Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Authors = Abdullah M. Alsharif

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4239 KiB  
Article
Thermodynamic and Exergetic Evaluation of a Newly Designed CSP Driven Cooling-Desalination Cogeneration System
by Hassan F. Elattar, Abdul Khaliq, Bassam S. Aljohani, Abdullah M. A. Alsharif and Hassanein A. Refaey
Processes 2025, 13(5), 1589; https://doi.org/10.3390/pr13051589 - 20 May 2025
Viewed by 553
Abstract
This investigation attempts to develop a tower solar collector-based system designed for the cogeneration of cooling and desalination. The traditional organic Rankine cycle (ORC) integrated with the ejector refrigeration cycle generates limited power and cooling at a single temperature. Acknowledging their [...] Read more.
This investigation attempts to develop a tower solar collector-based system designed for the cogeneration of cooling and desalination. The traditional organic Rankine cycle (ORC) integrated with the ejector refrigeration cycle generates limited power and cooling at a single temperature. Acknowledging their limitations, our present study uses an organic flash cycle (OFC) supported by solar heat combined with the two-phase ejector cycle and the reverse osmosis (RO) desalination unit. Since the OFC turbine is fed with two extra streams of fluid, therefore, it provides greater power to run the compressor of the ejector and pumps of the RO unit, resulting in the production of cooling at two different temperatures (refrigeration and air conditioning) and a higher mass flow rate of fresh water. A mathematical model is employed to assess the impact of coil curvature ratio, Rib height, and direct normal irradiation (DNI) on the temperature of the collector’s oil outlet. ANSYS-FLUENT conducts numerical simulations through computational fluid dynamics (CFD) analysis. The results indicate an ultimate increase in oil outlet temperature of 45% as the DNI increased from 450 to 1000 W/m2 at a curvature ratio of 0.095 when employing the 1st Rib. Further, a steady-state energy and exergy analysis is conducted to evaluate the performance of the proposed cogeneration, with different design parameters like DNI, coil curvature ratio, rib height, and OFC turbine inlet pressure. The energetic and exergetic efficiencies of the cogeneration system at DNI of 800 W/m2 are obtained as 16.67% and 6.08%, respectively. Exergetic assessment of the overall system shows that 29.57% is the exergy produced as cooling exergy, and the exergy accompanied by freshwater, 68.13%, is the exergy destroyed, and 2.3% is the exergy loss. The solar collector exhibits the maximum exergy destruction, followed by the ejector and RO pumps. Integrating multiple technologies into a system with solar input enhances efficiency, energy sustainability, and environmental benefits. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 8386 KiB  
Article
Eradication of Biofilms on Catheters: Potentials of Tamarix ericoides Rottl. Bark Coating in Preventing Catheter-Associated Urinary Tract Infections (CAUTIs)
by Mohammed H. Karrar Alsharif, Muhammad Musthafa Poyil, Salman Bin Dayel, Mohammed Saad Alqahtani, Ahmed Abdullah Albadrani, Zainab Mohammed M. Omar, Abdullah MR. Arafah, Tarig Gasim Mohamed Alarabi, Reda M. Fayyad and Abd El-Lateef Saeed Abd El-Lateef
Life 2024, 14(12), 1593; https://doi.org/10.3390/life14121593 - 3 Dec 2024
Cited by 1 | Viewed by 1358
Abstract
Catheter-associated urinary tract infections (CAUTIs) cause serious complications among hospitalized patients due to biofilm-forming microorganisms which make treatment ineffective by forming antibiotic-resistant strains. As most CAUTI-causing bacterial pathogens have already developed multidrug resistance, there is an urgent need for alternative antibacterial agents to [...] Read more.
Catheter-associated urinary tract infections (CAUTIs) cause serious complications among hospitalized patients due to biofilm-forming microorganisms which make treatment ineffective by forming antibiotic-resistant strains. As most CAUTI-causing bacterial pathogens have already developed multidrug resistance, there is an urgent need for alternative antibacterial agents to prevent biofilms on catheter surfaces. As a trial to find out such a potential agent of natural origin, the bark of Tamarix ericoides Rottl., a little-known plant from the Tamaricaceae family, was examined for its antibacterial and antibiofilm activities against one of the major, virulent, CAUTI-causing bacterial pathogens: Enterococcus faecalis. The methanolic T. ericoides bark extract was analyzed for its antibacterial activity using the well diffusion method and microdilution method. Killing kinetics were calculated using time–kill assay, and the ability of biofilm formation and its eradication upon treatment with the T. ericoides bark extract was studied by crystal violet assay. GC-MS analysis was performed to understand the phytochemical presence in the extract. A in vitro bladder model study was performed using extract-coated catheters against E. faecalis, and the effect was visualized using CLSM. The changes in the cell morphology of the bacterium after treatment with the T. ericoides bark extract were observed using SEM. The biocompatibility of the extract towards L929 cells was studied by MTT assay. The anti-E. faecalis activity of the extract-coated catheter tube was quantified by viable cell count method, which exposed 20% of growth after five days of contact with E. faecalis. The anti-adhesive property of the T. ericoides bark extract was studied using CLSM. The extract showed potential antibacterial activity, and the lowest inhibitory concentration needed to inhibit the growth of E. faecalis was found to be 2 mg/mL. The GC-MS analysis of the methanolic fractions of the T. ericoides bark extract revealed the presence of major phytochemicals, such as diethyl phthalate, pentadecanoic acid, methyl 6,11-octadecadienoate, cyclopropaneoctanoic acid, 2-[(2-pentylcyclopropyl) methyl]-, methyl ester, erythro-7,8-bromochlorodisparlure, etc., that could be responsible for the antibacterial activity against E. faecalis. The killing kinetics of the extract against E. faecalis was calculated and the extract showed promising antibiofilm activity on polystyrene surfaces. The T. ericoides bark extract effectively reduced the E. faecalis mature biofilms by 75%, 82%, and 83% after treatment with 1X MIC (2 mg/mL), 2X MIC (4 mg/mL), and 3X MIC (6 mg/mL) concentrations, respectively, which was further confirmed by SEM analysis. The anti-adhesive property of the T. ericoides bark extract studied using CLSM revealed a reduction in the biofilm thickness, and the FDA and PI combination revealed the death of 80% of the cells on the extract-coated catheter tube. In addition, SEM analysis showed extensive damage to the E. faecalis cells after the T. ericoides bark extract treatment, and it was not cytotoxic. Hence, after further studies, T. ericoides bark extract with potential antibacterial, antibiofilm, and anti-adhesive activities can be developed as an alternative agent for treating CAUTIs. Full article
Show Figures

