Differential Influence of Environmental Factors on Malaria Due to Vector Control Interventions in Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Vector Control Interventions
2.3. Environmental Data
2.4. Socio-Economic Data
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Sites
3.2. Influence of Environmental Conditions and Intervention in the Pooled Model 1 without Interaction
3.3. Influence of Environmental Conditions and Interventions When Considering Interactions
3.4. Effect of Environmental Characteristics and Intervention at Each Site
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- World Health Organization. Achieving and Maintaining Universal Coverage with Long-Lasting Insecticidal Nets for Malaria Control; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Cote, C.M.; Goel, V.; Muhindo, R.; Baguma, E.; Ntaro, M.; Shook-Sa, B.E.; Reyes, R.; Staedke, S.G.; Mulogo, E.M.; Boyce, R.M. Malaria prevalence and long-lasting insecticidal net use in rural western Uganda: Results of a cross-sectional survey conducted in an area of highly variable malaria transmission intensity. Malar. J. 2021, 20, 304. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Under the Weather: Climate, Ecosystems, and Infectious Disease; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Paaijmans, K.P.; Wandago, M.O.; Githeko, A.K.; Takken, W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS ONE 2007, 2, e1146. [Google Scholar] [CrossRef] [PubMed]
- Sadoine, M.L.; Smargiassi, A.; Ridde, V.; Tusting, L.S.; Zinszer, K. The associations between malaria, interventions, and the environment: A systematic review and meta-analysis. Malar. J. 2018, 17, 73. [Google Scholar] [CrossRef]
- Chaves, L.F.; Kaneko, A.; Taleo, G.; Pascual, M.; Wilson, M.L. Malaria transmission pattern resilience to climatic variability is mediated by insecticide-treated nets. Malar. J. 2008, 7, 100. [Google Scholar] [CrossRef]
- Carrasco-Escobar, G.; Qquellon, J.; Villa, D.; Cava, R.; Llanos-Cuentas, A.; Benmarhnia, T. Time-Varying Effects of Meteorological Variables on Malaria Epidemiology in the Context of Interrupted Control Efforts in the Amazon Rainforest, 2000–2017. Front. Med. 2021, 8, 721515. [Google Scholar] [CrossRef] [PubMed]
- Sserwanga, A.; Harris, J.C.; Kigozi, R.; Menon, M.; Bukirwa, H.; Gasasira, A.; Kakeeto, S.; Kizito, F.; Quinto, E.; Rubahika, D.; et al. Improved malaria case management through the implementation of a health facility-based sentinel site surveillance system in Uganda. PLoS ONE 2011, 6, e16316. [Google Scholar] [CrossRef] [PubMed]
- Uganda Ministry of Health. National Malaria Annual Report 2017–2018; Dans: National Malaria Control Division, rédacteur; Uganda Ministry of Health: Kampala, Uganda, 2019.
