved in six major lineages were sequenced and characterized. These mitogenomes ranged from 15,177 bp (Cyclidia fractifasciata) to 15,749 bp (Ophthalmitis albosignaria) in length, comprising of the core 37 mitochondrial genes (13 protein-coding genes (PCGs) + 22 tRNAs + two rRNAs) and an incomplete control region. The order and orientation of genes showed the same pattern and the gene order of trnM-trnI-trnQ showed a typical rearrangement of Lepidoptera compared with the ancestral order of trnI-trnQ-trnM. Among these 13 PCGs, ATP8 exhibited the fastest evolutionary rate, and Drepanidae showed the highest average evolutionary rate among six families involved in 66 species. The phylogenetic analyses based on the dataset of 13 PCGs suggested the relationship of (Notodontidae + (Noctuidae + Erebidae)) + (Geometridae + (Sphingidae + Drepanidae)), which suggested a slightly different pattern from previous studies. Most groups were well defined in the subfamily level except Erebidae, which was not fully consistent across bayesian and maximum likelihood methods. Several formerly unassigned tribes of Geometridae were suggested based on mitogenome sequences despite a not very strong support in partial nodes. The study of mitogenomes of these moths can provide fundamental information of mitogenome architecture, and the phylogenetic position of moths, and contributes to further phylogeographical studies and the biological control of pests. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3044 KiB  
Article
Colour Variation in the Crocodile Lizard (Shinisaurus crocodilurus) and Its Relationship to Individual Quality
by Xia Qiu, Martin J. Whiting, Weiguo Du, Zhengjun Wu, Shuyi Luo, Bisong Yue, Jinzhong Fu and Yin Qi
Biology 2022, 11(9), 1314; https://doi.org/10.3390/biology11091314 - 4 Sep 2022
Cited by 5 | Viewed by 11777
Abstract
Colour plays a key role in animal social communication including as an indicator of individual quality. Using spectrophotometry, we examined colour variation in the throat and venter of the crocodile lizard (Shinisaurus crocodilurus), an endangered species native to southern China and [...] Read more.
Colour plays a key role in animal social communication including as an indicator of individual quality. Using spectrophotometry, we examined colour variation in the throat and venter of the crocodile lizard (Shinisaurus crocodilurus), an endangered species native to southern China and northern Vietnam. We detected two broad colour variants, individuals with and without red, for each body region and each sex. A cluster analysis of spectral colour measurements (hue, chroma, luminance) revealed discrete throat and ventral morphs when measured in a single snapshot in time. However, photographic evidence revealed that the amount of red relative to body size increased as they got older. Individuals with red were equally likely to be male or female and throat colour was unrelated to ventral colour. Therefore, it is premature to claim that crocodile lizards have discrete colour morphs. We used visual modelling to show that the throat and venter were easily discriminable to a lizard visual system, suggesting they function in social communication. We also asked whether colour variation signalled individual quality. Females with red throats had greater bite force while males with red throats were older. In addition, females with red venters had larger heads. We also detected differences in morphology linked to colour. Females with red throats had slender bodies and longer tails, while individuals lacking red on their throats were stouter and had shorter tails. Finally, throat and ventral colour were unrelated to reproductive output (litter size and mass) in females. Males with greater ventral luminance contrast sired offspring from litters with greater litter mass (including stillborns), while males with greater ventral chromatic contrast sired offspring whose collective live mass (excluding stillborns) was greater. Males with greater luminance contrast also sired more live offspring (excluding stillborns). Collectively, these results suggest that male ventral colour signals individual quality in males. Conservation initiatives should take colour variation into account when planning future captive breeding and release programs for this endangered species. Full article
(This article belongs to the Special Issue Advances in Animal Social Behavior and Social Evolution)
Show Figures