Figure 1

23 pages, 2809 KiB  
Review
Mpox Virus Infection and Vaccination: Immunopathogenesis and Exploring the Link to Neuropsychiatric Manifestations
by Helal F. Hetta, Ahmad A. Alharbi, Shumukh M. Alsharif, Tala T. Alkindy, Alanoud Alkhamali, Abdullah S. Albalawi, Hager Hamdy Sayed, Moaiad Eldin Ahmed Mohamed, Yasmine Adel Mohammed, Yasmin N. Ramadan and Reem Sayad
Immuno 2024, 4(4), 578-600; https://doi.org/10.3390/immuno4040034 - 2 Dec 2024
Cited by 1 | Viewed by 2330
Abstract
Background and Aim: Monkeypox (Mpox) is a viral disease mainly found in central and western Africa, with symptoms similar to variola virus (smallpox) but distinguished by the early lymph node swelling specific to Mpox. This review summarizes the neuropsychiatric manifestations of Mpox infection [...] Read more.
Background and Aim: Monkeypox (Mpox) is a viral disease mainly found in central and western Africa, with symptoms similar to variola virus (smallpox) but distinguished by the early lymph node swelling specific to Mpox. This review summarizes the neuropsychiatric manifestations of Mpox infection and vaccination, along with management approaches. Method: We searched different databases such as PubMed, Scopus, WoS, and Google Scholar about the neuropsychiatric manifestations of Mpox disease and the associated strategies of management. Results and conclusions: Mpox can cause a wide range of neurological symptoms. These range from mild symptoms like headaches, muscle aches, fatigue, and pain to severe symptoms, including seizures, blindness, photophobia, delirium, coma, encephalitis, and transverse myelitis. It is essential to distinguish Mpox from smallpox and other orthopox viruses. Psychiatric issues, such as stigma, disfigurement, isolation, and physical pain, are common in Mpox patients. To address these, healthcare providers should provide accurate information, counseling, and virtual support. Neurological side effects were associated with the previous smallpox vaccine, which offered cross-protection against Mpox. This vaccine has since been replaced by JYNNEOS, which does not pose any neurological risks. Mpox-related neurological symptoms are generally managed with supportive care, including NSAIDs, antibiotics, antiepileptics, and sedatives for seizures. Antivirals like acyclovir are also used. Severe cases may require hospitalization or intubation. So, we recommend early diagnosis, isolation, and prompt treatment, as Mpox spreading to the central nervous system can lead to serious and potentially fatal complications. Full article
Show Figures

