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Abstract: Hepatic cancer is widely regarded as the leading cause of cancer-related mortality world-
wide. Despite recent advances in treatment options, the prognosis of liver cancer remains poor.
Therefore, there is an urgent need to develop more representative in vitro models of liver cancer
for pathophysiology and drug screening studies. Fortunately, an exciting new development for
generating liver models in recent years has been the advent of organoid technology. Organoid models
hold huge potential as an in vitro research tool because they can recapitulate the spatial architecture
of primary liver cancers and maintain the molecular and functional variations of the native tissue
counterparts during long-term culture in vitro. This review provides a comprehensive overview and
discussion of the establishment and application of liver organoid models in vitro. Bioengineering
strategies used to construct organoid models are also discussed. In addition, the clinical potential and
other relevant applications of liver organoid models in different functional states are explored. In the
end, this review discusses current limitations and future prospects to encourage further development.

Keywords: liver; cancer; biopsy; stem cells; organoids; 3D culture; tissue engineering; regenerative medicine

1. Introduction

According to the latest World Cancer Statistics, liver cancer ranks as the third leading
cause of cancer-related death among all malignancies globally, posing a serious threat
to human health [1]. Hepatic cancer causes a significant economic burden affecting tens
of millions of families worldwide. Primary liver cancer includes different pathologic
categories. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA)
are the two main histologic types of primary liver cancer, which differ in their epidemiology
and etiology [2]. Hepatocellular carcinoma comprises more than 90% of the primary cancer
of the liver. The main risk factors for the initiation and progression of hepatocellular
carcinoma (HCC) are infections caused by hepatitis B or hepatitis C viruses. In areas of high
hepatitis B endemicity, the hepatitis B virus is transmitted in large numbers from mothers to
infants during childbirth, and transmission of hepatitis B and hepatitis C viruses generally
occurs through the usage of unsafe needles and injection-related medical procedures.
Hepatocellular carcinoma can also be caused by several other factors, including alcohol
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consumption, non-alcoholic liver steatohepatitis (NASH), non-alcoholic fatty liver disease
(NAFLD), obesity, diabetes, and aflatoxin intake.

Intrahepatic cholangiocarcinoma (iCCA), on the other hand, originates in the bile ducts
within the liver lobules [3]. Although risk factors worldwide are unclear, the best-known
preventable causes of hepatobiliary cancer are attributed to the foodborne trematode para-
sites (Opisthorchis viverini and Clonorchis sinensis), which are found in certain endemic
regions [4]. Other known risk factors responsible for developing and progressing iCCA in-
clude primary sclerosing cholangitis, Caroli’s disease, and hepatolithiasis [4]. Lesser-known
subtypes of liver cancer include hepatoblastoma (a rare pediatric cancer) and angiosarcoma,
which is associated with long-term occupational exposure to vinyl chloride monomer,
among other risk factors [5]. Although each of these tumors has distinct genetic profiles
and characteristics, they all have an extremely unfavorable prognosis and are marked by
a high likelihood of recurrence after surgical removal and low survival rates in case of
metastasis [6]. Historically, finding effective treatments for patients with liver cancers,
particularly hepatobiliary cancers, has been challenging due to the lack of appropriate
research models. Hence, accurate estimation of the pathophysiology and treatment of
hepatic cancer by subtype requires the development of new therapeutic and diagnostic
substitutes to address the existing challenges in hepatology research [7–10].

Currently, preclinical models of liver research primarily rely on two-dimensional cell
cultures of mammalian cells and animal-based experimental strategies [11]. The former
strategy involves attaching one type of primary or immortalized cell line to a plastic sub-
strate, either in the form of a monolayer of cell sheets in a culture flask or in a flat Petri
dish. Conventional two-dimensional cultures are generally characterized by simplistic
two-dimensional interactions of cells and exhibit homogeneity when exposed to exoge-
nous substances or drug molecules. Adherent 2D culture methods are still dominant in
many biological studies, but they are far away from the native physiological or patho-
physiological conditions, leading to erroneous results and enormous economic costs. The
simplistic approach of 2D substrates makes it difficult to mimic the comprehensive liver
tissue microenvironment of the developing cancer. To overcome this challenge, preclin-
ical animal models have been used to mimic and investigate the in vivo human body’s
microenvironment [12].

However, animal models are often limited by intra- and interspecies variations and
human physiological differences. In addition, they are very costly to breed, house, and
maintain. Thus, in vitro 3D models that recapitulate the physiological similarities of native
tissues are a promising alternative to bridge the gap between 2D culture system and
animal-based models [13–19].

