Measuring Mobile Phone Application Usability for Anticoagulation from the Perspective of Patients, Caregivers, and Healthcare Professionals
Abstract
:1. Introduction
2. Methods
2.1. Study Overview
2.2. Key Features of the Evaluation Program
2.3. Participant Recruitments
2.3.1. Patient and Patient Proxy
2.3.2. Healthcare Professionals
2.4. Evaluation Procedure
2.5. Study Outcome
2.6. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Usability of the SmartMed App
3.3. Perceived Impact of the SmartMed App
3.4. Factors Associated with Healthcare Professionals’ Evaluation of the SmartMed App
4. Discussion
4.1. Principle Findings
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 8 July 2021).
- Ministry of Health and Welfare, Taiwan ROC. Leading Cause of Death in 2019. Available online: https://dep.mohw.gov.tw/DOS/cp-4927-55571-113.html (accessed on 1 March 2022).
- Holbrook, A.; Schulman, S.; Witt, D.M.; Vandvik, P.O.; Fish, J.; Kovacs, M.J.; Svensson, P.J.; Veenstra, D.L.; Crowther, M.; Guyatt, G.H.J.C. Evidence-based management of anticoagulant therapy: Antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2012, 141, e152S–e184S. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-H.; Wang, Y.-C.; Wang, Y.-C.; Liu, J.-C.; Lee, C.-H.; Chen, C.-C.; Hsieh, I.-C.; Kuo, F.-Y.; Huang, W.-C.; Sung, S.-H. 2018 Guidelines of the Taiwan Society of Cardiology, Taiwan Society of Emergency Medicine and Taiwan Society of Cardiovascular Interventions for the management of non ST-segment elevation acute coronary syndrome. J. Formos. Med. Assoc. 2018, 117, 766–790. [Google Scholar] [CrossRef] [PubMed]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N. 2021 European Heart Rhythm Association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. EP Eur. 2021, 23, 1612–1676. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, B.S.; Dixon, D.L.; Neyens, R.R.; Page, R.L.; Gluckman, T.J. Select drug-drug interactions with direct oral anticoagulants: JACC review topic of the week. J. Am. Coll. Cardiol. 2020, 75, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A.; Nambisan, P.; Baker, E. Mobile applications for breast cancer survivorship and self-management: A systematic review. Health Inform. J. 2020, 26, 2892–2905. [Google Scholar] [CrossRef] [PubMed]
- Hou, I.C.; Lin, H.Y.; Shen, S.H.; Chang, K.J.; Tai, H.C.; Tsai, A.J.; Dykes, P.C. Quality of Life of Women After a First Diagnosis of Breast Cancer Using a Self-Management Support mHealth App in Taiwan: Randomized Controlled Trial. JMIR Mhealth Uhealth 2020, 8, e17084. [Google Scholar] [CrossRef] [PubMed]
- Nabi, J.; Cone, E.B.; Vasavada, A.; Sun, M.; Kilbridge, K.L.; Kibel, A.S.; Berry, D.L.; Trinh, Q.D. Mobile Health App for Prostate Cancer Patients on Androgen Deprivation Therapy: Qualitative Usability Study. JMIR Mhealth Uhealth 2020, 8, e20224. [Google Scholar] [CrossRef]