Figure 1

30 pages, 4678 KiB  
Review
Antimicrobial Peptides: The Game-Changer in the Epic Battle Against Multidrug-Resistant Bacteria
by Helal F. Hetta, Nizar Sirag, Shumukh M. Alsharif, Ahmad A. Alharbi, Tala T. Alkindy, Alanoud Alkhamali, Abdullah S. Albalawi, Yasmin N. Ramadan, Zainab I. Rashed and Fawaz E. Alanazi
Pharmaceuticals 2024, 17(11), 1555; https://doi.org/10.3390/ph17111555 - 20 Nov 2024
Cited by 12 | Viewed by 6870
Abstract
The rapid progress of antibiotic resistance among bacteria has prompted serious medical concerns regarding how to manage multidrug-resistant (MDR) bacterial infections. One emerging strategy to combat antibiotic resistance is the use of antimicrobial peptides (AMPs), which are amino acid chains that act as [...] Read more.
The rapid progress of antibiotic resistance among bacteria has prompted serious medical concerns regarding how to manage multidrug-resistant (MDR) bacterial infections. One emerging strategy to combat antibiotic resistance is the use of antimicrobial peptides (AMPs), which are amino acid chains that act as broad-spectrum antimicrobial molecules and are essential parts of the innate immune system in mammals, fungi, and plants. AMPs have unique antibacterial mechanisms that offer benefits over conventional antibiotics in combating drug-resistant bacterial infections. Currently, scientists have conducted multiple studies on AMPs for combating drug-resistant bacterial infections and found that AMPs are a promising alternative to conventional antibiotics. On the other hand, bacteria can develop several tactics to resist and bypass the effect of AMPs. Therefore, it is like a battle between the bacterial community and the AMPs, but who will win? This review provides thorough insights into the development of antibiotic resistance as well as detailed information about AMPs in terms of their history and classification. Furthermore, it addresses the unique antibacterial mechanisms of action of AMPs, how bacteria resist these mechanisms, and how to ensure AMPs win this battle. Finally, it provides updated information about FDA-approved AMPs and those that were still in clinical trials. This review provides vital information for researchers for the development and therapeutic application of novel AMPs for drug-resistant bacterial infections. Full article
(This article belongs to the Special Issue Naturally Occurring Peptides and Proteins and Related Drugs)
Show Figures

Figure 1

21 pages, 10576 KiB  
Article
Activation of AMPK/mTOR-Driven Autophagy and Suppression of the HMGB1/TLR4 Pathway with Pentoxifylline Attenuates Doxorubicin-Induced Hepatic Injury in Rats
by Hany H. Arab, Ahmed H. Eid, Shuruq E. Alsufyani, Ahmed M. Ashour, Alwaleed M. Alnefaie, Nasser M. Alsharif, Abdullah M. Alshehri, Abdulmajeed A. Almalawi, Abdulmajeed A. Alsowat, Hayat A. Abd El Aal, Eman S. G. Hassan, Wessam H. Elesawy and Alzahraa A. Elhemiely
Pharmaceuticals 2024, 17(6), 681; https://doi.org/10.3390/ph17060681 - 26 May 2024
Cited by 4 | Viewed by 2267
Abstract
Despite being an effective chemotherapeutic agent, the clinical use of doxorubicin (DOX) is limited by several organ toxicities including hepatic injury. Pentoxifylline (PTX) is a methylxanthine derivative with marked anti-inflammatory and anti-apoptotic features. It is unknown, however, whether PTX can mitigate DOX-evoked hepatotoxicity. [...] Read more.
Despite being an effective chemotherapeutic agent, the clinical use of doxorubicin (DOX) is limited by several organ toxicities including hepatic injury. Pentoxifylline (PTX) is a methylxanthine derivative with marked anti-inflammatory and anti-apoptotic features. It is unknown, however, whether PTX can mitigate DOX-evoked hepatotoxicity. This study aims to explore the potential hepatoprotective impact of PTX in DOX-induced hepatic injury and the underlying molecular mechanisms. Histopathology, immunohistochemistry, and ELISA were used to examine liver tissues. The current findings revealed that PTX administration to DOX-intoxicated rats mitigated the pathological manifestations of hepatic injury, reduced microscopical damage scores, and improved serum ALT and AST markers, revealing restored hepatic cellular integrity. These favorable effects were attributed to PTX’s ability to mitigate inflammation by reducing hepatic IL-1β and TNF-α levels and suppressing the pro-inflammatory HMGB1/TLR4/NF-κB axis. Moreover, PTX curtailed the hepatic apoptotic abnormalities by suppressing caspase 3 activity and lowering the Bax/Bcl-2 ratio. In tandem, PTX improved the defective autophagy events by lowering hepatic SQSTM-1/p62 accumulation and enhancing the AMPK/mTOR pathway, favoring autophagy and hepatic cell preservation. Together, for the first time, our findings demonstrate the ameliorative effect of PTX against DOX-evoked hepatotoxicity by dampening the hepatic HMGB1/TLR4/NF-κB pro-inflammatory axis and augmenting hepatic AMPK/mTOR-driven autophagy. Thus, PTX could be utilized as an adjunct agent with DOX regimens to mitigate DOX-induced hepatic injury. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