Current Methodologies for the Detection and Treatment of Hepatocellular Carcinoma

The long-term survival of patients following liver cancer treatment is often impacted
by high recurrence rates, which could reach up to 40–70% within five years [20,21]. Early
detection and identification of recurrence are crucial for optimal management of HCC in the
long term. Radiological imaging is a commonly used, non-invasive method for evaluating
treatment response, especially post-resection or locoregional therapy. The Liver Imaging
Reporting and Data System (LI-RADS) and the European Association for the Study of
the Liver (EASL) guidelines include ultrasound, especially contrast-enhanced ultrasound
(CEUS), along with contrast-enhanced CT (CECT), Contrast-Enhanced Magnetic Resonance
Imaging (CE-MRI), and Positron Emission Tomography (PET) scans, as the recommended
modalities [22]. CEUS, in particular, provides real-time imaging of blood flow in lesions,
enabling accurate differentiation between viable and necrotic tumor tissue and improving
the precision and accuracy of assessing treatment efficacies [23]. Nonetheless, patient
factors, such as cirrhosis, extensive fibro-fatty changes, body type, intestinal gas, and
deep lesions, may make it difficult to identify recurrence using ultrasound quickly [24,25].
CECT and CE-MRI encounter fewer limitations in this regard. Moreover, they offer the
advantage of unraveling more intricate anatomical insights, and CE-MRI is better at demon-
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strating exceptional differentiation of soft tissues. The customary practice for assessing
treatment response involves the combined utilization of CT and MRI [22]. Functional
imaging techniques, such as Positron Emission Tomography (PET) and Single-Photon Emis-
sion Computed Tomography (SPECT), provide valuable insights by detecting metabolic
changes within lesions [26]. The published literature has also demonstrated that a PET scan
combined with CT or MRI can provide higher detection efficacy [27].

Until now, numerous biomarkers have been identified and proposed for diagnosing
hepatocellular carcinoma and evaluating therapeutic efficacy [28]. In recent years, the utility
of biomarkers has become increasingly important for determining a drug’s mechanism
of action, investigating toxicity and efficacy signals, and estimating patient response to
systemic therapy over locoregional or surgical therapies [29]. The most recognized and
utilized biomarker in the literature for HCC diagnosis and management is alpha-fetoprotein
(AFP). Kim and co-workers evaluated AFP and radiographic changes in 108 patients with
hepatocellular carcinoma and concluded that AFP changes provide prognostic information
after management with immune checkpoint inhibitors [30]. He and his team performed a
meta-analysis of twenty-nine studies on prognosis prediction with AFP [31]. The authors
discovered that overall survival was significantly associated with AFP responsiveness
to post-treatment. However, they also highlighted the unreliability of AFP in certain
cases. This is mainly due to the fact that certain hepatocellular carcinomas are AFP-
negative and that AFP might be released in liver diseases, such as cirrhosis [32,33]. In a
prospective study in which Zhang and co-workers investigated 1338 HCC patients, the
seropositivity rate of AFP was 46%. Therefore, they proposed the combination of AFP
with human cervical cancer proto-oncogene 1 (HCCR-1), a biomarker for which 51.3%
of their patients were seropositive. Indeed, the combination of AFP with various other
biomarkers, such as Glypican-3 (GPC-3) and prothrombin induced by vitamin K deficiency
or antagonist-II (PIVKA-II), or with other diagnostic indicators, such as neutrophil-to-
lymphocyte ratio, has been implemented to improve diagnosis rates [28–30]. The clinical
utility of biomarkers is still under discussion, largely due to their low sensitivity and
specificity to HCC. Additionally, authors differ significantly regarding the cut-off points for
assessing tumor progression with these biomarkers [29–36].

Over the past two decades, the treatment landscape for hepatocellular carcinoma has
evolved dramatically, and now there are multiple options available depending on tumor
stage and liver function. Nevertheless, the difference between surgically resectable and
advanced disease poses a significant challenge in medical decision making, prompting the
use of various staging classification systems. The Barcelona Clinic Liver Cancer (BCLC)
algorithm-based classification system, generated using comprehensive data from various
cohort studies and randomized clinical trials (RCTs), is the most universally accepted cancer
staging system [37,38]. The BCLC system categorizes HCC patients into five stages (0, A, B,
C, and D) and predicts and assigns therapy recommendations (either curative or palliative)
based on three main prognostic variables: clinical status of tumor (tumor size, number of
nodules, extrahepatic spread, and portal invasion), the function of the liver (assessed using
the Child–Pugh score), and the status of the tumoral and cirrhotic factors (based on Eastern
Cooperative Oncology Group performance status) [39].

HCC patients in early stages (stage 0-A) are generally recommended for curative treat-
ment (resection, ablation, liver transplantation), patients in the intermediate stage (stage
B) are treated with trans-arterial embolization (TAE), and patients in the advanced stage
(stage C) are treated systemically. Patients with a very poor prognosis or life expectancy
are generally classified as ineligible for any treatment (stage D) [40–43]. Existing treatment
options for patients with advanced-stage hepatocellular carcinoma remain seriously dissat-
isfying due to limited response sensitivities to different chemotherapy agents. Resistance
to current systemic therapies is largely associated with tumor cell plasticity or “hide-and-
seek” behavior of cancer cells, epithelial–mesenchymal transition and transdifferentiation,
existence of cancer stem cells, and immune-excluded phenotype [44–48]. In addition, the
persistence of a tumor-promoting environment within the fibrotic zones promotes cancer
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cell crosstalk, which influences extracellular matrix deposition and ultimately increases
the risk of recurrence patterns after curative treatment. Collectively, there is a growing
and unmet medical demand for developing novel technologies for the early diagnosis and
treatment of hepatocellular carcinoma.