- Singh, K.; Diamantidis, C.J.; Ramani, S.; Bhavsar, N.A.; Mara, P.; Warner, J.; Rodriguez, J.; Wang, T.; Wright-Nunes, J. Patients’ and Nephrologists’ Evaluation of Patient-Facing Smartphone Apps for CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 523–529. [Google Scholar] [CrossRef]
- Pamungkas, R.A.; Usman, A.M.; Chamroonsawasdi, K.; Abdurrasyid. A smartphone application of diabetes coaching intervention to prevent the onset of complications and to improve diabetes self-management: A randomized control trial. Diabetes Metab. Syndr. 2022, 16, 102537. [Google Scholar] [CrossRef]
- Hardinge, M.; Rutter, H.; Velardo, C.; Shah, S.A.; Williams, V.; Tarassenko, L.; Farmer, A. Using a mobile health application to support self-management in chronic obstructive pulmonary disease: A six-month cohort study. BMC Med. Inf. Decis. Mak 2015, 15, 46. [Google Scholar] [CrossRef]
- Lane, D.A.; McMahon, N.; Gibson, J.; Weldon, J.C.; Farkowski, M.M.; Lenarczyk, R.; Watkins, C.L.; Dilaveris, P.; Caiani, E.G.; Potpara, T.S. Mobile health applications for managing atrial fibrillation for healthcare professionals and patients: A systematic review. Europace 2020, 22, 1567–1578. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Y.; Lane, D.A.; Liu, L.; Wang, Y.; Lip, G.Y.H. Mobile Health Technology for Atrial Fibrillation Management Integrating Decision Support, Education, and Patient Involvement: mAF App Trial. Am. J. Med. 2017, 130, 1388–1396.e1386. [Google Scholar] [CrossRef]
- Tran, K.; Leblanc, K.; Valentinis, A.; Kavanagh, D.; Zahr, N.; Ivers, N.M. Evaluating the Usability and Perceived Impact of an Electronic Medical Record Toolkit for Atrial Fibrillation Management in Primary Care: A Mixed-Methods Study Incorporating Human Factors Design. JMIR Hum Factors 2016, 3, e7. [Google Scholar] [CrossRef]
- Stephan, L.S.; Dytz Almeida, E.; Guimaraes, R.B.; Ley, A.G.; Mathias, R.G.; Assis, M.V.; Leiria, T.L. Processes and Recommendations for Creating mHealth Apps for Low-Income Populations. JMIR Mhealth Uhealth 2017, 5, e41. [Google Scholar] [CrossRef]
- Ayyaswami, V.; Padmanabhan, D.L.; Crihalmeanu, T.; Thelmo, F.; Prabhu, A.V.; Magnani, J.W. Mobile health applications for atrial fibrillation: A readability and quality assessment. Int. J. Cardiol. 2019, 293, 288–293. [Google Scholar] [CrossRef]
- Jang, I. A Systematic Review on Mobile Health Applications’ Education Program for Patients Taking Oral Anticoagulants. Int. J. Environ. Res. Public Health 2021, 18, 8902. [Google Scholar] [CrossRef]
- Boonstra, M.D.; Reijneveld, S.A.; Westerhuis, R.; Tullius, J.M.; Vervoort, J.P.; Navis, G.; de Winter, A.F.J.P.E.; Counseling. A longitudinal qualitative study to explore and optimize self-management in mild to end stage chronic kidney disease patients with limited health literacy: Perspectives of patients and health care professionals. Patient Educ. Couns. 2022, 105, 88–104. [Google Scholar] [CrossRef]