20 pages, 2329 KiB  
Review
Bioengineered Organoids Offer New Possibilities for Liver Cancer Studies: A Review of Key Milestones and Challenges
by Abdullah Jabri, Jibran Khan, Bader Taftafa, Mohamed Alsharif, Abdulaziz Mhannayeh, Raja Chinnappan, Alaa Alzhrani, Shadab Kazmi, Mohammad Shabab Mir, Aljohara Waleed Alsaud, Ahmed Yaqinuddin, Abdullah M. Assiri, Khaled AlKattan, Yogesh K. Vashist, Dieter C. Broering and Tanveer Ahmad Mir
Bioengineering 2024, 11(4), 346; https://doi.org/10.3390/bioengineering11040346 - 1 Apr 2024
Cited by 9 | Viewed by 3671
Abstract
Hepatic cancer is widely regarded as the leading cause of cancer-related mortality worldwide. Despite recent advances in treatment options, the prognosis of liver cancer remains poor. Therefore, there is an urgent need to develop more representative in vitro models of liver cancer for [...] Read more.
Hepatic cancer is widely regarded as the leading cause of cancer-related mortality worldwide. Despite recent advances in treatment options, the prognosis of liver cancer remains poor. Therefore, there is an urgent need to develop more representative in vitro models of liver cancer for pathophysiology and drug screening studies. Fortunately, an exciting new development for generating liver models in recent years has been the advent of organoid technology. Organoid models hold huge potential as an in vitro research tool because they can recapitulate the spatial architecture of primary liver cancers and maintain the molecular and functional variations of the native tissue counterparts during long-term culture in vitro. This review provides a comprehensive overview and discussion of the establishment and application of liver organoid models in vitro. Bioengineering strategies used to construct organoid models are also discussed. In addition, the clinical potential and other relevant applications of liver organoid models in different functional states are explored. In the end, this review discusses current limitations and future prospects to encourage further development. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Figure 1

16 pages, 5225 KiB  
Article
Emerging Mesoporous Polyacrylamide/Gelatin–Iron Lanthanum Oxide Nanohybrids towards the Antibiotic Drugs Removal from the Wastewater
by Nazish Parveen, Fatimah Othman Alqahtani, Ghayah M. Alsulaim, Shada A. Alsharif, Kholoud M. Alnahdi, Hasna Abdullah Alali, Mohamad M. Ahmad and Sajid Ali Ansari
Nanomaterials 2023, 13(21), 2835; https://doi.org/10.3390/nano13212835 - 26 Oct 2023
Cited by 26 | Viewed by 1642
Abstract
The polyacrylamide/gelatin–iron lanthanum oxide (P-G-ILO nanohybrid) was fabricated by the free radical grafting co-polymerization technique in the presence of N,N-methylenebisacrylamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. The P-G-ILO nanohybrid was characterized by the various spectroscopic and microscopic techniques that [...] Read more.
The polyacrylamide/gelatin–iron lanthanum oxide (P-G-ILO nanohybrid) was fabricated by the free radical grafting co-polymerization technique in the presence of N,N-methylenebisacrylamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. The P-G-ILO nanohybrid was characterized by the various spectroscopic and microscopic techniques that provided the information regarding the crystalline behavior, surface area, and pore size. The response surface methodology was utilized for the statistical observation of diclofenac (DF) adsorption from the wastewater. The adsorption capacity (qe, mg/g) of P-G-ILO nanohybrid was higher (254, 256, and 258 mg/g) than the ILO nanoparticle (239, 234, and 233 mg/g). The Freundlich isotherm model was the best fitted, as it gives the higher values of correlation coefficient (R2 = 0.982, 0.991 and 0.981) and lower value of standard error of estimate (SEE = 6.30, 4.42 and 6.52), which suggested the multilayered adsorption of DF over the designed P-G-ILO nanohybrid and followed the pseudo second order kinetic model (PSO kinetic model) adsorption. The thermodynamic study reveals that adsorption was spontaneous and endothermic in nature and randomness onto the P-G-ILO nanohybrids surface increases after the DF adsorption. The mechanism of adsorption of DF demonstrated that the adsorption was mainly due to the electrostatic interaction, hydrogen bonding, and dipole interaction. P-G-ILO nanohybrid was reusable for up to five adsorption/desorption cycles. Full article
Show Figures