- Wanzira, H.; Katamba, H.; Rubahika, D. Use of long-lasting insecticide-treated bed nets in a population with universal coverage following a mass distribution campaign in Uganda. Malar. J. 2016, 15, 311. [Google Scholar] [CrossRef]
- Hakizimana, E.; Cyubahiro, B.; Rukundo, A.; Kabayiza, A.; Mutabazi, A.; Beach, R.; Patel, R.; Tongren, J.E.; Karema, C. Monitoring long-lasting insecticidal net (LLIN) durability to validate net serviceable life assumptions, in Rwanda. Malar. J. 2014, 13, 344. [Google Scholar] [CrossRef] [PubMed]
- Massue, D.J.; Moore, S.J.; Mageni, Z.D.; Moore, J.D.; Bradley, J.; Pigeon, O.; Maziba, E.J.; Mandike, R.; Kramer, K.; Kisinza, W.N.; et al. Durability of Olyset campaign nets distributed between 2009 and 2011 in eight districts of Tanzania. Malar. J. 2016, 15, 176. [Google Scholar] [CrossRef] [PubMed]
- Randriamaherijaona, S.; Raharinjatovo, J.; Boyer, S. Durability monitoring of long-lasting insecticidal (mosquito) nets (LLINs) in Madagascar: Physical integrity and insecticidal activity. Parasites Vectors 2017, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.R.; Coleman, J.; Smith, B.; Hamainza, B.; Katebe-Sakala, C.; Kean, C.; Kowal, A.; Vanden Eng, J.; Parris, T.K.; Mapp, C.T.; et al. A longitudinal study of the durability of long-lasting insecticidal nets in Zambia. Malar. J. 2016, 15, 106. [Google Scholar] [CrossRef] [PubMed]
- Wills, A.B.; Smith, S.C.; Anshebo, G.Y.; Graves, P.M.; Endeshaw, T.; Shargie, E.B.; Damte, M.; Gebre, T.; Mosher, A.W.; Patterson, A.E.; et al. Physical durability of PermaNet 2.0 long-lasting insecticidal nets over three to 32 months of use in Ethiopia. Malar. J. 2013, 12, 242. [Google Scholar] [CrossRef]
- Namuganga, J.F.; Epstein, A.; Nankabirwa, J.I.; Mpimbaza, A.; Kiggundu, M.; Sserwanga, A.; Kapisi, J.; Arinaitwe, E.; Gonahasa, S.; Opigo, J.; et al. The impact of stopping and starting indoor residual spraying on malaria burden in Uganda. Nat. Commun. 2021, 12, 2635. [Google Scholar] [CrossRef]
- Novella, N.S.; Thiaw, W.M. African rainfall climatology version 2 for famine early warning systems. J. Appl. Meteorol. Climatol. 2013, 52, 588–606. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006; NASA Eosdis Land Processes DAAC; DAAC: Sioux Falls, South Dakota, 2023. [Google Scholar] [CrossRef]
- Teklehaimanot, A.; Mejia, P. Malaria and poverty. Ann. N. Y. Acad. Sci. 2008, 1136, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Tusting, L.S.; Willey, B.; Lucas, H.; Thompson, J.; Kafy, H.T.; Smith, R.; Lindsay, S.W. Socioeconomic development as an intervention against malaria: A systematic review and meta-analysis. Lancet 2013, 382, 963–972. [Google Scholar] [CrossRef]
- Uganda Bureau of Statistics (UBOS). Uganda National Household Survey 2012/2013; UBOS: Kampala, Uganda, 2012. [Google Scholar]
- Ugandan Bureau of Statistics (UBOS). Uganda National Household Survey 2016/2017; UBOS: Kampala, Uganda, 2018. [Google Scholar]
- Spearman, C. “General Intelligence” Objectively Determined and Measured. AJP 1904, 15, 225–238. [Google Scholar] [CrossRef]
