Antiapoptotic Gene Genotype and Allele Variations and the Risk of Lymphoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Genomic DNA Extraction
2.3. Genotyping of BCL2, MCL1, and Survivin Genes
2.4. Sequencing
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Cases
3.2. Distribution of Genotype Mutations between Cases and Controls
3.3. Association between BCL2-938 C > A Genotypes and Lymphoma Risk
3.4. Association between MCL1-rs9803935 T > G Genotypes and Lymphoma Risk
3.5. Association between Survivin-rs 17882312 G > C Genotypes and Lymphoma Risk
3.6. Association between Survivin-rs 9904341 G > C Genotypes and Lymphoma Risk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mugnaini, E.N.; Ghosh, N. Lymphoma. Prim. Care 2016, 43, 661–675. [Google Scholar] [CrossRef] [PubMed]
- Matasar, M.J.; Zelenetz, A.D. Overview of Lymphoma Diagnosis and Management. Radiol. Clin. N. Am. 2008, 46, 175–198. [Google Scholar] [CrossRef] [PubMed]
- Fontanilles, M.; Marguet, F.; Bohers, É.; Viailly, P.-J.; Dubois, S.; Bertrand, P.; Camus, V.; Mareschal, S.; Ruminy, P.; Maingonnat, C.; et al. Non-invasive detection of somatic mutations using next-generation sequencing in primary central nervous system lymphoma. Oncotarget 2017, 8, 48157–48168. [Google Scholar] [CrossRef] [PubMed]
- Mahbub, A.A.; Le Maitre, C.L.; Cross, N.A.; Jordan-Mahy, N. The effect of apigenin and chemotherapy combination treatments on apoptosis-related genes and proteins in acute leukaemia cell lines. Sci. Rep. 2022, 12, 8858. [Google Scholar] [CrossRef] [PubMed]
- Delsol, G. Molecular abnormalities in lymphomas. Bull. Cancer 2010, 97, 1347–1364. [Google Scholar] [CrossRef]
- Dierlamm, J.; Wlodarska, I.; Michaux, L.; Stefanova, M.; Hinz, K.; Van Den Berghe, H.; Hagemeijer, A.; Hossfeld, D.K. Genetic abnormalities in marginal zone B-cell lymphoma. Hematol. Oncol. 2000, 18, 1–13. [Google Scholar] [CrossRef]
- Leveille, E.; Johnson, N.A. Genetic Events Inhibiting Apoptosis in Diffuse Large B Cell Lymphoma. Cancers 2021, 13, 2167. [Google Scholar] [CrossRef]
- Kelly, J.L.; Novak, A.J.; Fredericksen, Z.S.; Liebow, M.; Ansell, S.M.; Dogan, A.; Wang, A.H.; Witzig, T.E.; Call, T.G.; Kay, N.E.; et al. Germline variation in apoptosis pathway genes and risk of non-Hodgkin’s lymphoma. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 2847–2858. [Google Scholar] [CrossRef]
- MCL1 Gene—MCL1 Apoptosis Regulator, BCL2 Family Member. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=MCL1 (accessed on 21 January 2023).