Figure 1

20 pages, 3409 KiB  
Article
Comparative Transcriptomics and Methylomics Reveal Adaptive Responses of Digestive and Metabolic Genes to Dietary Shift in Giant and Red Pandas
by Lu Li, Fujun Shen, Xiaodie Jie, Liang Zhang, Guoqiang Yan, Honglin Wu, Yan Huang, Rong Hou, Bisong Yue and Xiuyue Zhang
Genes 2022, 13(8), 1446; https://doi.org/10.3390/genes13081446 - 14 Aug 2022
Cited by 4 | Viewed by 2760
Abstract
Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to the order Carnivora, but have changed their dietary habits to eating bamboo exclusively. The convergent evolution characteristics of their morphology, genome and gut flora have been [...] Read more.
Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to the order Carnivora, but have changed their dietary habits to eating bamboo exclusively. The convergent evolution characteristics of their morphology, genome and gut flora have been found in the two pandas. However, the research on the convergent adaptation of their digestion and metabolism to the bamboo diet, mediated by the dietary shift of the two pandas at the gene-expression and epigenetic regulation levels, is still lacking. We therefore used RNA sequencing among five species (two pandas and three non-herbivore mammals) and bisulfite sequencing among three species (two pandas and a carnivore ferret) to sequence key digestion and metabolism tissues (stomach and small intestine). Our results provide evidence that the convergent differentially expressed genes (related to carbohydrate utilization, bile secretion, Lys and Arg metabolism, vitamin B12 utilization and cyanide detoxification) of the two pandas are adaptive responses to the bamboo diet containing low lipids, low Lys and Arg, low vitamin B12 and high cyanide. We also profiled the genome-wide methylome maps of giant panda, red panda and ferret, and the results indicated that the promoter methylation of the two pandas may regulate digestive and metabolic genes to adapt to sudden environmental changes, and then, transmit genetic information to future generations to evolve into bamboo eaters. Taken together, our study provides new insights into the molecular mechanisms of the dietary shift and the adaptation to a strict bamboo diet in both pandas using comparative transcriptomics and methylomics. Full article
(This article belongs to the Special Issue Mechanisms of Transgenerational Epigenetic Inheritance)
Show Figures

Figure 1

10 pages, 2976 KiB  
Article
Heterologous Prime-Boost Immunization with DNA Vaccine and Modified Recombinant Proteins Enhances Immune Response against Trueperella pyogenes in Mice
by Ting Huang, Kelei Zhao, Xuhao Song, Tao Song, Xinrong Wang, Xiuyue Zhang, Bisong Yue and Yiwen Chu
Vaccines 2022, 10(6), 839; https://doi.org/10.3390/vaccines10060839 - 25 May 2022
Cited by 8 | Viewed by 2255
Abstract
Trueperella pyogenes (T. pyogenes) is a crucial opportunistic pathogen normally causing mastitis, abscesses and pneumonia in economically important ruminants. Although only one commercial vaccine of T. pyogenes is currently obtainable, its immunoprotective effect is limited. Pyolysin (PLO) is the most predominant [...] Read more.
Trueperella pyogenes (T. pyogenes) is a crucial opportunistic pathogen normally causing mastitis, abscesses and pneumonia in economically important ruminants. Although only one commercial vaccine of T. pyogenes is currently obtainable, its immunoprotective effect is limited. Pyolysin (PLO) is the most predominant virulence factor highly expressed in T. pyogenes and is an excellent target for the development of novel vaccines against T. pyogenes. In this study, we designed a heterologous prime-boost vaccination scheme combining a DNA vaccine pVAX1-PLO and a subunit vaccine His-PLO to maximize host responses in mice. Humoral and cellular immune responses and protective effects were evaluated in mice to compare the immunogenicity induced by different immunization schemes. Compared to the PBS-control group, in vivo immunization results showed that better immune responses of mice immunized with the pVAX1-PLO plasmids and His-PLO proteins were induced. The residual bacterial burdens from the liver and peritoneal fluid were remarkably decreased in the immunized mice compared with the PBS group. Notably, the heterologous prime-boost vaccination groups significantly enhanced host humoral and cellular immune responses and protected mice from different virulent T. pyogenes strains infection. Conclusively, this study provides a favorable strategy for the further development of next-generation vaccines against T. pyogenes infections. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
Show Figures