- Dobson, A.J.; Barnett, A.G. An Introduction to Generalized Linear Models; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Everitt, B.S. The Cambridge Dictionary of Statistics, 2nd ed.; Cambridge University Press: New York, NY, USA, 2022. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Ripley, B.D. Modern Applied Statistics with S.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Wood, S.N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 2004, 99, 673–686. [Google Scholar] [CrossRef]
- Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 2018, 3, 772. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Bhatt, S.; Weiss, D.J.; Cameron, E.; Bisanzio, D.; Mappin, B.; Dalrymple, U.; Battle, K.; Moyes, C.L.; Henry, A.; Eckhoff, P.A.; et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 2015, 526, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Kim, D.; Pham, A.; Paul, C.J. A meta-regression analysis of the effectiveness of mosquito nets for malaria control: The value of long-lasting insecticide nets. Int. J. Environ. Res. Public Health 2018, 15, 546. [Google Scholar] [CrossRef]
- Moiroux, N.; Boussari, O.; Djènontin, A.; Damien, G.; Cottrell, G.; Henry, M.C.; Guis, H.; Corbel, V. Dry season determinants of malaria disease and net use in Benin, West Africa. PLoS ONE 2012, 7, e30558. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Fedak, K.; Kramer, R. Reduction of malaria prevalence by indoor residual spraying: A meta-regression analysis. Am. J. Trop. Med. Hyg. 2012, 87, 117. [Google Scholar] [CrossRef] [PubMed]
- Kesteman, T.; Randrianarivelojosia, M.; Rogier, C. The protective effectiveness of control interventions for malaria prevention: A systematic review of the literature. F1000Res. 2017, 6, 1932. [Google Scholar] [CrossRef] [PubMed]
- Glunt, K.D.; Blanford, J.I.; Paaijmans, K.P. Chemicals, climate, and control: Increasing the effectiveness of malaria vector control tools by considering relevant temperatures. PLoS Pathogens. 2013, 9, e1003602. [Google Scholar] [CrossRef] [PubMed]
- Glunt, K.D.; Oliver, S.V.; Hunt, R.H.; Paaijmans, K.P. The impact of temperature on insecticide toxicity against the malaria vectors Anopheles arabiensis and Anopheles funestus. Malar. J. 2018, 17, 131. [Google Scholar] [CrossRef] [PubMed]
- Glunt, K.D.; Paaijmans, K.P.; Read, A.F.; Thomas, M.B. Environmental temperatures significantly change the impact of insecticides measured using WHOPES protocols. Malar. J. 2014, 13, 350. [Google Scholar] [CrossRef]
- Hodjati, M.; Curtis, C. Effects of permethrin at different temperatures on pyrethroid-resistant and susceptible strains of Anopheles. Med. Vet. Entomol. 1999, 13, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.A.; Adams, M.E. Mode of Action of Pyrethroids. Insecticide Mode of Action; Elsevier: Amsterdam, The Netherlands, 1982; pp. 3–27. [Google Scholar]
- Ssempiira, J.; Kissa, J.; Nambuusi, B.; Mukooyo, E.; Opigo, J.; Makumbi, F.; Kasasa, S.; Vounatsou, P. Interactions between climatic changes and intervention effects on malaria spatio-temporal dynamics in Uganda. Parasite Epidemiol. Control 2018, 3, e00070. [Google Scholar] [CrossRef] [PubMed]
- Katureebe, A.; Zinszer, K.; Arinaitwe, E.; Rek, J.; Kakande, E.; Charland, K.; Kigozi, R.; Kilama, M.; Nankabirwa, J.; Yeka, A.; et al. Measures of malaria burden after long-lasting insecticidal net distribution and indoor residual spraying at three sites in Uganda: A prospective observational study. PLoS Med. 2016, 13, e1002167. [Google Scholar] [CrossRef]