- Shao, S.C.; Chan, Y.Y.; Kao Yang, Y.H.; Lin, S.J.; Hung, M.J.; Chien, R.N.; Lai, C.C.; Lai, E.C.C. The Chang Gung Research Database—A multi-institutional electronic medical records database for real-world epidemiological studies in Taiwan. Pharmacoepidemiol. Drug Saf. 2019, 28, 593–600. [Google Scholar] [CrossRef]
- Caine, K. Local standards for sample size at CHI. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 981–992. [Google Scholar]
- Lewis, J.R. The System Usability Scale: Past, Present, and Future. Int. J. Hum. –Comput. Interact. 2018, 34, 577–590. [Google Scholar] [CrossRef]
- Stoyanov, S.R.; Hides, L.; Kavanagh, D.J.; Zelenko, O.; Tjondronegoro, D.; Mani, M. Mobile app rating scale: A new tool for assessing the quality of health mobile apps. JMIR Mhealth Uhealth 2015, 3, e27. [Google Scholar] [CrossRef]
- Chang, C.H.; Wang, Y.W.; Yeh Liu, P.Y.; Kao Yang, Y.H. A practical approach to minimize the interaction of dietary vitamin K with warfarin. J. Clin. Pharm. Ther. 2014, 39, 56–60. [Google Scholar] [CrossRef]
- Terhorst, Y.; Philippi, P.; Sander, L.B.; Schultchen, D.; Paganini, S.; Bardus, M.; Santo, K.; Knitza, J.; Machado, G.C.; Schoeppe, S. Validation of the mobile application rating scale (MARS). PLoS ONE 2020, 15, e0241480. [Google Scholar] [CrossRef]
- Chaniaud, N.; Megalakaki, O.; Capo, S.; Loup-Escande, E. Effects of User Characteristics on the Usability of a Home-Connected Medical Device (Smart Angel) for Ambulatory Monitoring: Usability Study. JMIR Hum Factors 2021, 8, e24846. [Google Scholar] [CrossRef]
- Quinn, C.C.; Staub, S.; Barr, E.; Gruber-Baldini, A. Mobile Support for Older Adults and Their Caregivers: Dyad Usability Study. JMIR Aging 2019, 2, e12276. [Google Scholar] [CrossRef]
- Loh, K.P.; Ramsdale, E.; Culakova, E.; Mendler, J.H.; Liesveld, J.L.; O’Dwyer, K.M.; McHugh, C.; Gilles, M.; Lloyd, T.; Goodman, M.; et al. Novel mHealth App to Deliver Geriatric Assessment-Driven Interventions for Older Adults With Cancer: Pilot Feasibility and Usability Study. JMIR Cancer 2018, 4, e10296. [Google Scholar] [CrossRef]
- Sauro, J.; Lewis, J.R. Quantifying the User Experience: Practical Statistics for User Research, 2nd ed.; Morgan Kaufmann: Cambridge, MA, USA, 2016. [Google Scholar]
- Lewis, J.R.; Sauro, J. The Factor Structure of the System Usability Scale. In International Conference on Human Centered Design; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Mrklas, K.J.; Barber, T.; Campbell-Scherer, D.; Green, L.A.; Li, L.C.; Marlett, N.; Miller, J.; Shewchuk, B.; Teare, S.; Wasylak, T.; et al. Co-Design in the Development of a Mobile Health App for the Management of Knee Osteoarthritis by Patients and Physicians: Qualitative Study. JMIR Mhealth Uhealth 2020, 8, e17893. [Google Scholar] [CrossRef]
- Barber, T.; Sharif, B.; Teare, S.; Miller, J.; Shewchuk, B.; Green, L.A.; Marlett, N.; Cibere, J.; Mrklas, K.; Wasylak, T.; et al. Qualitative study to elicit patients’ and primary care physicians’ perspectives on the use of a self-management mobile health application for knee osteoarthritis. BMJ Open 2019, 9, e024016. [Google Scholar] [CrossRef]