In this regard, ex vivo organoid models using surgically resected patient tumors are
considered promising alternatives to address existing challenges, such as studying patient-
specific developmental stages of HCC, selecting appropriate therapy (chemotherapy or
radiotherapy), therapy sensitivity screening, and improving treatment efficiency [49–51].

2. A Brief History of Organoids

The development of organoid-like structures dates back to 1907 when Wilson HV
first demonstrated how whole sponges may be artificially reared through self-organization
of dissociated sponge cells in vitro [52]. Over the past decades, several research groups
have applied dissociation–reaggregation experimental strategies to develop miniaturized
model systems of different bio-constructs (the reader is referred to more specialized reports
(Figure 1) [52–71]). A real shift in the modern field of organoid biology started in 2009
when Sato et al. reported that adult intestinal stem cells expressing G protein-coupled
receptor 5 (Lgr5), which contains leucine-rich repeats, generate intestinal organoids in a 3D
microenvironment [72]. The authors reported that murine intestine-derived adult stem cells
self-organize and differentiate into crypt-villus in Matrigel (a substrate for 3D cell culture).
The results of this benchmark study paved the way for further developments in organoid
research using cells derived from different source organs. The technique was subsequently
refined to generate human intestinal organoids and organoids from various organs in which
leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5+) progenitor cells are
present, including the colon, stomach, and liver [63]. The isolation of individual Lgr5+ cells
from the livers of adult mice and their cultivation into hepatic organoids unveiled their
colony-forming capacity [66]. Extended cultivation confirmed their ability to self-renew
indefinitely [72].

In 2013, Takebe and co-workers successfully produced liver buds and liver organoids
in vitro by co-culturing human-induced pluripotent stem-cell-derived liver endodermal
cells with stromal cells [66]. After forming liver-bud-like structures, the authors injected the
engineered organoids into immunodeficient mice. Interestingly, the vessels of the artificial
constructs invaded the host vascular network, and the liver bud mimics induced in vitro
were nearly identical to their in vivo counterparts. Following transplantation, bioartificial
liver buds facilitated the development of functional liver tissue in mice models, offering
a promising avenue for regenerative treatments in cases of organ failure. This process
faithfully recapitulated the cellular transformations observed during embryonic organ
bud development [73]. Subsequently, the same research team developed a large-scale
organoid production platform capable of efficiently producing homogeneous small liver
bud constructs [74,75]. Hence, a broad spectrum of organoid models derived from both
adult primary cells and pluripotent stem cells has emerged, underscoring the remarkable
versatility of this technology [76–78]. In the wake of these advancements, liver organoids
have become invaluable tools in research, facilitating investigations into liver development,
diseases, and drug toxicity [79]. Their application has enabled the study of the mechanisms
underpinning liver disorders, including liver cancer, viral hepatitis, and non-alcoholic
fatty liver disease [80]. Continued progress in organoid technology holds the potential to
revolutionize regenerative medicine, with the prospect of developing transplantable organs
or seeding bio-artificial liver devices akin to kidney dialysis machines.
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Figure 1. Timeline of the history of the generation of organoid cultures [52–71].

Overview of the Organoids Concept

The establishment of liver organoids is based on fundamental biological principles
of organogenesis and maturation, in which stem cells differentiate and self-assemble into
physiologically active immature and mature tissues and organ structures regulated by
various signaling molecules. Mimicking these innate features to develop and optimize stem-
cell-derived organoid models requires exogenous cellular and tissue microenvironment
stimuli. The cell morphogenesis, physiology, fate determination, and organization that
drive organogenesis are directed by the combined use of multiple biochemical signaling
factors and biophysical restraints from the surrounding extracellular microenvironment
and adjacent cells [81,82].

For example, during the early stages of fertilization and embryogenesis, the embryo
reorganizes and immediately divides into different cell types in a constrained neighbor-
hood until an appropriate embryonic cavity is formed. At this stage, the fertilized egg
divides into multiple cells with slight changes. Consequently, the cells become more co-
hesive and compact until blastocyst formation occurs. In addition, cell polarization is
facilitated by paracrine signaling pathways and mechanical cues exerted by neighboring
cells, which ultimately allow for the formation of germ layers and the organization of
tissue structures [83,84]. Researchers in the field of tissue engineering and organoids-based
regenerative medicine have succeeded to some extent in mimicking these basic principles
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of embryology to establish organoid constructs simply by controlling cell assembly and
maintaining shape, size, and coordination inputs. This review will shed light on the cell
and tissue engineering principles used to create organoid systems and their application in
liver research.

