Excited-State Forces with GW-BSE Through the Hellmann–Feynman Theorem
Abstract
:1. Introduction
2. Results
2.1. Carbon Monoxide
2.2. Formaldehyde
3. Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strinati, G. Application of the Green’s functions method to the study of the optical properties of semiconductors. Riv. Del Nuovo C. (1978–1999) 1988, 11, 1–86. [Google Scholar] [CrossRef]
- Rohlfing, M.; Louie, S.G. Electron-Hole Excitations in Semiconductors and Insulators. Phys. Rev. Lett. 1998, 81, 2312–2315. [Google Scholar] [CrossRef]
- Albrecht, S.; Reining, L.; Del Sole, R.; Onida, G. Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors. Phys. Rev. Lett. 1998, 80, 4510–4513. [Google Scholar] [CrossRef]
- Jacquemin, D.; Duchemin, I.; Blase, X. 0–0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2, and BSE/GW formalisms for 80 Real-Life Compounds. J. Chem. Theory Comput. 2015, 11, 5340–5359. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, M.P.; Koval, P.; Ferrari, F.; Foerster, D.; Sánchez-Portal, D. Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems. Phys. Rev. B 2015, 92, 075422. [Google Scholar] [CrossRef]
- Marsili, M.; Mosconi, E.; De Angelis, F.; Umari, P. Large-scale GW-BSE calculations with N3 scaling: Excitonic effects in dye-sensitized solar cells. Phys. Rev. B 2017, 95, 075415. [Google Scholar] [CrossRef]
- Adamska, L.; Umari, P. Bethe-Salpeter equation approach with electron-phonon coupling for exciton binding energies. Phys. Rev. B 2021, 103, 075201. [Google Scholar] [CrossRef]
- Cudazzo, P. First-principles description of the exciton-phonon interaction: A cumulant approach. Phys. Rev. B 2020, 102, 045136. [Google Scholar] [CrossRef]
- Chen, H.Y.; Sangalli, D.; Bernardi, M. Exciton-Phonon Interaction and Relaxation Times from First Principles. Phys. Rev. Lett. 2020, 125, 107401. [Google Scholar] [CrossRef]
- Antonius, G.; Louie, S.G. Theory of exciton-phonon coupling. Phys. Rev. B 2022, 105, 085111. [Google Scholar] [CrossRef]
- Ismail-Beigi, S.; Louie, S.G. Excited-State Forces within a First-Principles Green’s Function Formalism. Phys. Rev. Lett. 2003, 90, 076401. [Google Scholar] [CrossRef]
- Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef]
- Elliott, J.D.; Colonna, N.; Marsili, M.; Marzari, N.; Umari, P. Koopmans Meets Bethe Salpeter: Excitonic Optical Spectra without GW. J. Chem. Theory Comput. 2019, 15, 3710–3720. [Google Scholar] [CrossRef] [PubMed]
- Rocca, D.; Lu, D.; Galli, G. Ab initio calculations of optical absorption spectra: Solution of the Bethe-Salpeter equation within density matrix perturbation theory. J. Chem. Phys. 2010, 133, 164109. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.L.; Ma, H.; Govoni, M.; Gygi, F.; Galli, G. Finite-Field Approach to Solving the Bethe-Salpeter Equation. Phys. Rev. Lett. 2019, 122, 237402. [Google Scholar] [CrossRef]
- Umari, P.; Stenuit, G.; Baroni, S. GW quasiparticle spectra from occupied states only. Phys. Rev. B 2010, 81, 115104. [Google Scholar] [CrossRef]
- Umari, P.; Stenuit, G.; Baroni, S. Optimal representation of the polarization propagator for large-scale GW calculations. Phys. Rev. B 2009, 79, 201104. [Google Scholar] [CrossRef]
- Umari, P. A fully linear response G0W0 method that scales linearly up to tens of thousands of cores. J. Phys. Chem. A 2022, 126, 3384–3391. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Shi, D. Transition properties of the X1Σ+, I1Σ-, A1Π, D1Δ, B1Σ+, and a3Π states of carbon monoxide. Comput. Theor. Chem. 2021, 1202, 113302. [Google Scholar] [CrossRef]
- Hirose, D.; Noguchi, Y.; Sugino, O. All-electron GW+ Bethe-Salpeter calculations on small molecules. Phys. Rev. B 2015, 91, 205111. [Google Scholar] [CrossRef]
