water-logo

Journal Browser

Journal Browser

New Perspectives in Environmental Catalysis and Oxidation Processes for Removal of Pollutants from Water

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Wastewater Treatment and Reuse".

Deadline for manuscript submissions: closed (30 September 2022) | Viewed by 8124

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Environmental Sciences, Bogazici University, Istanbul, Turkey
Interests: advanced oxidation processes; photocatalysis, TiO2 and non-TiO2 photocatalytic materials; applications for drinking water, natural organic matter removal, and inactivation of bacteria; photochemical reactions in natural waters
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Guest Editor
Department of Engineering and Applied Sciences, University of Bergamo, Bergamo, Italy
Interests: semiconductor photocatalysts; photocatalysis for environmental applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Removal of recalcitrant as well as emerging contaminants has attracted a significant amount of researcher interest both from an environmental and a public health point of view. Advanced oxidation processes (AOPs) rely on the formation of reactive oxygen species for redox reactions to achieve degradation of both organic and inorganic species as well as microorganisms present in aqueous systems or air. Generally, AOPs cover homogeneous and heterogeneous catalytic processes, i.e., Fenton and photo-Fenton processes, ozone treatment, and photocatalysis in the absence/presence of chemical oxidizing agents such as ozone, hydrogen peroxide, and/or persulfate.  This Special Issue will cover all important topics related to AOPs and photocatalytic oxidative processes in water treatment, with applications in all these important subjects, including, but not limited to, the following: i) practical applications of advanced oxidation processes, ii) heterogeneous catalytic and/or photo-catalytic processes, iii) pollutant abatement, and iv) microorganism inactivation.

Prof. Dr. Miray Bekbolet
Prof. Dr. Isabella Natali Sora
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advanced oxidation processes
  • heterogeneous photocatalysis
  • water and wastewater treatment
  • pollutant abatement
  • microorganism inactivation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 2485 KiB  
Article
More about Persulfate-Assisted Ferrilanthanide-Mediated Photocatalysis of Textile Industry Dye Reactive Black 5: Surface Properties and Structural Assessment
by Idil Arslan-Alaton, Olga Koba-Ucun, Nazli Turkten, Isabella Natali Sora and Miray Bekbolet
Water 2023, 15(5), 906; https://doi.org/10.3390/w15050906 - 26 Feb 2023
Cited by 2 | Viewed by 1596
Abstract
Color and organic matter removal from dyehouse effluent remains a challenging issue for the environmentalist and textile dyer. Until now, various treatment processes have been proposed with limited success. In this study, the textile dye and model industrial pollutant Reactive Black 5 (RB5; [...] Read more.
Color and organic matter removal from dyehouse effluent remains a challenging issue for the environmentalist and textile dyer. Until now, various treatment processes have been proposed with limited success. In this study, the textile dye and model industrial pollutant Reactive Black 5 (RB5; 20 mg/L) could be rapidly degraded by persulfate (PS)-enhanced photocatalytic treatment using a novel, home-made lanthanum iron oxide (LF; 0.5 g/L). LF-mediated heterogeneous photocatalysis was effective when the solution pH was kept below 4. The photocatalytic degradation of RB5 solution was enhanced in the presence of 0.6 and 1.2 mM PS. The dissolved organic carbon (DOC) content of the aqueous, hydrolyzed RB5 solution (initial DOC = 5.15 mg/L) was effectively reduced by LF/UV-A (LF = 0.5 g/L; 52–54% DOC removal after 150–180 min) and LF/PS/UV-A (LF = 0.5 g/L; 60–66% DOC removal after 120 min) treatments. LF photocatalyst could be reused in four consecutive cycles for complete color and partial DOC removals without significant deterioration of the treatment performance with the LF/PS/UV-A/pH 3 process. Instrumental analyses of LF’s surface morphology/chemical composition and structural features via EDAX/SEM/Raman/FTIR/UV-vis/fluorescence spectroscopy indicated that LF remained practically intact throughout photocatalytic treatment, though slight changes/decreases in particle size/partial surface deformation and agglomeration coverage were observed, particularly during LF/PS/UV-A treatment. The presence of RB5 and its degradation products on the LF surface revealed that surface adsorption played a major role in LF-mediated photocatalysis. The Fe-content did not deviate appreciably from its original value after photocatalytic treatment. Full article
Show Figures