3. Cell Source and Biological Factors for Growing Liver Organoids

Adopting stem cells for organoid growth is one of the most critical advances in tis-
sue engineering and regenerative medicine research. Organoids can be established from
pluripotent stem cells (PSCs) or organ-specific adult stem cells (ASCs). Liver progenitors ex-
pressing the membrane receptor Leucine-rich repeat-containing G protein-coupled receptor
5 (LGR5) are widely used for generating liver organoids. It has been well documented that
LGR5-expressing cells possess the potential for self-renewal and self-assembly and that they
can generate organoids of functional cholangiocytes and hepatocytes (Figure 2) [85–87].
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Figure 2. Conceptual diagram of the process of preparing cells from various sources to produce
liver organoids. Abbreviations: Rspo, R-Spondin; TGFb-I, transforming growth factor beta in-
hibitor; TNFα, tumor necrosis factor alpha; ESCs, embryonic stem cells; FGF, fibroblast growth factor;
FSK, forskolin; HGF, hepatocyte growth factor; iPSCs, induced pluripotent stem cells; Act A, ac-
tivin A; BMP4, bone morphogenetic protein 4; DMX, dexamethasone; ECM, extracellular matrix;
EGF, epidermal growth factor; OSM, oncostatin M; RA, retinoic acid.

Published studies have indicated that liver-derived LGR5+ progenitors could be
stimulated to generate mini liver tissue or organoids while retaining their “non-stem-
cell” characteristics after a long-term 3D culture microenvironment. PSCs can self-renew
and differentiate into specific lineages or any cell type in the body, including liver cells.
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Protocols have been developed for the gradual differentiation of PSCs into hepatic cells,
producing liver organoids of hepatocytes or cholangiocytes that have liver-like functions,
such as albumin, urea, and bile acid synthesis [66,88]. This approach has proven to be
highly effective with both human embryonic stem cells and human-induced pluripotent
stem cells, and it has been recently employed for the in vitro modeling of liver diseases [89].
However, the complexity of differentiating human pluripotent stem-cell-derived hepatic
cells and the potential formation of teratomas due to any remaining undifferentiated cells in
the system present significant challenges for the derivation and application of PSC-derived
hepatic cells in cell and organoid-based therapies [90].

In addition, when hepatocytes are cultured in traditional monolayers, they typically
undergo dedifferentiation, leading to a loss of phenotype and function [91]. This lack
of morphology and function often results in the inability to detect metabolism-mediated
hepatotoxicity of drugs in vitro [92]. Nevertheless, the differentiation of pluripotent stem
cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), into
hepatic cells has been a key strategy since organoids’ early development. This method
allows for the gradual differentiation of stem cells into liver organoids, mimicking the
developmental process observed in natural liver formation [93].

Growth factors play a crucial role in the in vitro growth of organoids by manipulating
the regulatory activities of cells related to self-renewal, expansion in a 3D microenviron-
ment, differentiation after exposure to a specific culture medium, and self-organization
into stable or static structures. During embryonic development, early liver development
begins with the patterning of the endodermal layer, which also gives rise to the endodermal
tissues of the pancreas, intestinal tract, and gut tube [94]. Researchers have therefore mim-
icked the natural phenomenon by using culture media supplemented with several growth
factors and biomolecules that play key roles in signaling pathways crucial for proliferation,
differentiation, maturation, and migration in the endodermal system. The major biological
factors widely used for the growth, maintenance, and genetic manipulation of organoids
(including liver) include noggin, R-spongin 1 (Wnt pathway enhancer), epidermal growth
factor (EGF), hepatocyte growth factor (HGF), fibroblast growth factor (FGF), transforming
growth factor-β (TGF-β), TGF-β inhibitor (A83-01), cAMP pathway agonist forskolin (FSK),
and retinoic acid (RA) [95–97].

4. Bioengineering Strategies for Growing Liver Organoids

A variety of tissue engineering techniques have been investigated to support cells’
growth, proliferation, and differentiation into organoids of hepatocytes and cholangio-
cytes. Three-dimensional cultures based on hydrogels or scaffold matrices prepared from
biocompatible materials of natural or semi-synthetic origin provide a biomimetic in a
three-dimensional microenvironment for cells to differentiate and organize into functional
liver organoids over time [98,99]. To effectively model liver functionality in vitro, it is
critical not only to create an inbuilt vasculature, but also to tailor the cellular phenotype by
modulating structural properties of the matrix with appropriate stiffness and porosity. The
hydrous microenvironment and related properties of the extracellular matrix-mimicking
culture system are essential for ensuring a constant and efficient permeation of nutrients
and oxygen supply, which plays a vital role in supporting the functional integrity of the
liver model [100,101]. Natural biomaterials, such as hydrogels, present several advantages,
including their capacity to mimic the extracellular matrix (ECM) and sustain a supportive
microenvironment, offering mechanical and biochemical signals to cells [79,102–104].