Figure 1

13 pages, 1532 KiB  
Article
Assigning the Sex-Specific Markers via Genotyping-by-Sequencing onto the Y Chromosome for a Torrent Frog Amolops mantzorum
by Wei Luo, Yun Xia, Bisong Yue and Xiaomao Zeng
Genes 2020, 11(7), 727; https://doi.org/10.3390/genes11070727 - 30 Jun 2020
Cited by 10 | Viewed by 8611
Abstract
We used a genotyping-by-sequencing (GBS) approach to identify sex-linked markers in a torrent frog (Amolops mantzorum), using 21 male and 19 female wild-caught individuals from the same population. A total of 141 putatively sex-linked markers were screened from 1,015,964 GBS-tags via [...] Read more.
We used a genotyping-by-sequencing (GBS) approach to identify sex-linked markers in a torrent frog (Amolops mantzorum), using 21 male and 19 female wild-caught individuals from the same population. A total of 141 putatively sex-linked markers were screened from 1,015,964 GBS-tags via three approaches, respectively based on sex differences in allele frequencies, sex differences in heterozygosity, and sex-limited occurrence. With validations, 69 sex-linked markers were confirmed, all of which point to male heterogamety. The male specificity of eight sex markers was further verified by PCR amplifications, with a large number of additional individuals covering the whole geographic distribution of the species. Y chromosome (No. 5) was microdissected under a light microscope and amplified by whole-genome amplification, and a draft Y genome was assembled. Of the 69 sex-linked markers, 55 could be mapped to the Y chromosome assembly (i.e., 79.7%). Thus, chromosome 5 could be added as a candidate to the chromosomes that are particularly favored for recruitment in sex-determination in frogs. Three sex-linked markers that mapped onto the Y chromosome were aligned to three different promoter regions of the Rana rugosa CYP19A1 gene, which might be considered as a candidate gene for triggering sex-determination in A. mantzorum. Full article
Show Figures

Figure 1

17 pages, 7871 KiB  
Article
Cloning, Expression and Effects of P. americana Thymosin on Wound Healing
by Jie Jing, Xiaohong Sun, Chuang Zhou, Yifan Zhang, Yongmei Shen, Xiaomao Zeng, Bisong Yue and Xiuyue Zhang
Int. J. Mol. Sci. 2019, 20(19), 4932; https://doi.org/10.3390/ijms20194932 - 5 Oct 2019
Cited by 21 | Viewed by 4287
Abstract
The American cockroach (Periplaneta americana) is a medicinal insect. Its extract is used clinically to promote wound healing and tissue regeneration, but the effective medicinal components and mechanisms are not yet clear. It has been reported that human thymosin beta 4 [...] Read more.
The American cockroach (Periplaneta americana) is a medicinal insect. Its extract is used clinically to promote wound healing and tissue regeneration, but the effective medicinal components and mechanisms are not yet clear. It has been reported that human thymosin beta 4 (Tβ4) may accelerate skin wound healing, however, the role of P. americana thymosin (Pa-THYs) is still poorly understood. In the present study, we identify and analyze the DNA sequences of Pa-THYs by bioinformatics analysis. Then we clone, express, and purify the Pa-THYs proteins and evaluate the activity of recombinant Pa-THYs proteins by cell migration and proliferation assays in NIH/3T3 cells. To elucidate the role of Pa-THYs in wound healing, a mouse model is established, and we evaluate wound contraction, histopathological parameters, and the expressions of several key growth factors after Pa-THYs treatment. Our results showed that three THY variants were formed by skipping splicing of exons. Pa-THYs could promote fibroblast migration, but have no effect on fibroblast proliferation. In wound repair, Pa-THYs proteins could effectively promote wound healing through stimulating dermal tissue regeneration, angiogenesis, and collagen deposition. On the molecular mechanism, Pa-THYs also stimulated the expression of several key growth factors to promote wound healing. The data suggest that Pa-THYs could be a potential drug for promoting wound repair. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration: Mechanisms, Signaling)
Show Figures