- Uganda National Malaria Control Division (NMCD); Uganda Bureau of Statistics (UBOS); ICF. Uganda Malaria Indicator Survey 2018–19; NMCD, UBOS, and ICF: Kampala, Uganda; Rockville, MA, USA, 2020. [Google Scholar]
- Uganda Bureau of Statistics (UBOS) and ICF International. Uganda Malaria Indicator Survey 2014–15; UBOS and ICF International: Kampala, Uganda; Rockville, MA, USA, 2015. [Google Scholar]
- Sherrard-Smith, E.; Griffin, J.T.; Winskill, P.; Corbel, V.; Pennetier, C.; Djénontin, A.; Moore, S.; Richardson, J.H.; Müller, P.; Edi, C.; et al. Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa. Nat. Commun. 2018, 9, 4982. [Google Scholar] [CrossRef] [PubMed]
- Pluess, B.; Tanser, F.C.; Lengeler, C.; Sharp, B.L. Indoor residual spraying for preventing malaria. Cochrane Database Syst. Rev. 2010, 4, CD006657. [Google Scholar] [CrossRef] [PubMed]
- Nigatu, W.; Eticha, G.; Kinfe, E.; Wuletaw, Y.; Mekuriaw, W.; Hailemariam, A.; kebede Sisay, T.; Teshome, A.; Abdulletif, B.; Eukubay, A.; et al. Performance evaluation of chemical insecticides used for indoor residual spraying against Anopheles arabiensis in Ethiopia. Ethiop. J. Public Health Nutr. 2020, 3, 5–16. [Google Scholar]
- Quaresima, V.; Agbenyega, T.; Oppong, B.; Awunyo, J.A.D.; Adu Adomah, P.; Enty, E.; Donato, F.; Castelli, F. Are malaria risk factors based on gender? a mixed-methods survey in an urban setting in Ghana. Trop. Med. Infect. Dis. 2021, 6, 161. [Google Scholar] [CrossRef]
- Ayele, D.G.; Zewotir, T.T.; Mwambi, H.G. Prevalence and risk factors of malaria in Ethiopia. Malar. J. 2012, 11, 195. [Google Scholar] [CrossRef]
- Pullan, R.L.; Bukirwa, H.; Staedke, S.G.; Snow, R.W.; Brooker, S. Plasmodium infection and its risk factors in eastern Uganda. Malar. J. 2010, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Korenromp, E.L.; Miller, J.; Cibulskis, R.E.; Kabir Cham, M.; Alnwick, D.; Dye, C. Monitoring mosquito net coverage for malaria control in Africa: Possession vs. use by children under 5 years. Trop. Med. Int. Health 2003, 8, 693–703. [Google Scholar] [CrossRef] [PubMed]
Variables | Aduku (nweek = 469) | Kamwezi (nweek = 461) | Kasambya (nweek = 470) | Kihihi (nweek = 469) | Nagongera (nweek = 470) | Walukuba (nweek = 448) | Overall (ntotal = 2787) |
---|---|---|---|---|---|---|---|
Weekly cases of malaria | |||||||
Mean (SD) | 68.9 (61.4) | 47.4 (79.1) | 86.0 (59.3) | 92.4 (55.4) | 64.7 (52.0) | 80.3 (58.6) | 73.3 (63.3) |
Median (Min–Max) | 49.0 (1–371) | 18.0 (0–597) | 72.0 (0–528) | 85.0 (1–303) | 60.0 (0–262) | 62.0 (4–319) | 58.0 (0–597) |
Weekly visit numbers | |||||||
Mean (SD) | 393 (122) | 396 (175) | 310 (116) | 387 (121) | 429 (114) | 645 (148) | 425 (169) |
Median (Min–Max) | 381 (86–799) | 358 (143–1240) | 299 (12–783) | 381 (2–717) | 425 (10–813) | 653 (151–1060) | 399 (2–1240) |
Average income (k–Ugandan shillings) | |||||||
Mean (SD) | 314 (93.6) | 385 (62.7) | 420 (50.3) | 387 (63.4) | 142 (5.75) | 205 (11.6) | 309 (117) |
Median (Min–Max) | 359 (139–370) | 343 (339–476) | 433 (329–463) | 343 (339–476) | 141 (137–152) | 204 (195–222) | 343 (137–476) |
Environmental Variables | Aduku (nweek = 469) | Kamwezi (nweek = 461) | Kasambya (nweek = 470) | Kihihi (nweek = 469) | Nagongera (nweek = 470) | Walukuba (nweek = 448) | Overall (ntotal = 2787) |