Currently, the establishment of 3D hepatic organoids predominantly relies on Matrigel,
a natural hydrogel derived from a protein mixture secreted by Engelbreth–Holm–Swarm
murine sarcoma cells [105]. Matrigel serves as a supportive substrate that mimics the com-
plex extracellular matrix (ECM) environment of the liver [106]. To guarantee uniformity
and repeatability, it is crucial to establish well-defined culture conditions for organoids,
especially with regard to their composition, to facilitate future clinical applications [107].
Over the past decade, there has been a notable progression in organoid culture techniques.
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Initially reliant solely on Matrigel, these techniques have since advanced to incorporate
biohybrids and semisynthetic or synthetic hydrogels, offering greater control and standard-
ization in the generation of organoids [108]. While Matrigel provides valuable support
for cells and facilitates their physical attachment and self-organization, which is crucial
for the development of organoids, it comes with several limitations. These include incon-
sistencies between batches and variations across species, as well as concerns regarding
the transmission of animal pathogens and potential incompatibility or immunogenicity
issues in clinical applications due to having unidentified components from its animal
origin [100,109]. The development of liver organoid models using chemically defined syn-
thetic polymers eliminates the need for animal components. It also aims to overcome the
batch-to-batch variability associated with traditional matrices like EHS and produce highly
reproducible organoids, making them more suitable for disease modeling and clinical appli-
cations [110,111]. Liver organoids have been successfully generated within the PEG-RGD,
(PIC), and laminin-111 hydrogel, and the stiffness of the hydrogel has been manipulated
to replicate fibrotic liver disease. Another study demonstrated the generation of human
liver organoids using polyisocyanopeptides (PIC) and laminin-111 [111]. Additionally,
natural polymer hydrogels, such as fibrin/laminin, have been employed to generate liver
organoids due to their ability to provide appropriate biochemical and physical support
for organoid formation and expansion [110]. Hence, incorporating biomaterials, whether
synthetic or derived from natural sources, has significantly accelerated the advancement of
liver organoid development.

Microfabrication Strategies to Control the Assembly of Organoids

The microfluidic-based approach employs microfluidic devices that enable the growth
and differentiation of liver cells. These devices provide precise control over the cellular
microenvironment, including the composition of the media and the flow of nutrients and
waste. Microfluidics refers to a technology that enables the manipulation of small amounts
of fluids within tiny channels. This innovative approach has found application in creating
microenvironments that closely resemble the natural conditions of organs [112]. This can
exert precise control over the microenvironment, enabling the establishment of nutrient
and oxygen gradients, as well as facilitating cell–cell interactions [112–114]. The aim is to
effectively provide nutrients and oxygen to the inner components of the organoids [100]. In
their study, Rennert et al. successfully developed a functional 3D human liver model within
a microfluidic biochip. The liver organoids in this model receive a continuous supply of
nutrients and oxygen through a fluid flow system, which closely mimics the structure
of the liver sinusoid. To measure oxygen consumption, a luminescence-based sensor
was integrated into the microfluidic chip. The results confirmed that the introduction
of microfluidic flow using a perfusion system led to an enhanced expression of liver
transporter proteins and promoted the formation of hepatocyte microvilli [114]. Another
microfluidic chip was developed by Banaeiyan et al. to culture HepG2 cells and hepatic liver
cells, aiming to replicate the liver lobule microenvironment. The chip featured a tissue-like
hexagonal design and incorporated micro-channels to simulate the convection–diffusion
mechanism of blood circulation [115]. Prodanov and co-workers developed a microfluidic
chip with two chambers separated by a porous membrane. They aimed to recreate the
liver sinusoid using human cells for 28 days and successfully maintained a 3D model [116].
The application of an efficient digital microfluidic system has been demonstrated for drug
screening and evaluation of hepatotoxicity [117]. Esch and his team combined the Liver
Chip and Intestine Chip to evaluate toxicity in the digestive system. The liver compartment
contained HepG2/C3A cells (which are hepatocellular carcinoma cells) cultured in a silicon
chip, while the intestine compartment included a co-culture of Caco-2 (Colon carcinoma)
and HT29-MTX (mucus-secreting colon epithelium) cells. Interestingly, linking the intestine
compartment to the liver compartment via microfluidic channels exacerbated this effect,
resembling the first-pass metabolism despite reducing nanoparticle exposure in the Liver
Chip [118]. The utilization of microfluidics in organoid development offers several benefits,
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including precise control over the microenvironment, efficient mass transport facilitated by
fluid flow, and the ability to integrate with different sensors and actuators. However, there
are also limitations to consider, such as the challenges of standardization and scalability.
Additionally, the operation of microfluidic systems may require external pumps, tubing,
connectors, and valves [93]. The approaches mentioned above have emerged as the most
widely used and have demonstrated their effectiveness in generating functional liver
organoids. They have the potential to revolutionize disease modeling, drug testing, and
personalized medicine in the future.