- Huber, K.P.; Herzberg, G.H. Constants of Diatomic Molecules (Data Prepared by Jean W. Gallagher and Russell D. Johnson, III) in NIST Chemistry WebBook, NIST Standard Reference Database Number 69; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2024. [Google Scholar]
- Fletcher, R.; Powell, M.J. A rapidly convergent descent method for minimization. Comput. J. 1963, 6, 163–168. [Google Scholar] [CrossRef]
- Peng-Fei, L.; Lei, Y.; Zhong-Yuan, Y.; Yu-Feng, G.; Tao, G. An accurate calculation of potential energy curves and transition dipole moment for low-lying electronic states of CO. Commun. Theor. Phys. 2013, 59, 193. [Google Scholar] [CrossRef]
- Scemama, A.; Benali, A.; Jacquemin, D.; Caffarel, M.; Loos, P.F. Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes. J. Chem. Phys. 2018, 149, 034108. [Google Scholar] [CrossRef]
- Gui, X.; Holzer, C.; Klopper, W. Accuracy assessment of GW starting points for calculating molecular excitation energies using the Bethe–Salpeter formalism. J. Chem. Theory Comput. 2018, 14, 2127–2136. [Google Scholar] [CrossRef]
- Jacquemin, D.; Duchemin, I.; Blase, X. Benchmarking the Bethe–Salpeter formalism on a standard organic molecular set. J. Chem. Theory Comput. 2015, 11, 3290–3304. [Google Scholar] [CrossRef]
- Budzák, S.; Scalmani, G.; Jacquemin, D. Accurate excited-state geometries: A CASPT2 and coupled-cluster reference database for small molecules. J. Chem. Theory Comput. 2017, 13, 6237–6252. [Google Scholar] [CrossRef]
- Dash, M.; Feldt, J.; Moroni, S.; Scemama, A.; Filippi, C. Excited states with selected configuration interaction-quantum Monte Carlo: Chemically accurate excitation energies and geometries. J. Chem. Theory Comput. 2019, 15, 4896–4906. [Google Scholar] [CrossRef]
- Villalobos-Castro, J.; Knysh, I.; Jacquemin, D.; Duchemin, I.; Blase, X. Lagrangian Z-vector approach to Bethe–Salpeter analytic gradients: Assessing approximations. J. Chem. Phys. 2023, 159, 024116. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.D.; Mosconi, E.; De Angelis, F.; Ambrosetti, A.; Umari, P. Real Space–Real Time Evolution of Excitonic States Based on the Bethe-Salpeter Equation Method. J. Phys. Chem. Lett. 2021, 12, 7261–7269. [Google Scholar] [CrossRef] [PubMed]
- Prezhdo, O.V.; Rossky, P.J. Mean-field molecular dynamics with surface hopping. J. Chem. Phys. 1997, 107, 825–834. [Google Scholar] [CrossRef]
Method | |||
---|---|---|---|
This | 7.43 | 7.95 | 8.65 |
GW-BSE [23] | 7.67 | 8.24 | |
CASSCF-icMRCI [22] | 8.14 | 8.19 | 8.48 |
Exp. [24] | 8.07 | 8.07 | 8.17 |
Method | ||||
---|---|---|---|---|
This | 2.16 | 2.43 | 2.60 | 2.60 |
MR-CISD+Q [26] | 2.14 | 2.34 | 2.65 | |
CASSCF-icMRCI [22] | 2.14 | 2.34 | 2.61 | 2.65 |
Exp. [24] | 2.13 | 2.33 | 2.63 | 2.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrahamneh, M.J.; Tolbatov, I.; Umari, P. Excited-State Forces with GW-BSE Through the Hellmann–Feynman Theorem. Int. J. Mol. Sci. 2025, 26, 2306. https://doi.org/10.3390/ijms26052306
Alrahamneh MJ, Tolbatov I, Umari P. Excited-State Forces with GW-BSE Through the Hellmann–Feynman Theorem. International Journal of Molecular Sciences. 2025; 26(5):2306. https://doi.org/10.3390/ijms26052306
Chicago/Turabian StyleAlrahamneh, Marah Jamil, Iogann Tolbatov, and Paolo Umari. 2025. "Excited-State Forces with GW-BSE Through the Hellmann–Feynman Theorem" International Journal of Molecular Sciences 26, no. 5: 2306. https://doi.org/10.3390/ijms26052306
APA StyleAlrahamneh, M. J., Tolbatov, I., & Umari, P. (2025). Excited-State Forces with GW-BSE Through the Hellmann–Feynman Theorem. International Journal of Molecular Sciences, 26(5), 2306. https://doi.org/10.3390/ijms26052306