- Beroukhim, R.; Mermel, C.H.; Porter, D.; Wei, G.; Raychaudhuri, S.; Donovan, J.; Barretina, J.; Boehm, J.S.; Dobson, J.; Urashima, M.; et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010, 463, 899–905. [Google Scholar] [CrossRef]
- Koss, B.; Morrison, J.; Perciavalle, R.M.; Singh, H.; Rehg, J.E.; Williams, R.T.; Opferman, J.T. Requirement for antiapoptotic MCL-1 in the survival of BCR-ABL B-lineage acute lymphoblastic leukemia. Blood 2013, 122, 1587–1598. [Google Scholar] [CrossRef] [Green Version]
- Senichkin, V.V.; Streletskaia, A.Y.; Gorbunova, A.S.; Zhivotovsky, B.; Kopeina, G.S. Saga of Mcl-1: Regulation from transcription to degradation. Cell Death Differ. 2020, 27, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Levy, N.B.; Xie, H.; Qian, L.; Lee, C.-Y.G.; Gascoyne, R.D.; Craig, R.W. MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood 2001, 97, 3902–3909. [Google Scholar] [CrossRef]
- van den Brand, M.; Scheijen, B.; Hess, C.J.; van Krieken, J.H.J.; Groenen, P.J.T.A. Pathways towards indolent B-cell lymphoma—Etiology and therapeutic strategies. Blood Rev. 2017, 31, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Mhaidat, N.M.; Amawi, H.; Alzoubi, K.H. Correlation Between BCL2 and Mcl1 Single Nucleotide Polymorphisms and Chemotherapy Response in Jordanian Patients with Colorectal Cancer. Curr. Pharm. Biotechnol. 2021, 22, 646–653. [Google Scholar] [CrossRef]
- Seto, M.; Jaeger, U.; Hockett, R.D.; Graninger, W.; Bennett, S.; Goldman, P.; Korsmeyer, S.J. Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymphoma. EMBO J. 1988, 7, 123–131. [Google Scholar] [CrossRef]
- Young, R.L.; Korsmeyer, S.J. A negative regulatory element in the bcl-2 5′-untranslated region inhibits expression from an upstream promoter. Mol. Cell. Biol. 1993, 13, 3686–3697. [Google Scholar]
- Park, B.L.; Kim, L.H.; Cheong, H.S.; Cho, H.Y.; Kim, E.M.; Shin, H.D.; Kim, Y.-S.; Lee, C. Identification of variants in cyclin D1 (CCND1) and B-Cell CLL/lymphoma 2 (BCL2). J. Hum. Genet. 2004, 49, 449–454. [Google Scholar] [CrossRef]
- Rossi, D.; Rasi, S.; Capello, D.; Gaidano, G. Prognostic assessment of BCL2-938C>A polymorphism in chronic lymphocytic leukemia. Blood 2008, 111, 466–468. [Google Scholar] [CrossRef] [PubMed]
- Zenz, T.; Benner, A.; Dührsen, U.; Dürig, J.; Döhner, H.; Siffert, W.; Stilgenbauer, S.; Nückel, H. BCL2-938C>A polymorphism and disease progression in chronic lymphocytic leukemia. Leuk. Lymphoma 2009, 50, 1837–1842. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, H.S.; Heukamp, L.C.; Schmitz, K.J.; Hilburn, C.F.; Kahl, P.; Buettner, R.; Nückel, H.; Eisenhardt, A.; Rübben, H.; Schmid, K.W.; et al. Regulatory BCL2 promoter polymorphism (−938C>A) is associated with adverse outcome in patients with prostate carcinoma. Int. J. Cancer 2011, 129, 2390–2399. [Google Scholar] [CrossRef]
- Heubner, M.; Wimberger, P.; Otterbach, F.; Kasimir-Bauer, S.; Siffert, W.; Kimmig, R.; Nückel, H. Association of the AA genotype of the BCL2 (-938C>A) promoter polymorphism with better survival in ovarian cancer. Int. J. Biol. Markers 2009, 24, 223–229. [Google Scholar] [CrossRef]
- Bachmann, H.S.; Otterbach, F.; Callies, R.; Nückel, H.; Bau, M.; Schmid, K.W.; Siffert, W.; Kimmig, R. The AA Genotype of the Regulatory BCL2 Promoter Polymorphism (−938C>A) Is Associated with a Favorable Outcome in Lymph Node–Negative Invasive Breast Cancer Patients. Clin. Cancer Res. 2007, 13, 5790–5797. [Google Scholar] [CrossRef]