Graphical abstract

14 pages, 305 KiB  
Article
Antiapoptotic Gene Genotype and Allele Variations and the Risk of Lymphoma
by Osama M. Al-Amer, Rashid Mir, Abdullah Hamadi, Mohammed I. Alasseiri, Malik A. Altayar, Waseem AlZamzami, Mamdoh Moawadh, Sael Alatawi, Hanan A. Niaz, Atif Abdulwahab A. Oyouni, Othman R. Alzahrani, Hanan E. Alatwi, Aishah E. Albalawi, Khalaf F. Alsharif, Ashraf Albrakati and Yousef M. Hawsawi
Cancers 2023, 15(4), 1012; https://doi.org/10.3390/cancers15041012 - 5 Feb 2023
Cited by 1 | Viewed by 2505
Abstract
Background: The findings of earlier investigations of antiapoptotic gene genotypes and allele variants on lymphoma risk are ambiguous. This study aimed to examine the relationship between the mutation in the antiapoptotic genes and lymphoma risk among Saudi patients. Methods: This case–control study included [...] Read more.
Background: The findings of earlier investigations of antiapoptotic gene genotypes and allele variants on lymphoma risk are ambiguous. This study aimed to examine the relationship between the mutation in the antiapoptotic genes and lymphoma risk among Saudi patients. Methods: This case–control study included 205 patients, 100 of whom had lymphoma (cases) and 105 who were healthy volunteers (controls). We used tetra amplification refractory mutation polymerase chain reaction (PCR) to identify antiapoptotic genes such as B-cell lymphoma-2 (BCL2-938 C > A), MCL1-rs9803935 T > G, and survivin (BIRC5-rs17882312 G > C and BIRC5-rs9904341 G > C). Allelic-specific PCR was used to identify alleles such as BIRC5-C, MCL1-G, and BIRC5-G. Results: The dominant inheritance model among cases showed that mutations in all four antiapoptotic genes were more likely to be associated with the risk of lymphoma by the odds of 2.0-, 1.98-, 3.90-, and 3.29-fold, respectively, compared to controls. Apart from the BCL-2-A allele, all three specified alleles were more likely to be associated with lymphoma by the odds of 2.04-, 1.65-, and 2.11-fold, respectively. Conclusion: Unlike healthy individuals, lymphoma patients are more likely to have antiapoptotic gene genotypes and allele variants, apart from BCL-2-A alterations. In the future, these findings could be used to classify and identify patients at risk of lymphoma. Full article
15 pages, 2882 KiB  
Article
Development and Validation of ScriptTaq COVID PCR: An In-House Multiplex rRT-PCR for Low-Cost Detection
by Dana Abdalghani AbuObead, Tasnim Khalid Alhomsi, Mahmoud Zhra, Bandar Alosaimi, Muaawia Hamza, Maaweya Awadalla, Osama Ezzeldin Abdelhadi, Joud Abdullah Alsharif, Liliane Okdah, Khaled AlKattan, Saeed Al Turki, Hana M. A. Fakhoury and Ahmad Aljada
Curr. Issues Mol. Biol. 2022, 44(12), 6117-6131; https://doi.org/10.3390/cimb44120417 - 5 Dec 2022
Cited by 2 | Viewed by 3325
Abstract
The COVID-19 pandemic necessitated an extensive testing for active SARS-CoV-2 infection. However, securing affordable diagnostic tests is a struggle for low-resource settings. We report herein the development and validation of an in-house multiplex real-time RT-PCR diagnostic test for the detection of active COVID-19 [...] Read more.
The COVID-19 pandemic necessitated an extensive testing for active SARS-CoV-2 infection. However, securing affordable diagnostic tests is a struggle for low-resource settings. We report herein the development and validation of an in-house multiplex real-time RT-PCR diagnostic test for the detection of active COVID-19 infection (ScriptTaq COVID PCR). Furthermore, we describe two methods for RNA extraction using either an in-house silica column or silica-coated magnetic beads to replace commercial RNA extraction kits. Different buffer formulations for silica column and silica-coated magnetic beads were tested and used for RNA isolation. Taq polymerase enzyme and thermostable reverse transcriptase enzyme were purified from bacterial clones. Primers/probes sequences published by the WHO and CDC were used for the qualitative detection of the RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) genes, respectively. ScriptTaq COVID PCR assay was able to detect up to 100 copies per reaction of the viral RdRP and N genes. The test demonstrated an overall agreement of 95.4%, a positive percent agreement (PPA) of 90.2%, and a negative percent agreement (NPA) of 100.0% when compared with two commercially available kits. ScriptTaq COVID PCR diagnostic test is a specific, sensitive, and low-cost alternative for low-resource settings. Full article
Show Figures

