Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Authors = Bingyuan Zhang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2691 KiB  
Article
An Energy Efficiency Evaluation Model for Oil–Gas Gathering and Transportation Systems Based on Combined Weighting and Grey Relational Analysis
by Yao Shi, Yingting Sun, Yonghu Zhang, Maerpuha Mahan, Yingli Chen, Mingzhe Xu, Keyu Wu, Bingyuan Hong and Shangfei Song
Processes 2025, 13(7), 1967; https://doi.org/10.3390/pr13071967 - 21 Jun 2025
Viewed by 417
Abstract
With the acceleration of the oilfield development process during the high water content period, the contradiction between the increase in energy consumption and the decrease in the energy efficiency of the gathering and transportation system has become increasingly obvious. This paper develops a [...] Read more.
With the acceleration of the oilfield development process during the high water content period, the contradiction between the increase in energy consumption and the decrease in the energy efficiency of the gathering and transportation system has become increasingly obvious. This paper develops a grey relational analysis model using a combination of AHP and EWM. Based on the characteristics of light oil production, a four-level evaluation indicator system is developed. Based on game theory, AHP can provide subjective weights, the EWM can provide objective weights, and subjective and objective combinations are used for a more reasonable assignment. Concurrently, the 0.05 distinguishing coefficient and the ideal reference values are selected as the GRA reference sequence to evaluate the energy consumption of the gathering and transportation system as a whole and each subsystem. The analysis of a light oil block indicates significant room for improvement in the energy efficiency correlation across the system. Taking the central processing station as an example, the grey relational degree of electricity consumption per unit of injected water is measured at 0.12, marking it as the weakest link in the system. This study supports efficiency enhancement by identifying energy consumption bottlenecks within the system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 4215 KiB  
Article
Real-Time Classification of Distributed Fiber Optic Monitoring Signals Using a 1D-CNN-SVM Framework for Pipeline Safety
by Rui Sima, Baikang Zhu, Fubin Wang, Yi Wang, Zhiyuan Zhang, Cuicui Li, Ziwen Wu and Bingyuan Hong
Processes 2025, 13(6), 1825; https://doi.org/10.3390/pr13061825 - 9 Jun 2025
Viewed by 562
Abstract
The growing reliance on natural gas in urban China has heightened the urgency of maintaining pipeline integrity, particularly in environments prone to disruption by nearby construction activities. In this study, we present a practical approach for the real-time classification of distributed fiber optic [...] Read more.
The growing reliance on natural gas in urban China has heightened the urgency of maintaining pipeline integrity, particularly in environments prone to disruption by nearby construction activities. In this study, we present a practical approach for the real-time classification of distributed fiber optic monitoring signals, leveraging a hybrid framework that combines the feature learning capacity of a one-dimensional convolutional neural network (1D-CNN) with the classification robustness of a support vector machine (SVM). The proposed method effectively distinguishes various pipeline-related events—such as minor leakage, theft attempts, and human movement—by automatically extracting their vibration patterns. Notably, it addresses the common shortcomings of softmax-based classifiers in small-sample scenarios. When tested on a real-world dataset collected via the DAS3000 system from Hangzhou Optosensing Co., Ltd., the model achieved a high classification accuracy of 99.92% across six event types, with an average inference latency of just 0.819 milliseconds per signal. These results demonstrate its strong potential for rapid anomaly detection in pipeline systems. Beyond technical performance, the method offers three practical benefits: it integrates well with current monitoring infrastructures, significantly reduces manual inspection workloads, and provides early warnings for potential pipeline threats. Overall, this work lays the groundwork for a scalable, machine learning-enhanced solution aimed at ensuring the operational safety of critical energy assets. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