- Hirata, H.; Hinoda, Y.; Nakajima, K.; Kikuno, N.; Suehiro, Y.; Tabatabai, Z.L.; Ishii, N.; Dahiya, R. The bcl2 −938CC Genotype Has Poor Prognosis and Lower Survival in Renal Cancer. J. Urol. 2009, 182, 721–727. [Google Scholar] [CrossRef]
- Lehnerdt, G.F.; Franz, P.; Bankfalvi, A.; Grehl, S.; Kelava, A.; Nückel, H.; Lang, S.; Schmid, K.W.; Siffert, W.; Bachmann, H.S. The regulatory BCL2 promoter polymorphism (-938C>A) is associated with relapse and survival of patients with oropharyngeal squamous cell carcinoma. Ann. Oncol. 2009, 20, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Llorente, S.; Montero-Conde, C.; Milne, R.L.; Moya, C.M.; Cebrián, A.; Letón, R.; Cascón, A.; Mercadillo, F.; Landa, I.; Borrego, S.; et al. Association Study of 69 Genes in the Ret Pathway Identifies Low-penetrance Loci in Sporadic Medullary Thyroid Carcinoma. Cancer Res. 2007, 67, 9561–9567. [Google Scholar] [CrossRef]
- Nückel, H.; Frey, U.H.; Bau, M.; Sellmann, L.; Stanelle, J.; Dürig, J.; Jöckel, K.-H.; Dührsen, U.; Siffert, W. Association of a novel regulatory polymorphism (−938C>A) in the BCL2 gene promoter with disease progression and survival in chronic lymphocytic leukemia. Blood 2007, 109, 290–297. [Google Scholar] [CrossRef]
- Melet, A.; Song, K.; Bucur, O.; Jagani, Z.; Grassian, A.R.; Khosravi-Far, R. Apoptotic Pathways in Tumor Progression and Therapy. In Programmed Cell Death in Cancer Progression and Therapy; Springer: Dordrecht, The Netherlands, 2008; pp. 47–79. [Google Scholar] [CrossRef]
- Cheung, C.H.A.; Huang, C.-C.; Tsai, F.-Y.; Lee, J.Y.-C.; Cheng, S.M.; Chang, Y.-C.; Huang, Y.-C.; Chen, S.-H.; Chang, J.-Y. Survivin—Biology and potential as a therapeutic target in oncology. OncoTargets Ther. 2013, 6, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Menin, C.; Boldrin, D.; Santa, S.D.; Bonaldi, L.; Scaini, M.C.; Del Bianco, P.; Zardo, D.; Fassan, M.; Cappellesso, R.; et al. Survivin expression impacts prognostically on NSCLC but not SCLC. Lung Cancer 2013, 79, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Q.; Wang, J.; Jiang, F.; Xu, L.; Liu, F.Y.; Yin, R. Prognostic Value of Survivin in Patients with Non-Small Cell Lung Carcinoma: A Systematic Review with Meta-Analysis. PLoS ONE 2012, 7, e34100. [Google Scholar] [CrossRef]
- Aynaci, E.; Coskunpinar, E.; Eren, A.; Kum, O.; Oltulu, Y.; Akkaya, N.; Turna, A.; Yaylim, I.; Yildiz, P. Association between survivin gene promoter -31G/C and -644C/T polymorphisms and non-small cell lung cancer. Genet. Mol. Res. 2013, 12, 3975–3982. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, Q.; Yu, Z.; Li, J.; Ding, Z.; Li, J.; Tan, W. Correlation between survivin genetic polymorphisms and lung cancer susceptibility. Int. J. Clin. Exp. Pathol. 2015, 8, 7426–7430. [Google Scholar]
- Jang, J.S.; Kim, K.M.; Kang, K.H.; Choi, J.E.; Lee, W.K.; Kim, C.H.; Kang, Y.M.; Kam, S.; Kim, I.-S.; Jun, J.E.; et al. Polymorphisms in the survivin gene and the risk of lung cancer. Lung Cancer 2008, 60, 31–39. [Google Scholar] [CrossRef]
- Javid, J.; Mir, R.; Julka, P.K.; Ray, P.C.; Saxena, A. Role of survivin re-expression in the development and progression of non-small cell lung cancer. Tumor Biol. 2015, 36, 5543–5550. [Google Scholar] [CrossRef] [PubMed]