- Schnipper, J.L.; Kirwin, J.L.; Cotugno, M.C.; Wahlstrom, S.A.; Brown, B.A.; Tarvin, E.; Kachalia, A.; Horng, M.; Roy, C.L.; McKean, S.C.; et al. Role of Pharmacist Counseling in Preventing Adverse Drug Events After Hospitalization. Arch. Intern. Med. 2006, 166, 565–571. [Google Scholar] [CrossRef]
- Jurkeviciute, M.; Van Velsen, L.; Eriksson, H.; Lifvergren, S.; Trimarchi, P.D.; Andin, U.; Svensson, J. Identifying the Value of an eHealth Intervention Aimed at Cognitive Impairments: Observational Study in Different Contexts and Service Models. J. Med. Internet Res. 2020, 22, e17720. [Google Scholar] [CrossRef]
- Hazel, C.A.; Bull, S.; Greenwell, E.; Bunik, M.; Puma, J.; Perraillon, M. Systematic review of cost-effectiveness analysis of behavior change communication apps: Assessment of key methods. Digit. Health 2021, 7, 20552076211000559. [Google Scholar] [CrossRef]
- Luo, X.; Xu, W.; Ming, W.-K.; Jiang, X.; Yuan, Q.; Lai, H.; Huang, C.; Zhong, X. Cost-Effectiveness of Mobile Health–Based Integrated Care for Atrial Fibrillation: Model Development and Data Analysis. J. Med. Internet. Res. 2022, 24, e29408. [Google Scholar] [CrossRef] [PubMed]
N of Patient | HCP (n = 59) | Patient (n = 14) | Family Caregiver (n = 11) | p Value * | ||||
---|---|---|---|---|---|---|---|---|
Age group, year, n(%) | 0.0161 | |||||||
≤35 | 19 | 18 | (30.51) | 0 | (0.00) | 1 | (9.09) | |
36–50 | 36 | 27 | (45.76) | 6 | (42.86) | 3 | (27.27) | |
51–65 | 24 | 13 | (22.03) | 6 | (42.86) | 5 | (45.45) | |
>65 | 5 | 1 | (1.69) | 2 | (14.29) | 2 | (18.18) | |
Sex, n (%) | 0.1161 | |||||||
Male | 39 | 24 | (40.68) | 10 | (71.43) | 5 | (45.45) | |
Female | 45 | 35 | (59.32) | 4 | (28.57) | 6 | (54.55) | |
APP usage frequency/week, n (%) | 0.2189 | |||||||
<1 | 11 | 9 | (15.25) | 0 | (0.00) | 2 | (18.18) | |
1–3 | 9 | 8 | (13.56) | 0 | (0.00) | 1 | (9.09) | |
4–8 | 9 | 8 | (13.56) | 1 | (7.14) | 0 | (0.00) | |
>8 | 55 | 34 | (57.63) | 13 | (92.86) | 8 | (72.73) | |
System of mobile phone, n (%) | 0.1522 | |||||||
Android | 51 | 32 | (54.24) | 10 | (71.43) | 9 | (81.82) | |
iOS | 33 | 27 | (45.76) | 4 | (28.57) | 2 | (18.18) | |
Healthcare professionals, n (%) | - | |||||||
Pharmacist in K-CGMH | 36 | 36 | (61.02) | - | - | - | - | |
Pharmacist in CY-KCGMH | 16 | 16 | (27.12) | - | - | - | - | |
Nurse | 3 | 3 | (5.08) | - | - | - | - | |
Physician | 4 | 4 | (6.78) | - | - | - | - | |
Patient’s age, year, mean (SD) | - | - | 53.30 | (10.29) | 68.25 | (24.73) | 0.0831 | |
OAC use, n (%) | 0.1044 | |||||||
Warfarin | 15 | - | - | 11 | (78.57) | 4 | (36.36) | |
Dabigatran | 2 | - | - | 1 | (7.14) | 1 | (9.09) | |
Rivaroxaban | 2 | - | - | 1 | (7.14) | 1 | (9.09) | |
Apixaban | 3 | - | - | 1 | (7.14) | 2 | (18.18) | |
Edoxaban | 3 | - | - | 0 | (0.00) | 3 | (27.27) | |
Drug Frequency, n (%) | - | - | 0.6299 | |||||