31 pages, 3743 KiB  
Article
Dynamic Mechanical Characterization of Warm-Mixed Steel Slag-Crumb Rubber Modified Asphalt Mixture in Wide- and Narrow-Frequency Domains
by Fei Zhang, Bingyuan Huo, Chao Li, Heng Liu, Pengzhi Li, Yongming Xing, Lan Wang and Pucun Bai
Polymers 2025, 17(11), 1449; https://doi.org/10.3390/polym17111449 - 23 May 2025
Viewed by 477
Abstract
To investigate the dynamic mechanical properties of warm-mix steel slag-crumb rubber modified asphalt mixtures across wide- and narrow-frequency domains and evaluate the applicability of warm-mix technology, four distinct mixtures were prepared. The dynamic modulus characteristics under measured temperatures and frequencies were initially analyzed [...] Read more.
To investigate the dynamic mechanical properties of warm-mix steel slag-crumb rubber modified asphalt mixtures across wide- and narrow-frequency domains and evaluate the applicability of warm-mix technology, four distinct mixtures were prepared. The dynamic modulus characteristics under measured temperatures and frequencies were initially analyzed through complex modulus testing to elucidate narrow-frequency-domain mechanical behavior. Subsequently, leveraging the linear viscoelastic (LVE) theory and time–temperature superposition principle (TTSP), both the 2 Springs, 2 Parabolic Elements and 1 Dashpot (2S2P1D) mechanical element model and Modified Havriliak–Negami (MHN) mathematical model were established based on experimental data to characterize wide-frequency-domain dynamic responses. The results demonstrate substantial consistency in mechanical interpretation between narrow- and wide-frequency domain datasets, with enhanced information resolution achieved in wide-frequency analysis. Both models demonstrate comparable accuracy in characterizing the thermomechanical behavior of warm-mix steel slag-crumb rubber modified asphalt mixture across extended frequency and temperature ranges, while showing negligible performance discrepancies between the 2S2P1D and MHN formulations. Furthermore, both Cole–Cole and Black diagrams convincingly demonstrate the reliability of model predictions. This systematic investigation confirms the technical viability of warm-mix steel slag-crumb rubber modified asphalt mixture while establishing a dual-validated modeling framework for comprehensive performance prediction. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Figure 1

14 pages, 5687 KiB  
Article
Mechanism and Application of Static Stress Intervention for Controlled Directional Roof Caving in Fully Mechanized Mining Faces
by Hao Shi, Bingyuan Hao, Xingyun Ren and Ji Zhang
Processes 2025, 13(5), 1552; https://doi.org/10.3390/pr13051552 - 17 May 2025
Viewed by 403
Abstract
To address roof overhang hazards (e.g., rock bursts and gas accumulation) in high-gas coal mines, this study proposes a static stress intervention method for controlled directional roof collapse. Using the 150110 fully mechanized face at Yiyuan Coal Mine as a case study, we [...] Read more.
To address roof overhang hazards (e.g., rock bursts and gas accumulation) in high-gas coal mines, this study proposes a static stress intervention method for controlled directional roof collapse. Using the 150110 fully mechanized face at Yiyuan Coal Mine as a case study, we investigate the mechanical mechanism of static stress intervention-induced roof collapse through theoretical modeling and FLAC3D simulations in the absence of pre-cracks. The study reveals that advanced boreholes filled with static expansion agents generate stress concentration zones along the drilling array. When superimposed with mining-induced stresses, this configuration induces tensile failure preferentially at borehole locations, thereby achieving controlled directional roof collapse. Theoretical calculations indicate that roof fracturing occurs at predetermined locations when expansion pressure reaches ≥9.11 MPa. FLAC3D simulations analyzed stress redistribution and plastic zone evolution under combined static and mining-induced stresses, demonstrating the method’s efficacy in optimizing roadway stability. Field trials implement spaced boreholes (65 mm diameter, 16 m depth, 1 m spacing) with alternating expansion agent charging, achieving a 6 m reduction in roof collapse intervals, effectively mitigating overhang hazards. Results confirm that static stress intervention reshapes the roof stress field, inducing tensile failure along predetermined paths without relying on pre-cracks. The findings provide theoretical and technical insights for roof stability control in high-gas coal mines. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