- Lin, H. The relationship of rs9904341 polymorphism with lung cancer susceptibility and sensitivity of platinum-based chemotherapy in patients with lung cancer. China Cancer 2012, 21, 533–538. [Google Scholar]
- Zhang, S.; Zhang, C.; Song, Y.; Zhang, J.; Xu, J. Prognostic role of survivin in patients with glioma. Medicine 2018, 97, e0571. [Google Scholar] [CrossRef]
- Ma, C.; Lu, B.; Sun, E. Clinicopathological and prognostic significance of survivin expression in renal cancer patients: A meta-analysis. Postgrad. Med. J. 2016, 93, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Chen, S.; Huang, H.; Ma, H. Survivin over-expression is correlated with a poor prognosis in esophageal cancer patients. Clin. Chim. Acta 2015, 446, 82–85. [Google Scholar] [CrossRef]
- Li, Y.; Ma, X.; Wu, X.; Liu, X.; Liu, L. Prognostic Significance of Survivin in Breast Cancer: Meta-analysis. Breast J. 2014, 20, 514–524. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yang, K.; Wang, H.; Chen, X.; Wu, H.; Yao, L.; Ma, S. Expression and clinical significance of survivin in ovarian cancer: A meta-analysis. PLoS ONE 2018, 13, e0194463. [Google Scholar] [CrossRef]
- Geng, J.; Lei, Y.-R.; Pei, S.-G. Correlation between Survivin expression and laryngeal carcinoma: A meta-analysis. Curr. Med. Sci. 2017, 37, 965–973. [Google Scholar] [CrossRef]
- Li, W.; Lee, M.-R.; Choi, E.; Cho, M.-Y. Clinicopathologic Significance of Survivin Expression in Relation to CD133 Expression in Surgically Resected Stage II or III Colorectal Cancer. J. Pathol. Transl. Med. 2017, 51, 17–23. [Google Scholar] [CrossRef]
- Sung, J.-Y.; Lim, S.-J.; Kim, Y.W.; Lee, J. Prognostic significance of pSTAT3 and Survivin expression in diffuse large B-cell lymphoma. Basic Appl. Pathol. 2010, 3, 7–13. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.; Wang, B.; Guan, Z.; and Lin, T. Clinical prognostic analysis of survivin expression in diffuse large B-cell lymphomas. Chinese J. Clin. Oncol. 2010, 10, 156–159. [Google Scholar]
- Guièze, R.; Liu, V.M.; Rosebrock, D.; Jourdain, A.A.; Hernández-Sánchez, M.; Zurita, A.M.; Sun, J.; Hacken, E.T.; Baranowski, K.; Thompson, P.A.; et al. Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell 2019, 36, 369–384.e13. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Medeiros, L.J.; Rassidakis, G.Z.; McDonnell, T.J.; Abruzzo, L.V.; Lai, R. Expression of Mcl-1 in mantle cell lymphoma is associated with high-grade morphology, a high proliferative state, and p53 overexpression. J. Pathol. 2002, 199, 90–97. [Google Scholar] [CrossRef]
- Hedström, G.; Peterson, S.; Berglund, M.; Jerkeman, M.; Enblad, G. Male gender is an adverse risk factor only in young patients with diffuse large B-cell lymphoma—A Swedish population-based study. Acta Oncol. 2015, 54, 924–932. [Google Scholar] [CrossRef]
- Horesh, N.; Horowitz, N.A. Does Gender Matter in Non-Hodgkin Lymphoma? Differences in Epidemiology, Clinical Behavior, and Therapy. Rambam Maimonides Med. J. 2014, 5, e0038. [Google Scholar] [CrossRef] [PubMed]
- Non-Hodgkin Lymphoma Incidence Statistics. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/non-hodgkin-lymphoma/incidence#ref-1 (accessed on 23 January 2023).