5. Organoids for Liver Cancer Research

Liver cancer organoids may be derived from adult tissue biopsies or by reprogramming
patient-derived cells with growth factor cocktails (Figures 3 and 4). Using patient-derived
organoid models to investigate mechanisms of chemotherapy resistance and to reverse
drug resistance by targeting cancer stem cells and oncogenes is one of the hottest topics
in cancer research. Over the years, the tumor microenvironment (TME) has been widely
studied and targeted by various drugs, such as PD-L1 inhibitors and anti-angiogenics [119].
Yet, altered microenvironmental elements throughout therapy result in acquired drug
resistance, leading to decreased clinical effectiveness [119]. Observing these changes in the
TME could aid in developing new drugs for advanced HCC. Organoids have provided an
excellent 3D environment in preclinical studies for studying TME resistance and potential
new targets. Cancer-associated fibroblasts (CAFs), a major component of the TME, are
known to be involved in the progression of cirrhosis and are described as promoting tumor
proliferation and invasion. CAFs have been co-cultured with primary liver organoids
and revealed to promote resistance to chemotherapeutic drugs, including Sorafenib, Re-
gorafenib, and 5-fluorouracil [73]. Sorafenib is an anti-cancer agent that targets various
kinases involved in certain oncogenic pathways [120]. The role of CD 44 positive HCC
cells and certain hedgehog signaling pathways in Sorafenib has been described [121,122].
Co-administration of hedgehog signaling pathways with Sorafenib exhibited increased
sensitivity to Sorafenib [123]. Martin and co-workers discussed the resistance to trans-
arterial chemoembolization (TACE) of HCC, noting that up to 40% of patients do not
respond to treatment [124]. PKM2, a crucial enzyme in glucose metabolism, was identified
as participating in cancer cell metabolism.

Nevertheless, numerous targets for novel anti-cancer agents have been established
via organoid research. These would permit the establishment of precision therapy for
HCC patients, thus reducing overall side effects in contrast with traditional chemotherapy.
Inhibitors of purine metabolism are commonly used to treat various cancer types. However,
the significance of purine metabolism in liver carcinogenesis remains uncertain. Chong
and co-workers discovered the significance of amplified de novo purine synthesis in HCC
using cell lines and organoids. E2F1, a transcriptional factor, was observed to regulate
the PI3K pathway, which promotes carcinogenesis by upregulating purine synthesis [126].
Purine metabolism, therefore, could be a potential target for personalized therapy. Prefer-
ential deposition of fluorescent nano-diamond particles (FDP) coated with doxorubicin, a
chemotherapy agent, allows growth inhibition and cell death selectively in tumor cells, thus
lowering adverse effects [127]. Oroyxlin A (transketolase inhibitor) is a novel anti-cancer
drug studied using liver organoids. Its impact on inhibiting transketolase, a rate-limiting
enzyme in de novo nucleotide synthesis, suppressed growth and cell death [128]. Lim and
coworkers employed liver organoids to observe and deduce rational drug combinations for
proteosome inhibitors, thus overcoming the limited furtherance in combinational therapy,
along with discovering enhanced efficacy and clinical outcomes [129]. Omacetaxine is an
FDA-approved global protein synthesis inhibitor used as an anti-cancer agent for chronic
myelogenous leukemia [130]. Its effect on six hepatocellular carcinoma patient-derived
cell lines was assessed, which revealed early apoptosis, late apoptosis, or both in all six
lines [131].
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using a bright-field microscope (Scale bar: 500 µm). Abbreviations: hepatocellular carcinoma (HCC);
cholangiocellular carcinoma (CCC); passage (P). Figure 3 is adopted with copyright permission
from [125], Elsevier.