31 pages, 3727 KiB  
Article
Time-Domain Characterization of Linear Viscoelastic Behavior in Asphalt Mixtures: A Comparative Evaluation Through Discrete and Continuous Spectral Techniques
by Fei Zhang, Bingyuan Huo, Wanmei Gui, Chao Li, Heng Liu, Yongming Xing, Lan Wang and Pucun Bai
Polymers 2025, 17(10), 1299; https://doi.org/10.3390/polym17101299 - 9 May 2025
Viewed by 367
Abstract
This study systematically investigates continuous and discrete spectra methodologies for determining time-domain viscoelastic response functions (creep compliance and relaxation modulus) in asphalt mixtures. Through complex modulus testing of three asphalt mixtures (base asphalt mixture, SBS-modified asphalt mixture, and crumb rubber-modified asphalt mixture), we [...] Read more.
This study systematically investigates continuous and discrete spectra methodologies for determining time-domain viscoelastic response functions (creep compliance and relaxation modulus) in asphalt mixtures. Through complex modulus testing of three asphalt mixtures (base asphalt mixture, SBS-modified asphalt mixture, and crumb rubber-modified asphalt mixture), we established unified master curves using a Generalized Sigmoidal model with approximated Kramers–Kronig (K-K) relations. Discrete spectra can be obtained by Prony series of Maxwell/Kelvin modeling, while continuous spectra derived through integral transformation produced complementary response functions by numerical integration. Comparative analysis demonstrated that discrete and continuous spectra methods yield highly consistent predictions of the relaxation modulus and creep compliance within conventional time scales (10−7–105 s), with significant deviations emerging only at extreme temporal extremities. Compared to discrete spectra results, material parameters (relaxation modulus and creep compliance) derived from continuous spectra methods invariably asymptotically approach upper and lower plateaus. Notably, the maximum equilibrium values derived from continuous spectra methods consistently surpassed those obtained through discrete approaches, whereas the corresponding minimum values were consistently lower. This comparative analysis highlights the inherent limitations in the extrapolation reliability of computational methodologies, particularly regarding spectra method implementation. Furthermore, within the linear viscoelastic range, the crumb rubber-modified asphalt mixtures exhibited superior low-temperature cracking resistance, whereas the SBS-modified asphalt mixtures demonstrated enhanced high-temperature deformation resistance. This systematic comparative study not only establishes a critical theoretical foundation for the precise characterization of asphalt mixture viscoelasticity across practical engineering time scales through optimal spectral method selection, but also provides actionable guidance for region-specific material selection strategies. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites, 3rd Edition)
Show Figures

Figure 1

18 pages, 4412 KiB  
Article
The Protective Effects of Melatonin on Hainan Black Goats Under Heat Stress: Understanding Its Actions and Mechanisms
by Hao Wu, Baochun Qin, Guang Yang, Pengyun Ji, Yu Gao, Lu Zhang, Bingyuan Wang and Guoshi Liu
Antioxidants 2025, 14(1), 44; https://doi.org/10.3390/antiox14010044 - 3 Jan 2025
Viewed by 1135
Abstract
As the global climate changes, high temperatures will cause heat stress, which significantly affects the productive efficiency of livestock. Currently, there is a lack of efficient methods to use in targeting this issue. In this study, we report that melatonin supplementation may represent [...] Read more.
As the global climate changes, high temperatures will cause heat stress, which significantly affects the productive efficiency of livestock. Currently, there is a lack of efficient methods to use in targeting this issue. In this study, we report that melatonin supplementation may represent an alternative method to reduce the negative impact of heat stress on livestock, particularly in Hainan black goats. Our results show that melatonin treatment increased the average daily gain of Hainan black goats that were exposed to constantly high temperatures for two months compared to controls. Our mechanistic exploration revealed that melatonin treatment not only reduced the oxidative stress and inflammatory reaction caused by heat stress but also improved goats’ metabolic capacity, promoting their growth and development. More importantly, for the first time, we observed that melatonin treatment modified the abundance of the intestinal microflora, altering the metabolism of the goats, which further improved their tolerance to constant heat stress. Full article
(This article belongs to the Special Issue Antioxidant Actions of Melatonin)
Show Figures

Graphical abstract

25 pages, 4658 KiB  
Review
Nonlinear Optics in Two-Dimensional Magnetic Materials: Advancements and Opportunities
by Ziqian Xin, Bingyuan Xue, Wenbo Chang, Xinping Zhang and Jia Shi
Nanomaterials 2025, 15(1), 63; https://doi.org/10.3390/nano15010063 - 2 Jan 2025
Cited by 1 | Viewed by 1862
Abstract
Nonlinear optics, a critical branch of modern optics, presents unique potential in the study of two-dimensional (2D) magnetic materials. These materials, characterized by their ultra-thin geometry, long-range magnetic order, and diverse electronic properties, serve as an exceptional platform for exploring nonlinear optical effects. [...] Read more.
Nonlinear optics, a critical branch of modern optics, presents unique potential in the study of two-dimensional (2D) magnetic materials. These materials, characterized by their ultra-thin geometry, long-range magnetic order, and diverse electronic properties, serve as an exceptional platform for exploring nonlinear optical effects. Under strong light fields, 2D magnetic materials exhibit significant nonlinear optical responses, enabling advancements in novel optoelectronic devices. This paper outlines the principles of nonlinear optics and the magnetic structures of 2D materials, reviews recent progress in nonlinear optical studies, including magnetic structure detection and nonlinear optical imaging, and highlights their role in probing magnetic properties by combining second harmonic generation (SHG) and multispectral integration. Finally, we discuss the prospects and challenges for applying nonlinear optics to 2D magnetic materials, emphasizing their potential in next-generation photonic and spintronic devices. Full article
(This article belongs to the Special Issue Nonlinear Optics in Low-Dimensional Nanomaterials)
Show Figures