- Tagawa, H.; Karnan, S.; Suzuki, R.; Matsuo, K.; Zhang, X.; Ota, A.; Morishima, Y.; Nakamura, S.; Seto, M. Genome-wide array-based CGH for mantle cell lymphoma: Identification of homozygous deletions of the pro-apoptotic gene BIM. Oncogene 2005, 24, 1348–1358. [Google Scholar] [CrossRef]
- Horsfall, L.J.; Burgess, S.; Hall, I.; Nazareth, I. Genetically raised serum bilirubin levels and lung cancer: A cohort study and Mendelian randomisation using UK Biobank. Thorax 2020, 75, 955–964. [Google Scholar] [CrossRef]
- Sinnott-Armstrong, N.; Tanigawa, Y.; Amar, D.; Mars, N.; Benner, C.; Aguirre, M.; Venkataraman, G.R.; Wainberg, M.; Ollila, H.M.; Kiiskinen, T.; et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. 2021, 53, 185–194. [Google Scholar] [CrossRef]
- Correia, C.; Schneider, P.A.; Dai, H.; Dogan, A.; Maurer, M.J.; Church, A.K.; Novak, A.J.; Feldman, A.L.; Wu, X.; Ding, H.; et al. BCL2 mutations are associated with increased risk of transformation and shortened survival in follicular lymphoma. Blood 2015, 125, 658–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Cases n = 100 (48.8%) | Controls n = 105 (51.2%) |
---|---|---|
Age threshold, n (%) | ||
Age >45 | 44 (44) | 65 (61.9) |
Age <45 | 56 (56) | 40 (38.1) |
Gender, n (%) | ||
Males | 63 (63) | 63 (60) |
Females | 37 (37) | 42 (40) |
πBMI kg/m2 | 24.40 ± 2.60 | 24.70 ± 2.60 |
πFPG mmol/L | - | 4.70 ± 0.79 |
πFree insulin mU/ml | - | 7.70 ± 2.70 |
πHbA1c mmol/mol | - | 3.90 ± 0.48 |
πTriglycerides mmol/L | - | 1.50 ± 0.59 |
πCholesterol mmol/L | - | 1.50 ± 0.63 |
πLDL mmol/L | - | 1.85 ± 0.60 |
πHDL mmol/L | - | 1.60 ± 0.70 |
Lymphoma subtype | - | - |
Diffuse large B-cell lymphoma | 45 (45) | - |
Follicular Lymphoma | 10 (10) | - |
Burkitt’s Lymphoma NHL | 10 (10) | - |
T-CELL NHL | 15 (15) | - |
MALT Lymphoma | 10 (10) | |
Hodgkin Lymphoma | 10 (10) | - |
BCL2-938 C > A | n | % | CC | CA | AA | df | X2 | p-Value |
---|---|---|---|---|---|---|---|---|
Sex | ||||||||
Males | 63 | 63% | 14 | 45 | 04 | 2 | 15.96 | 0.0003 |
Females | 37 | 37% | 23 | 13 | 01 | |||
Age group in years | ||||||||
Age >45 | 44 | 44% | 10 | 30 | 4 | 2 | 8.36 | 0.015 |
Age <45 | 56 | 56% | 27 | 28 | 1 | |||
Stage of lymphoma | ||||||||
Early stage | 45 | 45% | 10 | 32 | 3 | 2 | 7.71 | 0.02 |
Advanced stage | 55 | 55% | 27 | 26 | 2 | |||
Type of lymphoma | ||||||||
Non-Hodgkin Lymphoma | 90 | 90% | 32 | 56 | 2 | 2 | 17.16 | 0.0002 |
Hodgkin Lymphoma | 10 | 10% | 5 | 2 | 3 | |||
Bone marrow involvement | ||||||||
Yes | 32 | 32% | 10 | 20 | 2 | 2 | 0.73 | 0.69 |
No | 68 | 68% | 27 | 38 | 3 | |||
MCL1- rs9803935 T > G | n | % | TT | GT | TT | df | X2 | p-Value |
Sex | ||||||||