Once daily (QD) | 5 | - | - | 2 | (15.38) | 3 | (27.27) | |
Twice daily (BID) | 19 | - | - | 11 | (84.62) | 8 | (72.73) |
Item | Content | Overall (n = 84) | HCP (n = 59) | Patient (n = 14) | Family Caregiver (n = 11) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test 1 | Test 2 | p Value | Test 1 | Test 2 | p Value | Test 1 | Test 2 | p Value | Test 1 | Test 2 | p Value | ||||||||||
Mean | (SD) | Mean | (SD) | Mean | (SD) | Mean | (SD) | Mean | (SD) | Mean | (SD) | Mean | (SD) | Mean | (SD) | ||||||
1 | I think that I would like to use this product frequently | 4.14 | (0.75) | 4.39 | (0.68) | 0.0004 | 4.02 | (0.72) | 4.44 | (0.65) | <0.0001 | 4.43 | (0.76) | 4.36 | (0.74) | 0.3356 | 4.45 | (0.69) | 4.18 | (0.75) | 0.1921 |
2 | I found the product unnecessarily complex | 2.14 | (0.95) | 1.83 | (0.98) | 0.0021 | 2.27 | (0.95) | 1.75 | (0.98) | <0.0001 | 1.57 | (0.76) | 1.86 | (0.95) | 0.3019 | 2.27 | (0.90) | 2.27 | (1.01) | 1.0000 |
3 | I thought the product was easy to use | 4.04 | (0.80) | 4.37 | (0.77) | 0.0002 | 3.92 | (0.81) | 4.36 | (0.76) | 0.0002 | 4.43 | (0.76) | 4.50 | (0.76) | 0.3356 | 4.18 | (0.60) | 4.27 | (0.90) | 0.7560 |
4 | I think that I would need the support of a technical person to be able to use this product | 2.36 | (1.14) | 2.05 | (1.13) | 0.0039 | 2.63 | (1.13) | 2.20 | (1.19) | 0.0014 | 1.57 | (0.94) | 1.43 | (0.85) | 0.4346 | 1.91 | (0.70) | 2.00 | (0.89) | 0.7961 |
5 | I found the various functions in this product were well integrated | 4.21 | (0.71) | 4.40 | (0.75) | 0.0041 | 4.15 | (0.71) | 4.41 | (0.75) | 0.0031 | 4.36 | (0.74) | 4.43 | (0.85) | 0.5830 | 4.36 | (0.67) | 4.36 | (0.67) | 1.0000 |
6 | I thought there was too much inconsistency in this product | 1.90 | (0.77) | 1.48 | (0.69) | <0.0001 | 2.12 | (0.74) | 1.51 | (0.73) | <0.0001 | 1.36 | (0.50) | 1.43 | (0.65) | 0.3356 | 1.55 | (0.82) | 1.36 | (0.50) | 0.1669 |
7 | I imagine that most people would learn to use this product very quickly. | 3.99 | (0.83) | 4.24 | (0.80) | 0.0074 | 3.80 | (0.84) | 4.22 | (0.83) | 0.0003 | 4.64 | (0.50) | 4.36 | (0.93) | 0.1039 | 4.18 | (0.60) | 4.18 | (0.40) | 1.0000 |
8 | I found the product very awkward to use | 1.82 | (0.79) | 1.46 | (0.75) | <0.0001 | 1.92 | (0.74) | 1.51 | (0.82) | 0.0002 | 1.36 | (0.84) | 1.21 | (0.43) | 0.3356 | 1.91 | (0.83) | 1.55 | (0.69) | 0.1669 |
9 | I felt very confident using the product | 4.18 | (0.75) | 4.46 | (0.70) | 0.0001 | 4.05 | (0.70) | 4.44 | (0.73) | <0.0001 | 4.79 | (0.58) | 4.71 | (0.61) | 0.3356 | 4.18 | (0.87) | 4.27 | (0.65) | 0.5884 |
10 | I needed to learn a lot of things before I could get going with this product | 2.01 | (0.88) | 1.75 | (0.93) | 0.0097 | 2.20 | (0.88) | 1.85 | (1.01) | 0.0155 | 1.29 | (0.61) | 1.36 | (0.63) | 0.3356 | 2.00 | (0.77) | 1.73 | (0.65) | 0.0816 |
Odd items (1, 3, 5, 7, 9) | 15.56 | (3.07) | 16.87 | (2.96) | <0.0001 | 14.93 | (3.11) | 16.86 | (3.12) | <0.0001 | 17.64 | (2.24) | 17.36 | (2.71) | 0.4857 | 16.36 | (2.38) | 16.27 | (2.45) | 0.8461 | |