Figure 1

19 pages, 8385 KiB  
Article
Mitochondria of Porcine Oocytes Synthesize Melatonin, Which Improves Their In Vitro Maturation and Embryonic Development
by Tianqi Zhu, Laiqing Yan, Shoulong Deng, Wenkui Ma, Fan Xia, Likai Wang, Xiao Ma, Guangdong Li, Zixia Shen, Yiwei Wang, Yao Fu, Pengyun Ji, Bingyuan Wang, Lu Zhang and Guoshi Liu
Antioxidants 2024, 13(7), 814; https://doi.org/10.3390/antiox13070814 - 7 Jul 2024
Cited by 4 | Viewed by 2655
Abstract
The in vitro maturation efficiency of porcine oocytes is relatively low, and this limits the production of in vitro porcine embryos. Since melatonin is involved in mammalian reproductive physiology, in this study, we have explored whether endogenously produced melatonin can help in porcine [...] Read more.
The in vitro maturation efficiency of porcine oocytes is relatively low, and this limits the production of in vitro porcine embryos. Since melatonin is involved in mammalian reproductive physiology, in this study, we have explored whether endogenously produced melatonin can help in porcine oocyte in vitro maturation. We have found, for the first time in the literature, that mitochondria are the major sites for melatonin biosynthesis in porcine oocytes. This mitochondrially originated melatonin reduces ROS production and increases the activity of the mitochondrial respiratory electron transport chain, mitochondrial biogenesis, mitochondrial membrane potential, and ATP production. Therefore, melatonin improves the quality of oocytes and their in vitro maturation. In contrast, the reduced melatonin level caused by siRNA to knockdown AANAT (siAANAT) is associated with the abnormal distribution of mitochondria, decreasing the ATP level of porcine oocytes and inhibiting their in vitro maturation. These abnormalities can be rescued by melatonin supplementation. In addition, we found that siAANAT switches the mitochondrial oxidative phosphorylation to glycolysis, a Warburg effect. This metabolic alteration can also be corrected by melatonin supplementation. All these activities of melatonin appear to be mediated by its membrane receptors since the non-selective melatonin receptor antagonist Luzindole can blunt the effects of melatonin. Taken together, the mitochondria of porcine oocytes can synthesize melatonin and improve the quality of oocyte maturation. These results provide an insight from a novel aspect to study oocyte maturation under in vitro conditions. Full article
Show Figures

Figure 1

17 pages, 7792 KiB  
Article
Quantitative Evaluation Method and Response Mechanism of Shallow Groundwater in Multi-Mine Mining of “Soil–Rock” Composite Water-Resisting Strata
by Shuai Zhang, Dongsheng Zhang, Yujiang Zhang, Guorui Feng and Bingyuan Cui
Water 2024, 16(5), 723; https://doi.org/10.3390/w16050723 - 28 Feb 2024
Cited by 1 | Viewed by 1434
Abstract
The sustainability of shallow groundwater systems, pivotal to maintaining ecosystem equilibrium and facilitating the sustainable development of mine sites, is the core of various dynamic indicators in response to mining activity and mining area planning. This study quantitatively evaluates the impact of mining [...] Read more.
The sustainability of shallow groundwater systems, pivotal to maintaining ecosystem equilibrium and facilitating the sustainable development of mine sites, is the core of various dynamic indicators in response to mining activity and mining area planning. This study quantitatively evaluates the impact of mining activities on shallow groundwater systems at the orefield scale, taking the equivalent permeability coefficient (EPC) of “Soil–Rock” composite water-resisting strata and the response mechanism of shallow groundwater in multi-mine mining as the entry points. A modified six-step evaluation method for the response mechanism of shallow groundwater in multi-mine mining is proposed using mathematical statistics, numerical simulation, and theoretical analysis methods. The method is used to evaluate the sustainability of the shallow water system in the Yushen mining area, to study the distribution characteristics of the water resource carrying capacity (WRCC) in different mining areas of the Yushen area, and to analyze the number of mines allowed to be mined under geological conditions with a WRCC of more than moderate bearing capacity. The results show that when the mining area of a mine in the Yushen area is set to 1 × 108, 7.5 × 107, 5 × 107, and 2.5 × 107 m2, as the mining area of the designed mine decreases, the area bearing surplus gradually increases, with values of 1.70 × 109, 1.98 × 109, 2.28 × 109, and 2.58 × 109 m2. The number of mines allowed to be mined under geological conditions with a WRCC above moderate capacity is 20, 31, 51, and 112, respectively. Full article
(This article belongs to the Special Issue Mine Water Safety and Environment)
Show Figures