Figure 1

12 pages, 2530 KiB  
Article
Future Acceptability of Respiratory Virus Infection Control Interventions in General Population to Prevent Respiratory Infections
by Jaber S. Alqahtani, Abdulelah M. Aldhahir, Saad M. AlRabeeah, Lujain B. Alsenani, Haifa M. Alsharif, Amani Y. Alshehri, Mayadah M. Alenazi, Musallam Alnasser, Ahmed S. Alqahtani, Ibrahim A. AlDraiwiesh, Saeed M. Alghamdi, Rayan A. Siraj, Hussain S. Alqahtani, Jithin K. Sreedharan, Abdullah S. Alqahtani and Eidan M. Alzahrani
Medicina 2022, 58(7), 838; https://doi.org/10.3390/medicina58070838 - 22 Jun 2022
Cited by 3 | Viewed by 3083
Abstract
Background and Objectives: In both pandemic and non-pandemic situations, nonpharmaceutical public health measures may offer easy, low-cost, and effective means of reducing the spread and impact of acute respiratory infections. It is unknown whether such measures would be acceptable to the Saudi [...] Read more.
Background and Objectives: In both pandemic and non-pandemic situations, nonpharmaceutical public health measures may offer easy, low-cost, and effective means of reducing the spread and impact of acute respiratory infections. It is unknown whether such measures would be acceptable to the Saudi community beyond the current pandemic. Materials and Methods: A validated survey was used to test community acceptance of the measures. Respondents were asked which infection control practices they planned to maintain and which they believed should be policies for the community as a whole after the COVID-19 pandemic has subsided. Results: The survey was completed by 2057 people (95% completion rate), 1486 (72%) of whom were female, 259 (12.5%) of whom were current smokers, and 72 (3.5%) of whom had chronic lung disease. The most prevalent age groups were 18–30 years (933; 45.4%) and 31–40 years (483; 23.5%), with 641 individuals over 40 years old. Of the responses, 93% indicated that they would continue washing their hands more often; 92% wanted both clinicians and patients to wear masks in hospitals; 86% would continue avoiding smoking in indoor and outdoor areas; 73% would continue wearing a face covering on public transportation; 70% indicated that they would continue wearing a face covering in indoor public places. Regarding the respiratory virus infection control measures, 85% (11/13) received significant support (≥70% acceptability level) for continuation as policies in the future. Wearing face coverings outdoors and social distancing outdoors received little support (45% and 66%, respectively). Of the respiratory virus infection control measures, 54% received less support from current smokers than non-smokers (acceptability level < 70%). People with chronic respiratory disease supported 77% of the measures being regarded as policies in the future. Conclusion: The Saudi community supports nonpharmacological respiratory infection control measures that reduce the likelihood of infection. Public health campaigns should target smokers to increase awareness of the importance of these measures in lowering infections. Based on the findings of this study, nonpharmacological treatments should be presented and included in future recommendations for both the public and patients diagnosed with chronic respiratory diseases. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