Liver organoids have been pivotal in exploring the connection between hepatocytes
and cholangiocarcinoma (CC) in aiming to unveil CC’s etiology [72]. In an interesting
study, Sun et al. utilized human-induced hepatocytes to generate liver organoids and
overexpress ten genes enriched in intrahepatic cholangiocarcinoma (ICC). This led to no-
table changes, including the loss of circular morphology, mucous vacuole development,
increased nucleus-to-cytoplasm ratio, nuclear atypia, duct or cavity structures, mucin
release, and upregulated NOTCH signaling genes. After being orthotopically implanted in
mice, these organoids resulted in a 100% tumor development rate, resembling ICCs due to
specific ICC markers (CK19, SOX9). This suggested an important role of the RASG12V gene
in hepatocyte-to-ICC conversion [133]. Studies using liver cancer organoids from PPTR
mice (Prom1 overexpression, Pten, and TP53 loss) demonstrated strong stem cell properties,
potentially leading to invasive and metastatic tumors [134]. Interestingly, some organoids
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showed features of both hepatocellular carcinoma and cholangiocarcinoma, which can dif-
ferentiate into mature liver cells, reducing intrahepatic cholangiocarcinoma aggressiveness
by blocking the Wnt signaling pathway [135]. These findings highlight the potential for
gene or pathway targeting to prevent cholangiocarcinoma. Organoids have been important
in investigating mitochondrial function and energy metabolism in cholangiocarcinoma. The
Warburg effect underscores glycolysis as a primary energy production mechanism in tumor
cells, making mitochondria crucial [136]. Studies found altered mitochondrial shape and
reduced metabolism in cholangiocarcinoma organoids with knocked-out mitochondrial
fusion genes (OPA1 and MFN1), leading to decreased oxygen consumption and ATP pro-
duction. Inhibiting apoptosis prevented cholangiocarcinoma organoid development [137].
Another study cultured cholangiocarcinoma organoids without glucose, observing re-
duced proliferation, altered shape, increased stem cell markers, enhanced AKT phospho-
rylation, and reduced gemcitabine sensitivity [138]. Inhibition of AKT phosphorylation
reversed stem-cell-like features and gemcitabine resistance. This suggests that cholangiocar-
cinoma cells can adapt to glucose shortage by enhancing stem cell characteristics through
AKT phosphorylation.
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Figure 4. Establishment of patient-derived biliary tract cancer organoids. (A) Experimental strategy
for biopsy collection from biliary tract of cancer patients. (B) Pie charts comparing stratification
of all original tumors versus stratification of all tumor-derived organoids based on histology (top),
tumor-node-metastasis (TNM), and disease stage (bottom). (C) Microscopy images for histology
staining (H&E) and bright-field imaging of patient-derived organoids and matched primary tumors
from three main histological subtypes (scale bars, 50 µm). (D) Immunohistochemistry analysis of
biliary tract cancer markers (CK19 and CK7) in original tumor samples and BTC organoids (scale
bars, 50 µm). Abbreviations: biliary tract cancer (BTC); intrahepatic cholangiocarcinoma (ICC);
extrahepatic cholangiocarcinoma (ECC); and gallbladder carcinoma (GBC). Figure 4 is adopted with
copyright permission from [132], Elsevier.

Hepatitis infects more than 354 million people worldwide and amplifies the risk of
HCC [WHO]. A characteristic of the hepatitis B virus (HBV) is the formation of a stable,
persistent cDNA episome. This incorporates into the host DNA, rendering it resistant to
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antiviral drugs [139]. Due to the dysregulation of significant host factors and antiviral
targets in 2D culture systems, 3D organoid systems allow for improved research in studying
virus–host interactions as well as potential therapeutics [140]. Liver organoids derived from
adult tissue have been infected with HBV to study pro-apoptotic drugs that promote cell
death via the extrinsic pathway to eliminate hepatocytes with HBV DNA [141]. Hepatitis C
virus (HCV) is another less commonly infecting virus leading to liver cirrhosis and HCC.
Hepatocytes in vivo exhibit polarity, allowing the HCV virus to enter via certain tight
junctions [142] Huh-7.5 hepatoma cells, utilized for conducting in vitro studies, express
poorly in 2D but express excellent polarity in 3D organoids, which have allowed for
ameliorated understanding of the HCV life cycle [142]. Improved binding of HCV has
been observed in Huh-7 3D models, showing polarity over 2D models possessing poor
polarity [143].

Current Limitations of Organoid Models

Organoid technology is still constrained by several hurdles and limitations. The fun-
damental obstacle associated with this technology is that the culture, maintenance, and
expansion of organoids are heavily dependent on Matrigel, a 3D culture matrix extract
derived from Engelbreth–Holm–Swarm mouse sarcoma cells. While Matrigel serves as
a commercially accessible hydrogel substrate, these extracts encounter issues linked to
inconsistencies in composition and reproducibility across different batches. Furthermore,
these extracts may harbor unknown pathogens and are highly immunogenic, making them
unsuitable for transplantation into human patients and severely hampering the clinical ap-
plication of organoids. A major drawback of adult stem-cell-derived liver organoids is that
they are derived from epithelial cells and utilize a simplified extracellular matrix (ECM) that
lacks structural and functional compartmentalization [76,144]. Existing organoid culture
systems are monocultures and lack innervation, vascularization, and immune interactions,
making them inadequate for understanding the full spectrum of hepatocarcinoma. There-
fore, there is a strong need to use approaches, such as tailored matrices and co-cultures, to
generate organoids with specific cell populations, such as mesenchymal cells, endothelial
cells, and immune cells, in addition to hepatocytes [125,132]

Another drawback is the limited effectiveness of organoid models. A study by Nu-
ciforo et al. on organoid models of hepatocellular carcinoma showed that it is difficult to
culture hepatocellular carcinoma cells [125]. The success rates for developing hepatocellu-
lar carcinoma organoids (HCCOs) from human primary hepatocellular carcinoma have
been reported as ~26%. However, for other cancers, the success rate is significantly higher.
Success rates for colorectal cancer are approximately 90% [145], and for pancreatic cancer,
they are around 75–83% [146]. The variability among organs indicates that the success rate
for hepatocellular carcinoma is much lower than for other cancers. A possible reason for
the low success rate could be that the generation of hepatocellular carcinoma organoids
is limited to a subset of HCCs. Furthermore, only poorly differentiated tumors are able
to produce HCC organoids, which, according to Nuciforo et al., is strongly associated
with the histopathological features of the tumors [125]. This could be because the highly
differentiated, slowly growing tumors do not reach the threshold of cell proliferation rate
required for the development of HCC organoids. Similarly, according to Broutier and
coworkers, there is a significant correlation between the original tumor’s proliferation
index and success rate. In samples taken from tumors with proliferating cells greater than
5%, the success rate of establishing organoid cultures was 100% [147]. Future studies may
seek to culture HCCOs from lower-grade tumors to capture the entire disease spectrum.