Males | 63 | 63% | 15 | 44 | 06 | 2 | 12.13 | 0.002 |
Females | 37 | 37% | 21 | 12 | 04 | |||
Age group in years | ||||||||
Age >45 | 44 | 44% | 22 | 16 | 6 | 2 | 9.84 | 0.007 |
Age <45 | 56 | 56% | 14 | 38 | 4 | |||
Stage of lymphoma | ||||||||
Early stage | 45 | 45% | 21 | 18 | 6 | 2 | 6.36 | 0.039 |
Advanced stage | 55 | 55% | 15 | 36 | 04 | |||
Type of lymphoma | ||||||||
Non-Hodgkin Lymphoma | 90 | 90% | 30 | 50 | 8 | 2 | 2.43 | 0.29 |
Hodgkin Lymphoma | 10 | 10% | 06 | 04 | 02 | |||
Bone marrow involvement | 36 | 54 | 10 | |||||
Yes | 32 | 32% | 10 | 18 | 4 | 2 | 0.63 | 0.72 |
No | 68 | 68% | 26 | 36 | 6 | |||
Survivin-rs17882312 G > C | n | % | TT | GT | TT | df | X2 | p-Value |
Sex | 0.0001 | |||||||
Males | 63 | 63% | 10 | 50 | 03 | |||
Females | 37 | 37% | 21 | 15 | 01 | |||
Age group in years | ||||||||
Age >45 | 44 | 44% | 8 | 33 | 3 | 2 | 6.93 | 0.031 |
Age <45 | 56 | 56% | 23 | 32 | 1 | |||
Stage of lymphoma | ||||||||
Early stage | 45 | 45% | 10 | 31 | 04 | 2 | 7.11 | 0.028 |
Advanced stage | 55 | 55% | 21 | 34 | 0 | |||
Type of lymphoma | ||||||||
Non-Hodgkin Lymphoma | 90 | 90% | 27 | 60 | 03 | 2 | 1.67 | 0.12 |
Hodgkin Lymphoma | 10 | 10% | 04 | 05 | 01 | |||
Bone marrow involvement | ||||||||
Yes | 32 | 32% | 14 | 15 | 03 | 2 | 8.25 | 0.016 |
No | 68 | 68% | 17 | 50 | 01 | |||
Survivin-rs9904341 G > C | n | % | TT | GT | TT | df | X2 | p-Value |
Sex | ||||||||
Males | 63 | 63% | 14 | 46 | 03 | 2 | 3.99 | 0.13 |
Females | 37 | 37% | 15 | 20 | 2 | |||
Age group in years | ||||||||
Age >45 | 44 | 44% | 07 | 35 | 02 | 2 | 6.86 | 0.032 |
Age <45 | 56 | 56% | 22 | 31 | 03 | |||
Stage of lymphoma | ||||||||
Early stage | 45 | 45% | 5 | 29 | 01 | 2 | 15.29 | 0.0004 |
Advanced stage | 55 | 55% | 24 | 27 | 04 | |||
Type of lymphoma | ||||||||
Non-Hodgkin Lymphoma | 90 | 90% | 27 | 59 | 04 | 2 | 0.89 | 0.64 |
Hodgkin Lymphoma | 10 | 10% | 2 | 7 | 1 | |||
Bone marrow involvement | ||||||||
Yes | 32 | 32% | 10 | 20 | 2 | 2 | 0.32 | 0.85 |
No | 68 | 68% | 19 | 46 | 03 |
Groups by Genes | n | Df | X2 | p | |||||
---|---|---|---|---|---|---|---|---|---|
BCL2-938 C > A | CC | CA | AA | G | A | ||||
Cases | 100 | 37 (37%) | 58 (58%) | 5 (5%) | 2 | 6.79 | 0.64 | 0.34 | 0.033 |
Controls | 105 | 57 (54.28%) | 42 (40%) | 6 (5.71%) | 0.74 | 0.26 | |||
MCL1-rs9803935 T > G | TT | GT | GG | T | G | ||||
Cases | 100 | 36 (36%) | 54 (54%) | 10 (10%) | 2 | 6.03 | 0.63 | 0.37 | 0.049 |
Controls | 105 | 58 (52.7%) | 45 (40.9%) | 07 (6.36%) | 0.73 | 0.27 | |||
Survivin-rs17882312 G > C | CC | GC | GG | C | G | ||||
Cases | 100 | 31 (31%) | 65 (65%) | 04 (4%) | 2 | 14.4 | 0.64 | 0.36 | 0.003 |