---|---|---|---|---|---|---|---|
Cumulative rainfall (mm) | |||||||
Mean (SD) | 287 (119) | 189 (98.7) | 265 (99.3) | 263 (112) | 363 (148) | 300 (118) | 278 (128) |
Median (Min–Max) | 300 (4.67, 568) | 187 (8.75, 578) | 266 (46.4, 485) | 257 (32.6, 575) | 348 (43.7, 760) | 289 (77.8, 694) | 268 (4.67, 760) |
Maximum temperature (°C) | |||||||
Mean (SD) | 28.7 (1.38) | 23.5 (0.595) | 27.7 (1.03) | 25.8 (0.520) | 27.8 (1.08) | 26.7 (0.769) | 26.7 (1.94) |
Median (Min–Max) | 28.2 (26.8, 32.7) | 23.5 (22.3, 25.2) | 27.5 (25.8, 30.8) | 25.8 (24.6, 27.0) | 27.5 (26.2, 31.1) | 26.5 (25.4, 29.3) | 26.9 (22.3, 32.7) |
Minimum temperature (°C) | |||||||
Mean (SD) | 21.1 (0.668) | 14.5 (0.413) | 17.7 (0.513) | 16.2 (0.486) | 17.5 (0.567) | 19.5 (0.504) | 17.8 (2.19) |
Median (Min–Max) | 21.1 (19.9, 23.1) | 14.5 (13.7, 15.7) | 17.6 (16.7, 19.5) | 16.2 (15.1, 17.6) | 17.5 (15.7, 19.0) | 19.5 (18.4, 21.2) | 17.5 (13.7, 23.1) |
Humidity (kg·kg−1) | |||||||
Mean (SD) | 0.0146 (0.000771) | 0.0133 (0.00219) | 0.0145 (0.000986) | 0.0129 (0.00195) | 0.0134 (0.00170) | 0.0144 (0.000985) | 0.0139 (0.00167) |
Median (Min–Max) | 0.0147 (0.017, 0.0161) | 0.0142 (0.00830, 0.0164) | 0.0146 (0.0120, 0.0164) | 0.0137 (0.00817, 0.0155) | 0.0136 (0.00984, 0.0173) | 0.0146 (0.0119, 0.0163) | 0.0143 (0.00817, 0.0173) |
Enhanced vegetation index | |||||||
Mean (SD) | 0.385 (0.0615) | 0.414 (0.0295) | 0.435 (0.0419) | 0.459 (0.0348) | 0.380 (0.0446) | 0.371 (0.0454) | 0.408 (0.0543) |
Median (Min–Max) | 0.391 (0.225, 0.519)] | 0.408 (0.364, 0.496) | 0.438 (0.297, 0.505) | 0.465 (0.389, 0.539) | 0.383 (0.244, 0.469) | 0.379 (0.254, 0.457) | 0.407 (0.225, 0.539) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadoine, M.L.; Smargiassi, A.; Liu, Y.; Gachon, P.; Fournier, M.; Dueymes, G.; Namuganga, J.F.; Dorsey, G.; Nasri, B.; Zinszer, K. Differential Influence of Environmental Factors on Malaria Due to Vector Control Interventions in Uganda. Int. J. Environ. Res. Public Health 2023, 20, 7042. https://doi.org/10.3390/ijerph20227042
Sadoine ML, Smargiassi A, Liu Y, Gachon P, Fournier M, Dueymes G, Namuganga JF, Dorsey G, Nasri B, Zinszer K. Differential Influence of Environmental Factors on Malaria Due to Vector Control Interventions in Uganda. International Journal of Environmental Research and Public Health. 2023; 20(22):7042. https://doi.org/10.3390/ijerph20227042
Chicago/Turabian StyleSadoine, Margaux L., Audrey Smargiassi, Ying Liu, Philippe Gachon, Michel Fournier, Guillaume Dueymes, Jane Frances Namuganga, Grant Dorsey, Bouchra Nasri, and Kate Zinszer. 2023. "Differential Influence of Environmental Factors on Malaria Due to Vector Control Interventions in Uganda" International Journal of Environmental Research and Public Health 20, no. 22: 7042. https://doi.org/10.3390/ijerph20227042
APA StyleSadoine, M. L., Smargiassi, A., Liu, Y., Gachon, P., Fournier, M., Dueymes, G., Namuganga, J. F., Dorsey, G., Nasri, B., & Zinszer, K. (2023). Differential Influence of Environmental Factors on Malaria Due to Vector Control Interventions in Uganda. International Journal of Environmental Research and Public Health, 20(22), 7042. https://doi.org/10.3390/ijerph20227042