Developing liver organoid cultures is often costly and requires skilled profession-
als, specialized techniques, and equipment. For example, laboratories often produce
conditioned media to save experimental costs. Unfortunately, this leads to issues of batch-
to-batch variability and, in some instances, small amounts of serum (0.5–1%) are present in
the final organoid growth medium, jeopardizing the consistency of the organoid model.
A typical base medium for mammalian cell culture is advanced DMEM/F12. However,



Bioengineering 2024, 11, 346 13 of 20

DMEM/F12 cannot be used for the culture of liver organoids prior to the addition of
multiple agents [148]. To encourage the advancement of organoid technology and optimize
its application in biological research, the availability of appropriately designed and reason-
ably priced media is essential. Variation among different iPSC lines and their derivatives
continues to be a major challenge, especially for iPSC-derived organoids, when iPSCs and
their derivatives are used for disease modeling and cell therapy. When generated from
different individuals or iPSC core facilities, variation between and within iPSC lines is
frequently observed in distinguishing iPSC tumorigenicity, genomic instability, epigenetic
status, and maturation status. Successful development of “comparable” iPSCs and their
derivatives requires quality characteristics that produce consistent, high-quality iPSCs.

Therefore, in 2018, the Global Alliance for iPSC Therapies in the UK identified the
creation of QC guidelines for clinical-grade iPSC production [149]. Identity verification,
microbiological sterility, endotoxin, genetic fidelity and stability (karyotyping and residual
vector testing), potency assessment, expression of pluripotency markers, and post-thawed
viability are among the essential quality characteristics for clinical-grade iPSC creation.
However, there may still be variations during the purification process, iPSC differentiation,
iPSC expansion, reprogramming, colony selection, culture system selection, and iPSC
reprogramming within various iPSC cell banks. Such issues must be resolved through
routine and ongoing validation of the iPSCs. Moreover, recent studies on genetic and
epigenetic differences in iPSCs have highlighted iPSC safety-related concerns.

Genome instability, single nucleotide variants, choroidal neovascularization (CNV),
and loss of heterozygosity are examples of genetic changes found in iPSCs. Through
reprogramming and prolonged in vitro culture, these mutations can be introduced and
accumulated in iPSCs from their parental cells [150].

The potential for tumorigenicity due to genetic differences in iPSCs is one of the
highest safety concerns. Another issue with iPSCs’ genetic and epigenetic heterogeneity
is that it may impair the differentiation potential of the cells and lead to unexpected
phenotypes [151]. Further research initiatives, such as creating a specialized mutation
database for iPSCs and establishing a standardized set of criteria to screen genetic variations,
are imperative for assessing genomic stability. This evaluation is crucial as genetic variants
within iPSCs could have significant functional and safety implications.

6. Conclusions and Future Perspectives

The liver is an important organ in the human body, and its metabolic, immune, diges-
tive, homeostatic, and detoxification roles depend on efficient crosstalk and hierarchical
organization. Organoid technology has received tremendous interest in liver bioengi-
neering to mimic liver-like features and functions for biomedical investigations. Recent
advances in organoid research indicate that this technology can be applied to culture and
fabricate liver organoids for disease models, cancer research, viral infection models, and
translational research [49–51,150]. Organoid-based approaches offer alternative mini-liver-
like platforms for investigating cancer initiation, development, progression, and therapy
response assessment. However, reported organoid-based models mimic only a fraction of
the physiological activities and structural patterns of the liver. Therefore, a more classical
multicellular-based organoid model system that recapitulates most, if not all, of the cellular
architecture and complex signaling pathways of the liver is a supreme requirement for
tissue bioengineering and the regenerative medicine field. To design and produce such
hierarchical organoid models with proper distribution and patterning of the cells, a better
understanding of the biomolecular composition of the liver scaffold matrix and its role
in cell-specific support is urgently needed. The development of advanced biomaterials
with cell-specific supporting roles of the liver scaffolding matrix might provide the desired
physiochemical features and mechanical integrity. Other critical challenges that need to
be resolved in order to realize organoid technology for wider application include a proper
selection of biomaterial sources, appropriate cell types (parenchymal and nonparenchymal
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cells), vasculature embedding, and quality control of the cultures. Besides the biomaterials
and cells, technological obstacles also need to be addressed.
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