Even items | 14.76 | (3.41) | 16.43 | (3.36) | <0.0001 | 13.87 | (3.24) | 16.19 | (3.61) | <0.0001 | 17.86 | (2.54) | 17.71 | (2.79) | 0.7100 | 15.36 | (2.98) | 16.09 | (2.30) | 0.3328 | |
Total score | 74.14 | (13.27) | 81.49 | (14.42) | <0.0001 | 72.00 | (14.10) | 82.63 | (15.81) | <0.0001 | 81.07 | (8.42) | 80.54 | (11.01) | 0.7202 | 76.36 | (9.96) | 76.59 | (9.17) | 0.9187 |
Item | Content | Overall(n = 84) | Healthcare Professional(n = 59) | Patient (n = 14) | Family Caregiver (n = 11) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test 1 | Test 2 | p Value | Test 1 | Test 2 | p Value | Test 1 | Test 2 | p Value | Test 1 | Test 2 | p Value | ||||||||||
1 | Awareness: This app is likely to increase awareness of the importance of [taking anticoagulant regularly] | 4.45 | (0.65) | 4.68 | (0.58) | <0.0001 | 4.38 | (0.69) | 4.68 | (0.63) | 0.0002 | 4.64 | (0.63) | 4.79 | (0.43) | 0.1648 | 4.45 | (0.52) | 4.55 | (0.52) | 0.3409 |
2 | Knowledge: This app is likely to increase knowledge/understanding of [taking anticoagulant regularly] | 4.43 | (0.63) | 4.74 | (0.49) | <0.0001 | 4.40 | (0.62) | 4.76 | (0.50) | <0.0001 | 4.57 | (0.76) | 4.86 | (0.36) | 0.1648 | 4.27 | (0.65) | 4.45 | (0.52) | 0.3409 |
3 | Attitudes: This app is likely to change attitudes toward improving taking anticoagulant regularly | 4.39 | (0.64) | 4.64 | (0.65) | 0.0010 | 4.33 | (0.66) | 4.68 | (0.68) | 0.0013 | 4.64 | (0.63) | 4.64 | (0.63) | 1.0000 | 4.27 | (0.65) | 4.45 | (0.52) | 0.3409 |
4 | Intention to change: This app is likely to increase intentions/motivation to address [taking anticoagulant regularly] | 4.42 | (0.64) | 4.68 | (0.54) | <0.0001 | 4.33 | (0.66) | 4.73 | (0.52) | <0.0001 | 4.71 | (0.47) | 4.64 | (0.50) | 0.5830 | 4.45 | (0.69) | 4.45 | (0.69) | ND |
5 | Help seeking: Use of this app is likely to encourage further help seeking for [taking anticoagulant regularly] (if bleeding or thrombus symptoms occurred) | 4.32 | (0.68) | 4.65 | (0.55) | <0.0001 | 4.27 | (0.71) | 4.69 | (0.53) | <0.0001 | 4.43 | (0.65) | 4.64 | (0.50) | 0.1894 | 4.36 | (0.67) | 4.45 | (0.69) | 0.3409 |
6 | Behavior change: Use of this app is likely increase/decrease [taking anticoagulant regularly] | 4.40 | (0.60) | 4.69 | (0.54) | <0.0001 | 4.32 | (0.62) | 4.75 | (0.51) | <0.0001 | 4.71 | (0.47) | 4.71 | (0.47) | - | 4.36 | (0.67) | 4.36 | (0.67) | ND |
mean score (SD) | 4.40 | (0.54) | 4.68 | (0.49) | <0.0001 | 4.34 | (0.58) | 4.71 | (0.50) | <0.0001 | 4.62 | (0.42) | 4.71 | (0.41) | 0.0401 | 4.36 | (0.53) | 4.45 | (0.49) | 0.0816 |
SUS | App-Specific MARS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean | (SD) | β | (95% CI) | p Value | Mean | (SD) | β | (95% CI) | p Value | |
HCP | |||||||||||
Pharmacist (K-CGMH) | 36 | 81.81 | (12.81) | Reference | 4.80 | (0.34) | Reference | ||||
Pharmacist (CY-CGMH) | 16 | 95.16 | (5.44) | 12.88 | (4.66–21.09) | 0.0028 | 4.94 | (0.15) | 0.10 | (−0.14–0.34) | 0.4245 |