6 pages, 228 KiB  
Article
Investigation of Dombrock Blood Group Alleles and Genotypes among Saudi Blood Donors in Southwestern Saudi Arabia
by Amr J. Halawani, Abdullah S. Mansor, Hamza M. Assaggaf, Hibah A. Almasmoum, Hisham I. Abu-Tawil, Khalaf F. Alsharif, Gasim Dobie and Mahmoud M. Habibullah
Genes 2022, 13(6), 1079; https://doi.org/10.3390/genes13061079 - 17 Jun 2022
Cited by 7 | Viewed by 3383
Abstract
The Dombrock (DO) blood group system has two primary antigens, Doa and Dob, which can cause delayed hemolytic transfusion reactions. The paucity of specific monospecific antibodies can hamper the typing based on these antigens. Thus, blood group genotyping (BGG) was [...] Read more.
The Dombrock (DO) blood group system has two primary antigens, Doa and Dob, which can cause delayed hemolytic transfusion reactions. The paucity of specific monospecific antibodies can hamper the typing based on these antigens. Thus, blood group genotyping (BGG) was investigated as a possible solution. Sequence-specific primers were designed to target a single nucleotide polymorphism (rs11276) on the ART4 gene encoding the DO*A and DO*B alleles. Blood samples (n = 150) from randomly selected volunteer donors were used. DNA was extracted and resulting PCR products were purified and sequenced. The allelic frequencies of DO*A and DO*B were (n = 122, 40.67%) and (n = 178, 59.33%), respectively. The distributions of DO genotypes were as follows: DO*A/DO*A (n = 20), 13.33%; DO*B/DO*B (n = 48), 32.00%; and DO*A/DO*B (n = 82), 54.67%. In conclusion, this study reports on the allelic frequencies of DO*A and DO*B of the DO blood group system in Jazan Province, Kingdom of Saudi Arabia. Furthermore, this study reports on the prevalence of each genotype, of which DO*A/DO*B was the most abundant. This study contributes significantly to build the current blood donor database in Southwestern Saudi Arabia. Moreover, it may assist in providing safe blood to polytransfused patients and reduce the risk of the red cell alloimmunization. Full article
(This article belongs to the Special Issue Genetics of Human Blood Group Antigens)
16 pages, 2497 KiB  
Article
Liposome-Encapsulated Tobramycin and IDR-1018 Peptide Mediated Biofilm Disruption and Enhanced Antimicrobial Activity against Pseudomonas aeruginosa
by Nouf M. Alzahrani, Rayan Y. Booq, Ahmad M. Aldossary, Abrar A. Bakr, Fahad A. Almughem, Ahmed J. Alfahad, Wijdan K. Alsharif, Somayah J. Jarallah, Waleed S. Alharbi, Samar A. Alsudir, Essam J. Alyamani, Essam A. Tawfik and Abdullah A. Alshehri
Pharmaceutics 2022, 14(5), 960; https://doi.org/10.3390/pharmaceutics14050960 - 28 Apr 2022
Cited by 28 | Viewed by 4565
Abstract
The inadequate eradication of pulmonary infections and chronic inflammation are significant complications in cystic fibrosis (CF) patients, who usually suffer from persistent and frequent lung infections caused by several pathogens, particularly Pseudomonas aeruginosa (P. aeruginosa). The ability of pathogenic microbes to [...] Read more.
The inadequate eradication of pulmonary infections and chronic inflammation are significant complications in cystic fibrosis (CF) patients, who usually suffer from persistent and frequent lung infections caused by several pathogens, particularly Pseudomonas aeruginosa (P. aeruginosa). The ability of pathogenic microbes to protect themselves from biofilms leads to the development of an innate immune response and antibiotic resistance. In the present work, a reference bacterial strain of P. aeruginosa (PA01) and a multidrug-resistant isolate (MDR 7067) were used to explore the microbial susceptibility to three antibiotics (ceftazidime, imipenem, and tobramycin) and an anti-biofilm peptide (IDR-1018 peptide) using the minimum inhibition concentration (MIC). The most effective antibiotic was then encapsulated into liposomal nanoparticles and the IDR-1018 peptide with antibacterial activity, and the ability to disrupt the produced biofilm against PA01 and MDR 7067 was assessed. The MIC evaluation of the tobramycin antibacterial activity showed an insignificant effect on the liposomes loaded with tobramycin and liposomes encapsulating tobramycin and IDR-1018 against both P. aeruginosa strains to free tobramycin. Nevertheless, the biofilm formation was significantly reduced (p < 0.05) at concentrations of ≥4 μg/mL and ≤32 μg/mL for PA01 and ≤32 μg/mL for MDR 7067 when loading tobramycin into liposomes, with or without the anti-biofilm peptide compared to the free antibiotic, empty liposomes, and IDR-1018-loaded liposomes. A tobramycin concentration of ≤256 µg/mL was safe when exposed to a lung carcinoma cell line upon its encapsulation into the liposomal formulation. Tobramycin-loaded liposomes could be a potential candidate for treating lung-infected animal models owing to the high therapeutic efficacy and safety profile of this system compared to the free administration of the antibiotic. Full article
(This article belongs to the Topic Cystic Fibrosis)
Show Figures

Figure 1

14 pages, 2631 KiB  
Article
Melittin from Bee Venom Encapsulating Electrospun Fibers as a Potential Antimicrobial Wound Dressing Patches for Skin Infections
by Walaa S. Aburayan, Areej M. Alajmi, Ahmed J. Alfahad, Wijdan K. Alsharif, Abdullah A. Alshehri, Rayan Y. Booq, Samar A. Alsudir, Fatemah M. Alsulaihem, Haitham A. Bukhary, Moutaz Y. Badr, Essam J. Alyamani and Essam A. Tawfik
Pharmaceutics 2022, 14(4), 725; https://doi.org/10.3390/pharmaceutics14040725 - 28 Mar 2022
Cited by 22 | Viewed by 3947
Abstract
Skin infection compromises the body’s natural defenses. Several antibiotics are no longer effective owing to the evolution of antimicrobial-resistant (AMR) bacteria, hence, the constant development of novel antibacterial agents. Naturally occurring antibacterial agents may be potential candidates for AMR bacterial infection treatments; however, [...] Read more.
Skin infection compromises the body’s natural defenses. Several antibiotics are no longer effective owing to the evolution of antimicrobial-resistant (AMR) bacteria, hence, the constant development of novel antibacterial agents. Naturally occurring antibacterial agents may be potential candidates for AMR bacterial infection treatments; however, caution should be taken when administering such agents due to the high incidence of toxicity. A fibrous material system from a biocompatible polymer that could be used as a skin patch for skin infections treatment caused by AMR bacteria is proposed in this study. Bee venom’s active ingredient, melittin, was fabricated using electrospinning technology. Scanning electron microscopy showed that melittin-loaded fibers had smooth surfaces with no signs of beads or pores. The average diameter of this fibrous system was measured to be 1030 ± 160 nm, indicating its successful preparation. The melittin fibers’ drug loading and entrapment efficiency (EE%) were 49 ± 3 µg/mg and 84 ± 5%, respectively. This high EE% can be another successful preparatory criterion. An in vitro release study demonstrated that 40% of melittin was released after 5 min and achieved complete release after 120 min owing to the hydrophilic nature of the PVP polymer. A concentration of ≤10 µg/mL was shown to be safe for use on human dermal fibroblasts HFF-1 after 24-h exposure, while an antibacterial MIC study found that 5 μg/mL was the effective antimicrobial concentration for S. aureus, A. baumannii, E. coli and Candida albicans yeast. A melittin-loaded fibrous system demonstrated an antibacterial zone of inhibition equivalent to the control (melittin discs), suggesting its potential use as a wound dressing patch for skin infections. Full article
Show Figures