Figure 1

10 pages, 3550 KiB  
Article
Multi-Mode Vector Light Field Generation Using Modified Off-Axis Interferometric Holography and Liquid Crystal Spatial Light Modulators
by Wenxu Zhu, Feilong Gao, Qianqian Fu, Xinlong Zhou, Yiyan Xie, Bingyuan Zhang and Santosh Kumar
Photonics 2024, 11(1), 33; https://doi.org/10.3390/photonics11010033 - 29 Dec 2023
Viewed by 2115
Abstract
The increasing enhancement in the modulation accuracy of spatial light modulators has garnered significant attention towards real-time control technology for light fields based on these modulators. It has been demonstrated that this technology possesses a remarkable capability to generate vector beams with arbitrary [...] Read more.
The increasing enhancement in the modulation accuracy of spatial light modulators has garnered significant attention towards real-time control technology for light fields based on these modulators. It has been demonstrated that this technology possesses a remarkable capability to generate vector beams with arbitrary complex amplitude distributions. Nevertheless, past studies indicate that the generation of only one vector beam at a time has been observed. The simultaneous generation of numerous vector light fields can give rise to several challenges, including compromised picture quality, limited single-mode operation, and intricate optical path configurations. In pursuit of this objective, we present a novel methodology that integrates the coding methodology of modified off-axis interferometric holography with the idea of optical superposition. This technique facilitates the concurrent generation of several vector beams. In this study, we present a demonstration of the simultaneous creation of twelve vector beams using a single spatial light modulator (SLM) as a proof of concept. Significantly, this technology has the ability to generate an unlimited quantity of vector light fields concurrently under the assumption that the resolution of the SLM does not impose any limitations. The findings indicate that the imaging quality achieved by this technology is of a high standard. Furthermore, it is possible to separately control the beam waist radius, topological charge, polarization order, and extra phase of each beam. Full article
Show Figures

Figure 1

17 pages, 10220 KiB  
Article
Effect of ZrC on the Microstructure and Properties of CrMnFeCoNi High-Entropy Alloy Coatings Prepared by a Plasma Transferred Arc Process
by Long Huang, Bingyuan Li, Bopin Xu, Yicheng Zhou, Mengzhao Li, Chenglin Li, Bing Yang, Chunxu Pan and Guodong Zhang
Materials 2023, 16(23), 7401; https://doi.org/10.3390/ma16237401 - 28 Nov 2023
Cited by 2 | Viewed by 1340
Abstract
The low strength caused by the single FCC structure of the CrMnFeCoNi high entropy alloy (HEA) limits its application in the field of coating. Here, we prepared high-entropy alloy coatings of CrMnFeCoNi with different ZrC contents on Q235 steel by a plasma transferred [...] Read more.
The low strength caused by the single FCC structure of the CrMnFeCoNi high entropy alloy (HEA) limits its application in the field of coating. Here, we prepared high-entropy alloy coatings of CrMnFeCoNi with different ZrC contents on Q235 steel by a plasma transferred arc process. The effects of ZrC on the microstructure and properties of the CrMnFeCoNi HEA coating were investigated by optical microscopy, scanning electron microscope, and X-ray diffraction and by employing a potensiostat/galvanostat. The results showed that ZrC mainly existed in the coatings as a second phase, having little influence on the main crystal structure and micromorphology of the CrMnFeCoNi HEA coating. The hardness of the CrMnFeCoNi HEA coating increased with the ZrC content. ZrC can effectively improve the corrosion resistance of the CrMnFeCoNi HEA coating. In a 1 mol/L NaCl solution with 4 wt% ZrC, the annual corrosion rate was only 5.997% of that of the HEA coating. Nevertheless, the improvement in the wear resistance of CrMnFeCoNi high-entropy alloy coatings was not apparent with the addition of ZrC. Consequently, the addition of ZrC to the FeCoCrNiMn high-entropy alloy coating holds promise for applications in corrosion resistance, particularly in oceanic environments. Full article
Show Figures