Nurse | 3 | 51.67 | (1.44) | −30.02 | (−45.60–−14.44) | 0.0003 | 3.56 | (0.51) | −1.20 | (−1.66–−0.74) | <0.0001 |
Physician | 4 | 63.13 | (21.35) | −20.26 | (−34.62–−5.90) | 0.0067 | 3.96 | (0.89) | −1.00 | (−1.42–−0.58) | <0.0001 |
Age group, years | |||||||||||
≤35 | 18 | 86.67 | (15.97) | Reference | 4.89 | (0.30) | Reference | ||||
36–50 | 27 | 82.87 | (15.04) | 1.29 | (−6.70–9.28) | 0.7469 | 4.70 | (0.43) | −0.06 | (−0.29–0.18) | 0.6329 |
>50 | 14 | 76.96 | (16.47) | 1.25 | (−9.00–11.51) | 0.8070 | 4.52 | (0.75) | −0.05 | (−0.35–0.25) | 0.7402 |
Sex | |||||||||||
Male | 24 | 82.40 | (16.39) | 1.06 | (−6.62–8.74) | 0.7823 | 4.73 | (0.52) | 0.06 | (−0.16–0.29) | 0.5673 |
Female | 35 | 82.79 | (15.63) | Reference | 4.70 | (0.50) | Reference | ||||
Smartphone app uses/week, number of times | |||||||||||
<1 | 9 | 76.39 | (20.62) | Reference | 4.69 | (0.52) | Reference | ||||
1–3 | 8 | 87.81 | (10.13) | 2.75 | (−10.52–16.03) | 0.6784 | 4.85 | (0.24) | −0.18 | (−0.57–0.21) | 0.3624 |
4–8 | 8 | 76.25 | (16.48) | −1.23 | (−14.29–11.83) | 0.8506 | 4.38 | (0.69) | −0.47 | (−0.85–−0.09) | 0.0173 |
>8 | 34 | 84.56 | (15.03) | 1.07 | (−9.13–11.27) | 0.8343 | 4.77 | (0.48) | −0.20 | (−0.50–0.10) | 0.1840 |
System of mobile phone | |||||||||||
Android | 32 | 83.83 | (16.60) | Reference | 4.71 | (0.57) | Reference | ||||
iOS | 27 | 81.20 | (15.01) | −4.57 | (−11.74–2.60) | 0.2063 | 4.72 | (0.42) | −0.01 | (−0.22–0.20) | 0.8983 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-W.; Chiou, C.-C.; Su, C.-H.; Wu, C.-C.; Tsai, S.-C.; Lin, T.-K.; Hsu, C.-N. Measuring Mobile Phone Application Usability for Anticoagulation from the Perspective of Patients, Caregivers, and Healthcare Professionals. Int. J. Environ. Res. Public Health 2022, 19, 10136. https://doi.org/10.3390/ijerph191610136
Wang S-W, Chiou C-C, Su C-H, Wu C-C, Tsai S-C, Lin T-K, Hsu C-N. Measuring Mobile Phone Application Usability for Anticoagulation from the Perspective of Patients, Caregivers, and Healthcare Professionals. International Journal of Environmental Research and Public Health. 2022; 19(16):10136. https://doi.org/10.3390/ijerph191610136
Chicago/Turabian StyleWang, Shih-Wei, Chun-Chi Chiou, Chien-Hao Su, Cheng-Chih Wu, Shu-Chen Tsai, Tsu-Kung Lin, and Chien-Ning Hsu. 2022. "Measuring Mobile Phone Application Usability for Anticoagulation from the Perspective of Patients, Caregivers, and Healthcare Professionals" International Journal of Environmental Research and Public Health 19, no. 16: 10136. https://doi.org/10.3390/ijerph191610136
APA StyleWang, S.-W., Chiou, C.-C., Su, C.-H., Wu, C.-C., Tsai, S.-C., Lin, T.-K., & Hsu, C.-N. (2022). Measuring Mobile Phone Application Usability for Anticoagulation from the Perspective of Patients, Caregivers, and Healthcare Professionals. International Journal of Environmental Research and Public Health, 19(16), 10136. https://doi.org/10.3390/ijerph191610136