Controls | 105 | 64 (58.1%) | 45 (40.9%) | 1 (0.90%) | 0.79 | 0.21 | |||
Survivin-rs9904341 G > C | GG | GC | CC | G | C | ||||
Cases | 100 | 29 (29%) | 66 (66%) | 05 (5%) | 2 | 18.4 | 0.62 | 0.38 | 0.001 |
Controls | 105 | 70 (57%) | 50 (40.9%) | 02 (1.63%) | 0.58 | 0.42 |
Genotypes | Control n = 105 | Cases n = 100 | OR (95% CI) | RR (95% CI) | p |
---|---|---|---|---|---|
Codominant inheritance model | |||||
BCL2–CC | 57 | 37 | 1.00 (ref.) | 1 (ref.) | |
BCL2–CA | 42 | 58 | 2.12 (1.19–3.77) | 1.44 (1.08–1.91) | 0.009 |
BCL2–AA | 06 | 05 | 1.28 (0.36–4.51) | 1.11 (0.63–1.95) | 0.069 |
Dominant inheritance model | |||||
BCL2–CC | 57 | 37 | 1.00 (ref.) | 1 (ref.) | |
BCL2 (CA + AA) | 48 | 63 | 2.02 (1.15–3.53) | 1.40 (1.07–1.83) | 0.013 |
Recessive inheritance model | |||||
BCL2 (CC + CA) | 99 | 95 | 1.00 (ref.) | 1 (ref.) | |
BCL3–AA | 06 | 05 | 0.88 (0.25–2.94) | 0.93 (0.53–1.63) | 0.82 |
Allele | |||||
BCL2–C | 156 | 132 | 1.00 (ref.) | 1 (ref.) | |
BCL2–A | 54 | 68 | 1.48 (0.97–2.28) | 1.22 (0.97–1.53) | 0.06 |
Overdominant inheritance model | |||||
BCL2-CA | 42 | 58 | 1.00 (ref.) | 1 (ref.) | |
BCL2-CC + AA | 63 | 42 | 0.48 (0.28–0.84) | 0.70 (0.53–0.92) | 0.012 |
Genotypes | Controls n = 105 | Cases n = 100 | OR (95% CI) | RR (95% CI) | p |
---|---|---|---|---|---|
Codominant inheritance model | |||||
MCL1–TT | 58 | 36 | 1.00 (ref.) | 1.00 (ref.) | |
MCL1–TG | 45 | 54 | 1.93 (1.08–3.43) | 1.35 (1.03–1.77) | 0.024 |
MCL1–GG | 07 | 10 | 2.30 (0.80–6.58) | 1.49 (0.83–2.70) | 0.120 |
Dominant inheritance model | |||||
MCL1–TT | 58 | 36 | 1.00 (ref.) | 1.00 (ref.) | |
MCL1– (TG + GG) | 52 | 64 | 1.98 (1.13–3.45) | 1.37 (1.06–1.78) | 0.015 |
Recessive inheritance model | |||||
MCL1-(TT + TG) | 103 | 90 | 1.00 (ref.) | 1.00 (ref.) | |
MCL1–GG | 07 | 10 | 1.63 (0.59–4.47) | 1.29 (0.72–2.32) | 0.33 |
Allele | |||||
MCL1–T | 161 | 126 | 1.00 (ref.) | 1.00 (ref.) | |
MCL1–G | 57 | 74 | 1.65 (1.09–2.51) | 1.28 (1.03–1.61) | 0.017 |
Overdominant inheritance model | |||||
MCL1-TG | 45 | 54 | 1.00 (ref.) | 1.00 (ref.) | |
MCL1-TT + GG | 65 | 46 | 0.58 (0.34–1.01) | 0.77 (0.59–1.01) | 0.058 |
Genotypes | Controls n = 105 | Cases n = 100 | OR (95% CI) | RR (95% CI) | p |
---|---|---|---|---|---|
Codominant inheritance model | |||||
BIRC5-CC | 64 | 31 | 1.00 (ref.) | 1.00 (ref.) | |
BIRC5-CG | 45 | 65 | 2.98 (1.68–5.28) | 1.64 (1.26–2.14) | 0.002 |
BIRC5-GG | 01 | 04 | 8.25 (0.88–77.0) | 3.36 (0.58–19.5) | 0.06 |
Dominant inheritance model | |||||
BIRC5–CC | 64 | 31 | 1.00 (ref.) | 1.00 (ref.) | |
BIRC5-(CG + GG) | 46 | 69 | 3.09 (1. 75–5.46) | 1.68 (1.29–2.19) | 0.001 |
Recessive inheritance model | |||||
BIRC5-(CC + CG) | 109 | 96 | 1.00 (ref.) | 1.00 (ref.) | |