Figure 1

12 pages, 316 KiB  
Article
Jafari Transformation for Solving a System of Ordinary Differential Equations with Medical Application
by Ahmed I. El-Mesady, Yasser S. Hamed and Abdullah M. Alsharif
Fractal Fract. 2021, 5(3), 130; https://doi.org/10.3390/fractalfract5030130 - 20 Sep 2021
Cited by 20 | Viewed by 4522
Abstract
Integral transformations are essential for solving complex problems in business, engineering, natural sciences, computers, optical science, and modern mathematics. In this paper, we apply a general integral transform, called the Jafari transform, for solving a system of ordinary differential equations. After applying the [...] Read more.
Integral transformations are essential for solving complex problems in business, engineering, natural sciences, computers, optical science, and modern mathematics. In this paper, we apply a general integral transform, called the Jafari transform, for solving a system of ordinary differential equations. After applying the Jafari transform, ordinary differential equations are converted to a simple system of algebraic equations that can be solved easily. Then, by using the inverse operator of the Jafari transform, we can solve the main system of ordinary differential equations. Jafari transform belongs to the class of Laplace transform and is considered a generalization to integral transforms such as Laplace, Elzaki, Sumudu, G\_transforms, Aboodh, Pourreza, etc. Jafari transform does not need a large computational work as the previous integral transforms. For the Jafari transform, we have studied some valuable properties and theories that have not been studied before. Such as the linearity property, scaling property, first and second shift properties, the transformation of periodic functions, Heaviside function, and the transformation of Dirac’s delta function, and so on. There is a mathematical model that describes the cell population dynamics in the colonic crypt and colorectal cancer. We have applied the Jafari transform for solving this model. Full article
(This article belongs to the Section General Mathematics, Analysis)
21 pages, 1498 KiB  
Review
Phytosomes as an Emerging Nanotechnology Platform for the Topical Delivery of Bioactive Phytochemicals
by Waleed S. Alharbi, Fahad A. Almughem, Alshaimaa M. Almehmady, Somayah J. Jarallah, Wijdan K. Alsharif, Nouf M. Alzahrani and Abdullah A. Alshehri
Pharmaceutics 2021, 13(9), 1475; https://doi.org/10.3390/pharmaceutics13091475 - 15 Sep 2021
Cited by 131 | Viewed by 11499
Abstract
The emergence of phytosome nanotechnology has a potential impact in the field of drug delivery and could revolutionize the current state of topical bioactive phytochemicals delivery. The main challenge facing the translation of the therapeutic activity of phytochemicals to a clinical setting is [...] Read more.
The emergence of phytosome nanotechnology has a potential impact in the field of drug delivery and could revolutionize the current state of topical bioactive phytochemicals delivery. The main challenge facing the translation of the therapeutic activity of phytochemicals to a clinical setting is the extremely low absorption rate and poor penetration across biological barriers (i.e., the skin). Phytosomes as lipid-based nanocarriers play a crucial function in the enhancement of pharmacokinetic and pharmacodynamic properties of herbal-originated polyphenolic compounds, and make this nanotechnology a promising tool for the development of new topical formulations. The implementation of this nanosized delivery system could enhance the penetration of phytochemicals across biological barriers due to their unique physiochemical characteristics, improving their bioavailability. In this review, we provide an outlook on the current knowledge of the biological barriers of phytoconstituents topical applications. The great potential of the emerging nanotechnology in the delivery of bioactive phytochemicals is reviewed, with particular focus on phytosomes as an innovative lipid-based nanocarrier. Additionally, we compared phytosomes with liposomes as the gold standard of lipid-based nanocarriers for the topical delivery of phytochemicals. Finally, the advantages of phytosomes in topical applications are discussed. Full article
Show Figures

Figure 1

Back to TopTop