Figure 1

17 pages, 7599 KiB  
Article
Evolution Law of Shallow Water in Multi-Face Mining Based on Partition Characteristics of Catastrophe Theory
by Yujiang Zhang, Bingyuan Cui, Yining Wang, Shuai Zhang, Guorui Feng and Zhengjun Zhang
Fractal Fract. 2023, 7(11), 779; https://doi.org/10.3390/fractalfract7110779 - 26 Oct 2023
Cited by 25 | Viewed by 1777
Abstract
It is of great significance for ecological environment protection to clarify the regional evolution characteristics of shallow water under the disturbance of multi-working face mining. In this paper, the catastrophe theory method, GIS spatial analysis function and FEFLOW numerical calculation method were comprehensively [...] Read more.
It is of great significance for ecological environment protection to clarify the regional evolution characteristics of shallow water under the disturbance of multi-working face mining. In this paper, the catastrophe theory method, GIS spatial analysis function and FEFLOW numerical calculation method were comprehensively used to study the instability risk and evolution law of shallow water systems in the Zhuan Longwan Coal Mine. The results show that: the Zhuan Longwan Coal Mine is divided into five areas (small risk area, light risk area, middle risk area, heavy risk area and special risk area) based on catastrophe theory, among which the middle risk area has the largest area of 16,616,880 m2, and the special risk area has the smallest area of 1,769,488 m2. Based on the results of catastrophe zoning, the evolution law of shallow water under multi-surface disturbance in different zones is expounded. In the middle-risk area, the water level drop at measuring point 4 is the largest, which is 0.525 m, and the water level drop at measuring point 5 is the smallest, which is 0.116 m. The study aims to provide a basis for regional coal development planning and research on the method of water-retaining coal mining. Full article
(This article belongs to the Special Issue Applications of Fractal Analysis in Underground Engineering)
Show Figures

Figure 1

18 pages, 13536 KiB  
Article
Comparison of Fe30Co20Cr20Ni20Mo3.5 High Entropy Alloy Coatings Prepared Using Plasma Cladding, High-Speed Laser Cladding, and Deep Laser Cladding
by Mengzhao Li, Chao Li, Bingyuan Li, Yicheng Zhou, Long Huang, Ang Cai, Chang Cui, Senao Gao, Guodong Zhang and Bing Yang
Coatings 2023, 13(11), 1819; https://doi.org/10.3390/coatings13111819 - 24 Oct 2023
Cited by 9 | Viewed by 1885
Abstract
Three kinds of Fe30Ni20Co20Cr20Mo3.5 high entropy alloy (HEA) coatings were prepared on the surface of a Q235 steel plate using plasma cladding and laser cladding. The microstructure, crystal structure, element distribution, microhardness, wear resistance, [...] Read more.
Three kinds of Fe30Ni20Co20Cr20Mo3.5 high entropy alloy (HEA) coatings were prepared on the surface of a Q235 steel plate using plasma cladding and laser cladding. The microstructure, crystal structure, element distribution, microhardness, wear resistance, and corrosion resistance of the coatings were studied. The grain size of the high-speed laser cladding coating (HLC) was the smallest. The crystal structures of the plasma cladding coating (PC) and HLC were single face-centered cubic (FCC), while that of the deep laser cladding coating (DLC) was body-centered cubic (BCC). DLC had the best microhardness and wear resistance. The microhardness of PC, HLC, and DLC increased by 70%, 108%, and 109%, respectively, and the average friction coefficient decreased by 33%, 44%, and 51%, respectively, compared to Q235. HLC had the best corrosion resistance, with an annual corrosion rate of 0.66925 mm/a. The annual corrosion rate of PC and HLC was only 40% of Q235. The polarization curves of PC and HLC had obvious passivation regions with a width of up to 2 V. The corrosion types of PC were pitting corrosion and intergranular corrosion, that of HLC was general corrosion, and that of DLC was severe pitting corrosion. Full article
Show Figures

Figure 1

18 pages, 8037 KiB  
Article
A Disturbed Voussoir Beam Structure Mechanical Model and Its Application in Feasibility Determination of Upward Mining
by Yujiang Zhang, Yining Wang, Bingyuan Cui, Guorui Feng, Shuai Zhang, Chunwang Zhang and Zhengjun Zhang
Energies 2023, 16(20), 7190; https://doi.org/10.3390/en16207190 - 21 Oct 2023
Cited by 17 | Viewed by 2025
Abstract
China is endowed with a large quantity of residual coal resources that require upward mining. The stability of interburden strata structures and accurate determination are crucial for safe mining. Therefore, we established a mechanical model of disturbed voussoir beam structures of interburden strata [...] Read more.
China is endowed with a large quantity of residual coal resources that require upward mining. The stability of interburden strata structures and accurate determination are crucial for safe mining. Therefore, we established a mechanical model of disturbed voussoir beam structures of interburden strata in upward mining. The model was solved, and stability analysis and instability mechanism analysis were conducted. Based on this model, a new method for determining the feasibility of upward mining was proposed and applied to the upward mining of coal seam No. 7 in Baijiazhuang Coal Mine. A physical simulation experiment and numerical simulation were conducted to validate the method. Through research, it was found that the model had two instability mechanisms: rotation instability and sliding instability. When the disturbance load crossed the critical block of the structures, the model was most likely to experience sliding instability. When the disturbance load acted entirely on the critical block, rotation instability was more likely to occur. The result of the determination, performed using the new method, showed that there was no rotation instability or sliding instability in the interburden strata structures of coal seam No. 7, indicating that the coal seam could be mined upward. This result was consistent with the determinations using the statistical method, “three-zone” method, and balanced surrounding rock method. Physical and numerical simulations revealed that the upward mining of coal seam No. 7 caused the subsidence, rotation, and separation compaction of the interburden strata structures but that the structures remained stable. The results indicate that the proposed model and method have accuracy and applicability, being able to guide the practical feasibility determination of upward mining. Full article
(This article belongs to the Special Issue Optimization of Coal Mining and Fossil Energy)
Show Figures

Figure 1

12 pages, 5259 KiB  
Article
The Effects of Mammary Gland ATIII Overexpression on the General Health of Dairy Goats and Their Anti-Inflammatory Response to LPS Stimulation
by Laiqing Yan, Hao Wu, Shengyu Guan, Wenkui Ma, Yao Fu, Pengyun Ji, Zhengxing Lian, Lu Zhang, Yiming Xing, Bingyuan Wang and Guoshi Liu
Int. J. Mol. Sci. 2023, 24(20), 15303; https://doi.org/10.3390/ijms242015303 - 18 Oct 2023
Cited by 2 | Viewed by 1535
Abstract
Antithrombin III is an important anticoagulant factor with anti-inflammatory properties. However, few studies have explored its anti-inflammatory actions in ATIII overexpressed transgenic animals. In this study, the dairy goats with mammary overexpression of ATIII were used to investigate their general health, milk quality [...] Read more.
Antithrombin III is an important anticoagulant factor with anti-inflammatory properties. However, few studies have explored its anti-inflammatory actions in ATIII overexpressed transgenic animals. In this study, the dairy goats with mammary overexpression of ATIII were used to investigate their general health, milk quality and particularly their response to inflammatory challenge. The results showed that transgenic goats have a normal phenotype regarding their physiological and biochemical parameters, including whole blood cells, serum protein levels, total cholesterol, urea nitrogen, uric acid, and total bilirubin, compared to the WT. In addition, the quality of milk also improved in transgenic animals compared to the WT, as indicated by the increased milk fat and dry matter content and the reduced somatic cell numbers. Under the stimulation of an LPS injection, the transgenic goats had elevated contents of IGA, IGM and superoxide dismutase SOD, and had reduced proinflammatory cytokine release, including IL-6, TNF-α and IFN-β. A 16S rDNA sequencing analysis also showed that the transgenic animals had a similar compositions of gut microbiota to the WT goats under the stimulation of LPS injections. Mammary gland ATIII overexpression in dairy goats is a safe process, and it did not jeopardize the general health of the transgenic animals; moreover, the compositions of their gut microbiota also improved with the milk quality. The LPS stimulation study suggests that the increased ATIII expression may directly or indirectly suppress the inflammatory response to increase the resistance of transgenic animals to pathogen invasion. This will be explored in future studies. Full article
(This article belongs to the Special Issue Advance in Reproductive Biology and Related Diseases)
Show Figures

Figure 1

Back to TopTop