BIRC5-GG | 01 | 04 | 4.54 (0.49–41.3) | 2.65 (0.45–15.4) | 0.179 |
Allele | |||||
BIRC5-C | 173 | 127 | 1.00 (ref.) | 1.00 (ref.) | |
BIRC5-G | 47 | 73 | 2.11 (1.37–3.25) | 1.47 (1.15–1.87) | 0.007 |
Overdominant inheritance model | |||||
BIRC5-GC | 45 | 65 | 1.00 (ref.) | 1.00 (ref.) | |
BIRC5-GG + CC | 65 | 35 | 0.37 (0.21–0.65) | 0.62 (0.48–0.82) | 0.006 |
Genotypes | Controls n = 105 | Cases n = 100 | OR (95% CI) | RR (95% CI) | p |
---|---|---|---|---|---|
Codominant inheritance model | |||||
BIRC5-GG | 70 | 29 | 1.00 (ref.) | 1.00 (ref.) | |
BIRC5-GC | 50 | 66 | 3.18 (1.80–5.62) | 1.64 (1.28–2.09) | 0.001 |
BIRC5-CC | 02 | 05 | 6.0 (1.10–32.9) | 2.47 (0.76–8.03) | 0.037 |
Dominant inheritance model | |||||
BIRC5-GG | 70 | 29 | 1.00 (ref.) | 1.00 (ref.) | |
BIRC5-(GC + CC) | 52 | 71 | 3.29 (1.87–5.77) | 1.67 (1.31–2.13) | 0.001 |
Recessive inheritance model | |||||
BIRC5-(GG + GC) | 120 | 95 | 1.00 (ref.) | 1.00 (ref.) | |
BIRC5-CC | 02 | 05 | 3.15 (0.59–16.6) | 1.95 (0.60–6.34) | 0.17 |
Allele | |||||
BIRC5-G | 190 | 124 | 1.00 (ref.) | 1.00 (ref.) | |
BIRC5-C | 57 | 76 | 2.04 (1.35–3.08) | 1.30 (1.03–1.63) | 0.001 |
Overdominant inheritance model | |||||
BIRC5-GC | 50 | 66 | 1.00 (ref.) | 1.00 (ref.) | |
BIRC5-GG + CC | 72 | 34 | 0.35 (0.20–0.61) | 0.88 (0.64–1.23) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Amer, O.M.; Mir, R.; Hamadi, A.; Alasseiri, M.I.; Altayar, M.A.; AlZamzami, W.; Moawadh, M.; Alatawi, S.; Niaz, H.A.; Oyouni, A.A.A.; et al. Antiapoptotic Gene Genotype and Allele Variations and the Risk of Lymphoma. Cancers 2023, 15, 1012. https://doi.org/10.3390/cancers15041012
Al-Amer OM, Mir R, Hamadi A, Alasseiri MI, Altayar MA, AlZamzami W, Moawadh M, Alatawi S, Niaz HA, Oyouni AAA, et al. Antiapoptotic Gene Genotype and Allele Variations and the Risk of Lymphoma. Cancers. 2023; 15(4):1012. https://doi.org/10.3390/cancers15041012
Chicago/Turabian StyleAl-Amer, Osama M., Rashid Mir, Abdullah Hamadi, Mohammed I. Alasseiri, Malik A. Altayar, Waseem AlZamzami, Mamdoh Moawadh, Sael Alatawi, Hanan A. Niaz, Atif Abdulwahab A. Oyouni, and et al. 2023. "Antiapoptotic Gene Genotype and Allele Variations and the Risk of Lymphoma" Cancers 15, no. 4: 1012. https://doi.org/10.3390/cancers15041012
APA StyleAl-Amer, O. M., Mir, R., Hamadi, A., Alasseiri, M. I., Altayar, M. A., AlZamzami, W., Moawadh, M., Alatawi, S., Niaz, H. A., Oyouni, A. A. A., Alzahrani, O. R., Alatwi, H. E., Albalawi, A. E., Alsharif, K. F., Albrakati, A., & Hawsawi, Y. M. (2023). Antiapoptotic Gene Genotype and Allele Variations and the Risk of Lymphoma. Cancers, 15(4), 1012. https://doi.org/10.3390/cancers15041012