Figure 1

16 pages, 8555 KiB  
Article
The Draft Genome of the Endangered Sichuan Partridge (Arborophila rufipectus) with Evolutionary Implications
by Chuang Zhou, Hongmei Tu, Haoran Yu, Shuai Zheng, Bo Dai, Megan Price, Yongjie Wu, Nan Yang, Bisong Yue and Yang Meng
Genes 2019, 10(9), 677; https://doi.org/10.3390/genes10090677 - 5 Sep 2019
Cited by 9 | Viewed by 4271
Abstract
The Sichuan partridge (Arborophila rufipectus, Phasianidae, Galliformes) is distributed in south-west China, and classified as endangered grade. To examine the evolution and genomic features of Sichuan partridge, we de novo assembled the Sichuan partridge reference genome. The final draft assembly consisted [...] Read more.
The Sichuan partridge (Arborophila rufipectus, Phasianidae, Galliformes) is distributed in south-west China, and classified as endangered grade. To examine the evolution and genomic features of Sichuan partridge, we de novo assembled the Sichuan partridge reference genome. The final draft assembly consisted of approximately 1.09 Gb, and had a scaffold N50 of 4.57 Mb. About 1.94 million heterozygous single-nucleotide polymorphisms (SNPs) were detected, 17,519 protein-coding genes were predicted, and 9.29% of the genome was identified as repetitive elements. A total of 56 olfactory receptor (OR) genes were found in Sichuan partridge, and conserved motifs were detected. Comparisons between the Sichuan partridge genome and chicken genome revealed a conserved genome structure, and phylogenetic analysis demonstrated that Arborophila possessed a basal phylogenetic position within Phasianidae. Gene Ontology (GO) enrichment analysis of positively selected genes (PSGs) in Sichuan partridge showed over-represented GO functions related to environmental adaptation, such as energy metabolism and behavior. Pairwise sequentially Markovian coalescent analysis revealed the recent demographic trajectory for the Sichuan partridge. Our data and findings provide valuable genomic resources not only for studying the evolutionary adaptation, but also for facilitating the long-term conservation and genetic diversity for this endangered species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Graphical abstract

24 pages, 2164 KiB  
Article
Comparative Genome-Wide Survey of Single Nucleotide Variation Uncovers the Genetic Diversity and Potential Biomedical Applications among Six Macaca Species
by Jing Li, Zhenxin Fan, Tianlin Sun, Changjun Peng, Bisong Yue and Jing Li
Int. J. Mol. Sci. 2018, 19(10), 3123; https://doi.org/10.3390/ijms19103123 - 11 Oct 2018
Cited by 3 | Viewed by 5869
Abstract
Macaca is of great importance in evolutionary and biomedical research. Aiming at elucidating genetic diversity patterns and potential biomedical applications of macaques, we characterized single nucleotide variations (SNVs) of six Macaca species based on the reference genome of Macaca mulatta. Using eight [...] Read more.
Macaca is of great importance in evolutionary and biomedical research. Aiming at elucidating genetic diversity patterns and potential biomedical applications of macaques, we characterized single nucleotide variations (SNVs) of six Macaca species based on the reference genome of Macaca mulatta. Using eight whole-genome sequences, representing the most comprehensive genomic SNV study in Macaca to date, we focused on discovery and comparison of nonsynonymous SNVs (nsSNVs) with bioinformatic tools. We observed that SNV distribution patterns were generally congruent among the eight individuals. Outlier tests of nsSNV distribution patterns detected 319 bins with significantly distinct genetic divergence among macaques, including differences in genes associated with taste transduction, homologous recombination, and fat and protein digestion. Genes with specific nsSNVs in various macaques were differentially enriched for metabolism pathways, such as glycolysis, protein digestion and absorption. On average, 24.95% and 11.67% specific nsSNVs were putatively deleterious according to PolyPhen2 and SIFT4G, respectively, among which the shared deleterious SNVs were located in 564–1981 genes. These genes displayed enrichment signals in the ‘obesity-related traits’ disease category for all surveyed macaques, confirming that they were suitable models for obesity related studies. Additional enriched disease categories were observed in some macaques, exhibiting promising potential for biomedical application. Positively selected genes identified by PAML in most tested Macaca species played roles in immune and nervous system, growth and development, and fat metabolism. We propose that metabolism and body size play important roles in the evolutionary adaptation of macaques. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop