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Abstract: The low strength caused by the single FCC structure of the CrMnFeCoNi high entropy
alloy (HEA) limits its application in the field of coating. Here, we prepared high-entropy alloy
coatings of CrMnFeCoNi with different ZrC contents on Q235 steel by a plasma transferred arc
process. The effects of ZrC on the microstructure and properties of the CrMnFeCoNi HEA coating
were investigated by optical microscopy, scanning electron microscope, and X-ray diffraction and by
employing a potensiostat/galvanostat. The results showed that ZrC mainly existed in the coatings as
a second phase, having little influence on the main crystal structure and micromorphology of the
CrMnFeCoNi HEA coating. The hardness of the CrMnFeCoNi HEA coating increased with the ZrC
content. ZrC can effectively improve the corrosion resistance of the CrMnFeCoNi HEA coating. In
a 1 mol/L NaCl solution with 4 wt% ZrC, the annual corrosion rate was only 5.997% of that of the
HEA coating. Nevertheless, the improvement in the wear resistance of CrMnFeCoNi high-entropy
alloy coatings was not apparent with the addition of ZrC. Consequently, the addition of ZrC to
the FeCoCrNiMn high-entropy alloy coating holds promise for applications in corrosion resistance,
particularly in oceanic environments.

Keywords: high-entropy alloy; ZrC; plasma transferred arc; microstructure; properties

1. Introduction

With the progress of society and the development of technology, the requirements for
materials are increasing, and traditional alloy materials can no longer meet market needs.
In 2004, the scholar Yeh introduced the concept of a high-entropy alloy (HEA) in Advanced
Engineering Materials. HEAs were initially defined as alloys composed of five or more
principal elements in equimolar or near-isomolar ratios [1]. In the past 20 years, with the
in-depth study of HEAs, certain alloys formed with quaternary nonisomolar ratios have
also been defined as HEAs [2]. The emergence of HEAs has changed the understanding
of alloys based on the Gibbs phase rule. Experiments by Canto and Yeh showed that
alloys with equimolar ratios of multiple components tend to form solid solutions with
simple structures [3,4]. The microstructures of HEAs were shown to consist of randomly
distributed and disordered atoms at the lattice positions. It was also shown that HEAs
have a high-entropy thermodynamic effect, a structural lattice distortion effect, a sluggish
diffusion dynamics effect, and a cocktail performance effect [5]. As a result, HEAs have
the characteristics of high strength, high hardness, wear resistance, corrosion resistance,
and high-temperature resistance, which traditional alloys cannot match. Refractory high-
entropy alloys, which include elements such as Mo, Nb, Ta, V, and W, are considered to be
promising materials for high-temperature applications. These alloys are suitable for use in
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atomic energy, aerospace, military, and advanced nuclear reactors [6]. The high-entropy
alloy containing Cr, Ni, and Mo has an excellent corrosion resistance and can be used in the
marine field [7]. High-entropy alloys can be utilized in biomedical applications due to their
exceptional biocompatibility achieved through composition design [8,9].

Although HEAs have a great application potential in many fields due to their excellent
physical and chemical properties, the high cost of HEA preparation limits their widespread
use. The idea of using HEAs as coatings provides a direction for HEA applications. For ex-
ample, corrosion-resistant HEA coatings can be applied in the ocean, high-pressure-resistant
HEA coatings can be applied in oil and gas, high-temperature-resistant HEA coatings can
be applied in aerospace and nuclear energy fields, etc., [10,11]. At present, the preparations
used for HEA coatings include mechanical alloying [12,13], thermal spraying [14,15], cold
spraying [16–18], laser cladding [19–27], magnetron sputtering [28–30], and plasma trans-
ferred arc (PTA) [31–36]. Among them, PTA has the characteristics of simple equipment,
high production efficiency, concentrated energy, less environmental effects, and metallur-
gical bonding with the substrate, which are beneficial for forming high-quality coatings.
Therefore, the PTA has been widely used in coating research.

CrMnFeCoNi, as a typical HEA with a simple face-centered cubic (FCC) structure, is
one of the main research objects for studying HEAs. Because of its simple FCC structure, the
CrMnFeCoNi HEA has the characteristics of high toughness and low strength. Therefore, it
is necessary to strengthen the CrMnFeCoNi HEA when used as a coating. ZrC, as a high-
temperature ceramic material with high strength, good corrosion resistance, and chemical
stability, has been widely used in material strengthening. To investigate the influence of
ZrC on the corrosion resistance and wear resistance of Ni-P coatings, He et al. [37] added
ZrC to a Ni-P nanocomposite coating on N80 steel by chemical deposition. The results
showed that ZrC effectively reduced the friction coefficient, wear rate, and coating defects to
improve the corrosion and wear resistance of the coating. Kang et al. [38] added ZrC to Ti(C,
N)-based cermets by a sintering process to study the effect of ZrC on the microstructure
and properties. They found that adding ZrC increased the wear-resistant carbide and
inhibited the precipitation of the brittle phase, thus improving the mechanical properties
and oxidation resistance of the cermets. Ding et al. [39] studied the effect of ZrC on the
microstructure and mechanical properties of FeCrAl alloys and prepared FeCrAl alloys
with different ZrC contents by spark plasma sintering. They found that an appropriate
amount of ZrC (1 wt%) effectively refined the FeCrAl alloy grains, thereby improving
the strength and hardness of the FeCrAl alloy. However, there are few studies about the
effect of ZrC on HEA coatings. In this paper, CrMnFeCoNi HEA coatings with different
ZrC contents were prepared on Q235 steel by a PTA process, and the effects of ZrC on
the morphology, composition, hardness, friction, and corrosion properties of the coatings
were investigated.

2. Materials and Methods
2.1. Material Preparation

Figure 1 shows a picture of the substrate and powder. The substrate material of
this experiment was 100 × 100 × 10 mm Q235A steel. The chemical composition of the
Q235A steel is shown in Table 1. This steel is a commonly used engineering structural
steel with an excellent welding performance. The HEA powder used for this experiment
was CrMnFeCoNi, prepared by Beijing Yanbang New Materials Co., Ltd. (Beijing, China).
Its particle size was 50–150 µm. The chemical composition of the CrMnFeCoNi HEA is
shown in Table 2. Due to the low fluidity of the irregular ZrC powder, excessive ZrC would
easily block the feeding pipe, so the maximum addition of ZrC was set as 4 wt%. The HEA
powder and the ZrC powder were uniformly mixed by ball milling to form HEA and x wt%
ZrC coatings (x = 1, 2, 3, 4; denoted as 01ZrC, 02ZrC, 03ZrC, 04ZrC).
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Figure 1. Pictures of the substrate and powder.

Table 1. Chemical composition of the Q235 substrate material (wt%).

C Mn Si S P Fe

≤0.22% ≤1.4% ≤0.35% ≤0.050% ≤0.045% Bal.

Table 2. Chemical composition of the CrMnFeCoNi high-entropy alloy (wt%).

Cr Mn Fe Co Ni

19.52% 20.86% 20.26% 19.49% 19.87%

2.2. Experimental Method

A PTA-BX-400A powder plasma surfacing machine (manufactured by Shanghai Benxi
Electromechanical Technology Co., Ltd., Shanghai, China) was used to prepare XZrC
(X = 01, 02, 03, 04) coatings onto impurity-free Q235 steel. The sketch of the PTA equipment
is shown in Figure 2. High-purity argon was used as the powder feed gas and the shielding
gas. The coating was manually prepared to a thickness of approximately 2.5 mm. The
process parameters are shown in Table 3. Pictures of HEA and XZrC coatings are shown in
Figure 3.
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Table 3. Process parameters of plasma cladding.

Carrier Gas Flow
Rate (L/min)

Plasma Gas Flow
Rate (L/min)

Powder Feed Rate
(g/min)

Electric Current
(A)

Deposition Speed
(mm/min)

Working
Distance to

Substrate (mm)

5 5 50 180 300 10
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The sample was cut into 10 × 10 × 10 mm cubes and Φ 8 × 10 mm cylinders with a
wire electrical discharge machine. The surfaces of the cubes to be measured were ground,
polished, and corroded. An LAB-1 optical microscope (OM, manufactured by Olympus
Corporation, Tokyo, Japan) was used to observe the metallographic structure. A MIRA 3
LMH field emission scanning electron microscope (SEM, manufactured by TESCAN Brno,
s.r.o., Brno, Czech Republic) and an Aztec Energy X Max 20 energy dispersive spectrometer
(EDS, manufactured by Oxford Nanoimaging, Oxford, Britain) were used to observe the
microstructure and elemental distribution of the coatings.

A Bruker D8 X-ray diffraction (XRD, manufactured by Bruker Corporation, Billerica,
MA, USA) instrument was used to analyze the phase composition and crystal lattice
structure of the coatings. The characteristic wavelength was 1.54060 Å, the voltage was
60 kV, the scanning angle was 10◦ to 90◦, and the scanning speed was 2◦/min.

An HXS-1000 A microhardness tester (manufactured by Shanghai milite Precise In-
strument Co., Ltd., Shanghai, China) was used to measure the hardness of the coatings.
The average value of 5 points was taken every 100 µm from the bottom of the coating. The
load was 300 g and it was applied for a duration of 10 s.

An MS-T3001 friction and wear tester (manufactured by Lanzhou Huahui Instrument
Technology Co., Ltd., Lanzhou, China) was used for the wear test of coatings. The wear
mode was Pin-on-Disk (ASTM G99-04 [40]). The friction pair was SUS304 stainless steel,
which had a hardness of approximately 320 HV and a diameter of 3 mm. Table 4 shows the
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parameters of the wear experiment. The samples were ground to a roughness of 3.5 µm.
The experiments were repeated with three samples. SEM was used to observe the wear
morphology of the samples, and EDS was used for quantitative analysis. The volume loss
was calculated based on the width of the wear track. The principle of material volume loss
calculation is shown in Figure 4. The specific calculation equation is as follows [41]:

Vloss = C × S (1)

C = 2πR (2)

S =

πr2β

2π
− 1

2
d

√
r2 −

(
d
2

)2
 (3)

β = π − 2arccos
(

d
2r

)
(4)

Vloss = 2πR

πr2β

2π
− 1

2
d

√
r2 −

(
d
2

)2
 (5)

where Vloss is the material volume loss (mm3); C is the wear circumference (mm); S is the
wear cross-sectional area (mm2); β is the arc angle of the friction; d is the width of wear
track (mm); r is the radius of the counterpart (mm); R is the radius of the wear track (mm).

Table 4. Parameters of the wear experiment.

Applied Load (g) Time (min) Experimental
Temperature (◦C)

Rotational Speed
(r/min)

The Radius of the Sliding Wear
Track (mm)

200 30 25 200 3
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Figure 4. Principle of material volume loss calculation.

To evaluate the corrosion resistance of the coatings, electrochemical impedance spec-
troscopy (EIS) and polarization curves were obtained using a CS310H potentiostat/galvanostat.
A 1 mol/L NaCl solution was used as the corrosion medium. The reference electrode used
was a saturated calomel electrode (SCE). The counter electrode was platinum. In this study,
the samples were Φ 8 × 10 mm cylinders, and the round exposed surface was polished.
The electrochemical experimental parameters are shown in Table 5. The electrochemical
experiment was performed three times with nominally identical samples.
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Table 5. Electrochemical experimental parameters.

EIS Test Method Frequency
Range (Hz)

Disturbance
Voltage (mV)

Polarization Curve
Test Method

Voltage Range
(V)

Scanning Speed
(mV/s)

Impedance-frequency
scanning 10−2–10−5 10 Potentiodynamic

polarization −2~2 1

3. Results and Discussion
3.1. Phase Composition of the Coating

Figure 5 shows the XRD patterns of the powder of HEA and XZrC (X = 00, 01, 02, 03, 04)
coatings. It can be observed that the peak strength of the HEA powder is significantly
lower than that of the coating, which could be related to the condition of the material. Their
main diffraction peaks are (111), (200), and (220), indicating that the HEA powder has been
mechanically alloyed. Furthermore, the main crystal structures of the HEA powder and all
five HEA coatings are face-centered cubic (FCC). Therefore, adding ZrC does not change
the CrMnFeCoNi HEA coating structure. Among these diffraction peaks, the peak of the
(111) crystal plane has the highest diffraction intensity, which means that the preferred
growth direction during solidification is in the direction of the (111) crystal plane. When the
ZrC content increased to 4 wt.%, a splitting peak appeared near (111). This may be due to
the fact that a sufficient amount of ZrC increases the content of dissolved Zr, which forms a
Laves phase with matrix elements [42]. Table 6 shows the composition of the phases in the
HEA powder and the five coatings calculated by Jade6. It can be observed that the phase
content of ZrC gradually increases with the addition of ZrC. By 04ZrC, the Laves phase
was present.
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Table 6. Phase content in XRD analysis (%).

FCC ZrC LAVES

HEA powder 100 0 0

HEA 100 0 0

01ZrC 95.3 4.7 0

02ZrC 94.4 5.6 0

03ZrC 93.8 6.2 0

04ZrC 88.8 6.3 4.9
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According to the Scherrer formula, the crystallite sizes of the FCC of the HEA powder
and the 00–04ZrC coating are 39.5 nm, 19.3 nm, 18.6 nm, 18.3 nm, 18.2 nm, and 18.0 nm,
respectively. It shows that the rapid cooling of PTA reduces the crystallite size of HEA
compared to HEA powder. In addition, the crystallite size decreases with the increase in
ZrC content. This is due to the fact that the addition of the second phase hinders grain
growth, resulting in a gradual reduction in the crystallite size of FCC. However, the addition
of ZrC has little effect on the crystallite size of FCC. The crystallite sizes of ZrC in 01–04ZrC
are 11.1 nm, 12.7 nm, 11.5 nm, and 12.2 nm, respectively. These sizes show little change,
likely due to the consistent influence of the same process parameters on ZrC. The crystallite
size of the Laves phase precipitated in 04ZrC is 11.8 nm.

The lattice constants of the HEA powder and the 00–04ZrC coatings calculated by Jade6
are 0.35918 nm, 0.3596 nm, 0.3578 nm, 0.3604 nm, 0.3612 nm, and 0.3606 nm, respectively,
which suggests that the addition of ZrC has little effect on the lattice constants of HEA
coatings. The explanation for this is that due to the high melting point of ZrC, most of the
ZrC particles do not decompose but exist as a second phase in the HEA coatings. As a
result, there is no significant change in the lattice constants of the HEA coatings.

3.2. Morphology and Composition Analysis of the Coatings

Figure 6 shows the metallography of the HEA and XZrC (X = 0.1, 0.2, 0.3, 0.4) coatings
near the fusion line observed by optical microscopy. The thickness of the coatings is 2.5 mm,
and the melting depth is 0.3 mm. The calculated dilution rate is 10.71%, indicating a strong
metallurgical bond between the coating and the substrate (Figure 6a). Furthermore, the five
coatings were composed of dendrites and equiaxed crystals perpendicular to the matrix.
This is due to the fact that during the solidification process of the coatings, the heat loss
was slower in the area near the substrate than that near the air, which resulted in a tem-
perature gradient that made the columnar crystals grow along the direction perpendicular
to the substrate. Therefore, the addition of ZrC had little effect on the microstructure of
the coatings.
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Figure 6. Microstructure of the HEA and XZrC coatings. (a) Cross-section of the entire thickness of
the coating; (b) HEA; (c) 01ZrC; (d) 02ZrC; (e) 03ZrC; (f) 04ZrC.
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Figure 7 shows the SEM images of the XZrC HEA coatings. The diameter and density
of the pits increased with increasing ZrC content. It is speculated that the unmelted ZrC
particles on the surface of the coatings may cause flaking during grinding and polishing [43].
In addition, with increasing ZrC content, the number of spalling ZrC particles increases.
Scratches that may be produced by the exfoliation of ZrC particles are also observed in the
high-magnification SEM image of the 04ZrC coating. In addition, granular precipitates are
observed in the high-magnification SEM images of the 01–04ZrC coatings, indicating that
ZrC may exist in the CrMnFeCoNi HEA as a second phase [44]. In the high-magnification
SEM image, it can also be seen that the size of the precipitates is quite different, which
also indicates that the low fluidity of ZrC causes its uneven deposition in the coating. In
addition, perhaps due to the too-small particle size of the generated Laves, the Laves was
not seen in the SEM image of 04ZrC.
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To clarify the specific composition of the granular precipitates, the precipitates in
the 01–04ZrC coatings and the area surrounding the precipitates were analyzed by EDS.
The results are shown in Table 7. The four points of A, C, E, and G indicate areas of the
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precipitate that are mainly Zr, as well as a few elements of the CrMnFeCoNi HEA, which
verifies that the main component of the granular precipitate is unmelted ZrC. The main
elements of the points B, D, F, and H of the area near the precipitates are CrMnFeCoNi
HEA principal elements, and the contents of the five principal elements are close to equal.

Table 7. EDS analysis results of the CrMnFeCoNi and ZrC high-entropy alloy coating (wt.%).

Point Cr Mn Fe Co Ni Zr C

A 4.16 6.52 3.01 2.56 2.70 62.60 18.46
B 16.89 22.89 18.23 17.93 21.99 0 1.89
C 0.56 0.56 0.58 0.43 0.41 64.54 32.27
D 17.11 15.27 22.02 18.81 17.68 3.66 5.45
E 1.63 0 2.93 0 0 64.40 29.38
F 18.68 17.04 21.79 19.84 17.82 0.01 4.83
G 4.24 5.19 8.04 3.35 3.18 51.07 22.93
H 18.22 15.64 20.48 17.54 15.68 5.48 6.98

3.3. Microhardness

Figure 8 shows the average hardness of the HEA and XZrC (X = 01, 02, 03, 04) coatings.
The hardness of the CrMnFeCoNi HEA coating without ZrC is very low, with an average
hardness of only 160.04 HV. This is mainly because the principal elements of CrMnFeCoNi
HEAs are adjacent in the periodic table, which is indicative of their similar atomic sizes.
Therefore, there is no significant lattice distortion in the crystal structure, leading to the low
hardness of the CrMnFeCoNi HEA coating. With increasing ZrC content, the hardness of
the HEA coating gradually increases. The hardness increases significantly at the beginning
of ZrC addition. The figure shows that the hardness of 01ZrC increases by approximately
20% compared to that of 00ZrC. Subsequently, the hardness increases more slowly with
increasing ZrC content. The main reason for this is that when ZrC is newly added to the
CrMnFeCoNi HEA coating, ZrC is deposited as a hard phase and introduces a second-
phase strengthening mechanism, resulting in a significant increase in hardness [32]. Then,
the strengthening mechanism does not change with increasing ZrC content. Only the
amount of the second phase and dissolved ZrC content were increased, and the increase
was slight, leading to a slower increasing hardness trend.
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3.4. Friction and Wear Properties

After conducting the rotational friction experiments, the friction coefficient curves of
HEA and XZrC are shown in Figure 9. It can be observed that the five coatings experienced
two stages of adaptive friction and stable friction during the experiment. This indicates
that the friction mechanism of the five coatings is similar. Among them, the HEA friction
coefficient curve reaches the stable friction stage quickly and fluctuates significantly. This
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may be due to the significant difference in hardness between the friction pair and the HEA.
Due to the addition of ZrC, the hardness of the HEA coating is significantly increased.
As a result, the friction coefficient curve of XZrC grows more slowly and has a smaller
fluctuation range. The friction coefficient of 01ZrC in the stable friction stage is the smallest,
while that of 03ZrC is the largest. It can be preliminarily judged that 01ZrC exhibits the
best wear resistance, while 03ZrC demonstrates the worst wear resistance.
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The curve of the average friction coefficient changing with the content of ZrC was
obtained as shown in Figure 10. The average friction coefficient is calculated at the stable
friction phase. With increasing ZrC content, the average friction coefficient of the coatings
shows the trend of first decreasing, then increasing, and then decreasing again. This indi-
cates that the addition of the appropriate amount of ZrC can reduce the friction coefficient
to improve the friction performance of the HEA coating. Among the different coatings,
the 01ZrC coating has the smallest friction coefficient, which is reduced by approximately
15.4% compared to that of the HEA without ZrC. When the content of ZrC is 3 wt%, the
friction coefficient reaches a maximum and even surpasses that of the pure HEA.
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Figure 11 shows the curve of friction volume loss of HEA and X ZrC, and it can be seen
that its variation trend is consistent with the average friction coefficient. The volume loss is
the smallest at 01ZrC, and the volume loss is reduced by 12.6% compared with the coating
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without ZrC. The reduction effect is not obvious. With the increase in ZrC content, the
volume loss increases greatly and reaches the maximum at 03ZrC, which is about 2.5 times
that of HEA. By 04ZrC, the volume loss is significantly reduced, 38% lower than 03ZrC,
but still higher than HEA.
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To understand the reasons for this trend, the wear morphologies of the HEA and XZrC
(X = 01, 02, 03, 04) coatings were analyzed. Figure 12 shows the SEM images of the HEA
and XZrC coating wear marks. The width of the wear mark of 01ZrC was narrower than
that of the HEA without ZrC. When the content of ZrC was between 1 wt% and 3 wt%,
the width of the wear mark increased gradually with increasing ZrC content. The wear
mark of the 04ZrC coating was narrower than that of 03ZrC. It demonstrated that with
increasing ZrC content, the wear volume of the coating decreased first, then increased, and
then decreased, which was consistent with the trend of the friction coefficient and volume
loss. Scars caused by adhesive wear and furrows caused by abrasive wear appeared in all
of the five coating wear morphologies. This showed that the wear mode of the coatings
was a combination of adhesive wear and abrasive wear. EDS analysis of the scar area
revealed that the oxygen content was all approximately 30 wt%, suggesting that tribo-
oxidation occurred during the wear process. Usually, tribo-oxidation has a wear-reduction
mechanism [45]. Therefore, the more scar content, the better the wear resistance. Compared
with HEA, the number of scars in the 01ZrC coating was greater, while the width of the
wear mark was narrower, which indicated that the proportion of adhesive wear increased
and the friction resistance was enhanced. This was because introducing a second phase
dramatically increased the hardness of the coating, thus enhancing the wear resistance.
In 01ZrC–03ZrC, with increasing ZrC content, the width of the wear mark and depth
of the furrow gradually increased while the number of scars gradually decreased. This
indicated that with increased Zr content, the abrasive wear became increasingly severe,
and the friction resistance gradually lessened. This was because with increasing Zr content,
the number of ZrC particles shed during the wear process gradually increased. These
shed ZrC particles were present between the coating and the stainless steel ball, and they
increased the proportion of abrasive wear and reduced the friction resistance of the coating.
For 04ZrC, the width of the wear mark and the depths of furrows decreased, and the
number of scars increased, which indicated enhanced friction resistance. This is due to the
strengthening effect of newly generated intermetallic compounds’ Laves, which increase
the wear resistance of the coating [46].
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3.5. Corrosion Resistance of the Coating

The corrosion performance of the HEA and XZrC (X = 01, 02, 03, 04) coatings was
investigated by electrochemical experiments with a corrosion medium of 1 mol/L NaCl.
Figure 13 shows the polarization curves of the experiments. The shapes of the polarization
curves of the five coatings are roughly the same. They indicate that the corrosion forms
and mechanisms of these coatings in 1 mol/L NaCl solution are the same. Moreover, the
self-corrosion potentials of the 03ZrC and 04ZrC coatings are significantly higher than that
of the HEA. It can be preliminarily concluded that the high content of ZrC can significantly
enhance the corrosion resistance of the CrMnFeCoNi HEA coating.
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In order to determine the specific effect of ZrC on the corrosion resistance of the
CrMnFeCoNi HEA coating, the strong polarization region of the polarization curve was
analyzed using the polarization resistance (Rp) fitting method with the data analysis
module of the potensiostat/galvanostat, and the results are shown in Table 8. With the
increase in ZrC content, the polarization resistance (Rp) and self-corrosion potential (Ecorr)
gradually increase, while the self-corrosion current density (Icorr) gradually decreases. This
indicates that it is increasingly difficult for the coatings to lose electrons as the ZrC content
increases. As a result, the corrosion resistance is gradually enhanced. In addition, the
decreasing trend of the self-corrosion potential and self-corrosion current density accelerates
significantly when the ZrC content exceeds 2 wt%. Furthermore, the annual corrosion rate
gradually decreases with increasing ZrC content. The annual corrosion rate of the 04ZrC
coating in a 1 mol/L NaCl solution is only 5.997% of that of the HEA. This indicates that
the corrosion resistance is significantly improved. The reason for this is that the unmelted
ZrC particles are deposited in the HEA coating. It is known that the corrosion resistance of
carbides is generally better than that of HEAs [47]. With increasing ZrC content, the carbide
content increases in the coating. Therefore, the corrosion resistance of the CrMnFeCoNi
HEA coating is gradually enhanced with increasing ZrC content.

Table 8. Electrochemical parameters of the high-entropy alloys with different ZrC contents.

Specimen Rp (Ω/cm2) Ecorr (V) Icorr (A/cm2)
Corrosion Rate

(mm/a)

HEA 1076.6 −0.99367 ± 0.05 1.6673 × 10−5 ± 0.3 × 10−5 0.1956 ± 0.005
01ZrC 1962 −0.97638 ± 0.05 9.3374 × 10−6 ± 0.5 × 10−6 0.1095421 ± 0.005
02ZrC 2240 −0.96184 ± 0.05 8.0538 × 10−6 ± 0.5 × 10−6 0.094269 ± 0.005
03ZrC 7488.2 −0.58537 ± 0.05 2.4038 × 10−6 ± 0.5 × 10−6 0.024358 ± 0.005
04ZrC 18027 −0.44554 ± 0.05 9.9848 × 10−7 ± 0.5 × 10−7 0.011731 ± 0.005

Figure 14 shows the electrochemical impedance spectroscopy (EIS) of five HEA coat-
ings tested in 1 mol/L NaCl solution. It can be seen from the Nyquist plot that the radius
of the capacitive reactance arc gradually increases as the ZrC content increases (Figure 14a).
This indicates that ZrC can effectively increase the resistance of the coating. Furthermore,
the resistance of the coating increases with the addition of more ZrC. In other words, as the
ZrC content increases, the electron transfer of the coating becomes more difficult, which
leads to an improvement in the corrosion resistance of the coating.
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As can be seen from the Bode plot (Figure 14b), the phase angle curves of the five
coatings all exhibit the characteristics of a single spike and peak valley, indicating the
presence of only one time constant. Combined with the curve of the Nyquist diagram, the
electrochemical corrosion model of the coating can be characterized by the equivalent circuit
shown in Figure 15. Rs represents the solution resistance. Rct represents the charge transfer
resistance in the electrode double layer, which is the equivalent polarization resistance.
CPE represents the capacitance in the circuit. The equivalent circuit is fitted using the
data analysis module of the potensiostat/galvanostat, and the results are presented in
Table 9. It can be seen that the equivalent polarization resistance gradually increases with
the increase in ZrC content. This indicates that the corrosion resistance of the coating
gradually improves with an increase in ZrC content.
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Table 9. EIS parameters of HEA and XZrC coatings.

Rs (Ω·cm2) CPE Y0 (S·Ω−1·cm−2) Rt (Ω·cm2)

HEA 5.916 0.74374 9.4613 × 10−5 1286
01ZrC 7.597 0.75964 2.3709 × 10−5 3022
02ZrC 4.511 0.73601 1.6096 × 10−5 3452
03ZrC 6.291 0.86851 7.1758 × 10−5 7524
04ZrC 13.66 0.84460 5.6212 × 10−5 13,527

4. Conclusions

In this study, CrMnFeCoNi HEA coatings with different ZrC contents are prepared by
a PTA process, and the effects of the ZrC content on the crystal structure, microstructure,
composition, hardness, friction properties, and corrosion resistance of the CrMnFeCoNi
HEA coatings are investigated. Moreover, the following conclusions are drawn.
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1. The microstructure of HEA and coatings with varying ZrC contents consist of den-
drites that are perpendicular to the substrate. The crystal structures of the CrMn-
FeCoNi HEA coatings with different ZrC contents are FCC. The results indicated
that the addition of ZrC did not change the microstructure and morphology of the
HEA coating. This is due to the fact that ZrC mainly exists in the CrMnFeCoNi HEA
coating as a second phase.

2. The hardness of the CrMnFeCoNi HEA coating increases gradually with increasing
ZrC content, and the hardness of the 01ZrC coating is approximately 20% higher
than that of the HEA. However, the increase rate of the hardness decreases when the
content of ZrC is more than 1 wt%.

3. ZrC had little effect on improving the wear resistance of the CrMnFeCoNi HEA
coating. The addition of ZrC did not change the wear mechanism of the CrMnFeCoNi
HEA coating. In every case, the wear was a combination of adhesive wear and
abrasive wear. The wear resistance of the CrMnFeCoNi HEA coating showed a trend
of first increasing, then decreasing, and finally increasing with increasing ZrC content.
Although the increase in hardness improved the wear resistance of the 01ZrC coating,
the improvement was not remarkable.

4. ZrC can effectively improve the corrosion resistance of the CrMnFeCoNi HEA coat-
ing, and the corrosion resistance of the CrMnFeCoNi HEA coating increases with
increasing ZrC content. The annual corrosion rate of the 04ZrC coating in a 1 mol/L
NaCl solution is only 21.5% of that of the HEA.

Consequently, the addition of ZrC to the FeCoCrNiMn high-entropy alloy coating
holds promise for applications in corrosion resistance, particularly in oceanic environments.
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