Figure 1

21 pages, 7938 KiB  
Article
A Novel Low-Cost Photocatalyst: Preparation, Characterization, and Photocatalytic Properties of CeO2-Diatomite Composites
by Nazli Turkten
Water 2022, 14(21), 3373; https://doi.org/10.3390/w14213373 - 24 Oct 2022
Cited by 3 | Viewed by 2231
Abstract
Developing CeO2-diatomite composites with highly efficient photocatalytic performance is a practical and low-cost strategy for the removal of abundant contaminants in water and wastewaters. Diatomite (D) was modified by acid treatment to obtain a more porous structure. CeO2-diatomite composites [...] Read more.
Developing CeO2-diatomite composites with highly efficient photocatalytic performance is a practical and low-cost strategy for the removal of abundant contaminants in water and wastewaters. Diatomite (D) was modified by acid treatment to obtain a more porous structure. CeO2-diatomite composites were prepared in two different mass ratios of D to CeO2 of 1:1 and 1:2 via a facile precipitation method. The changes in structural, morphological, optical, and thermal properties of CeO2-diatomite composites were characterized by FTIR, XRD, ESEM-EDAX, BET surface area, TGA, PL, Raman spectroscopy, and zeta potential techniques. ESEM images presented the morphological differences of CeO2-diatomite composites, reflecting the effect of modification as a more folded sheet form morphology and higher BET surface area. XRD analysis revealed the fluorite-type structure of CeO2 particles in composites. Photocatalytic activities were investigated by following the degradation of methylene blue (MB) as a thiazine dye model under UVA light irradiation. CeO2-diatomite composites exhibited irradiation time- and dose-dependent remarkable photocatalytic efficiencies, whereas composite type inconsistent variations were also noticed. The attained performance of the CeO2-diatomite composites could strongly imply a favorable application prospect in the photocatalysis field. Full article
Show Figures

Graphical abstract

9 pages, 2541 KiB  
Article
Oxidation of Aqueous Naproxen Using Gas-Phase Pulsed Corona Discharge: Impact of Operation Parameters
by Romana Kopecká, Liina Onga and Sergei Preis
Water 2022, 14(20), 3327; https://doi.org/10.3390/w14203327 - 20 Oct 2022
Cited by 1 | Viewed by 1631
Abstract
Naproxen is a widely used non-steroidal anti-inflammatory drug poorly metabolized in the human body, thus resulting in its presence in domestic wastewaters. It is resistant to conventional wastewater treatment, making new methods necessary. Pulsed corona discharge, an energy-efficient advanced oxidation process, was experimentally [...] Read more.
Naproxen is a widely used non-steroidal anti-inflammatory drug poorly metabolized in the human body, thus resulting in its presence in domestic wastewaters. It is resistant to conventional wastewater treatment, making new methods necessary. Pulsed corona discharge, an energy-efficient advanced oxidation process, was experimentally studied for the oxidation of naproxen in various operation conditions, showing high energy efficiencies in a wide span of pH levels, concentrations, and pulse repetition frequencies. Surfactants present in treated solutions appeared to enhance the degradation rate. The research results contribute to the knowledge of the method’s chemistry and technology, supporting its full-scale implementation. Full article
Show Figures

Figure 1

27 pages, 7010 KiB  
Article
Insight into ANN and RSM Models’ Predictive Performance for Mechanistic Aspects of Cr(VI) Uptake by Layered Double Hydroxide Nanocomposites from Water
by Nuhu Dalhat Mu’azu
Water 2022, 14(10), 1644; https://doi.org/10.3390/w14101644 - 20 May 2022
Cited by 2 | Viewed by 2042
Abstract
Mathematical predictive models are vital tools for understanding of pollutant uptake during adsorptive water and wastewater treatment processes. In this study, applications of CoAl-LDH and its bentonite-CoAl intercalated LDH (bentonite-CoAl-LDH) for uptake of Cr(VI) from water were modeled using response surface methodology (RSM) [...] Read more.
Mathematical predictive models are vital tools for understanding of pollutant uptake during adsorptive water and wastewater treatment processes. In this study, applications of CoAl-LDH and its bentonite-CoAl intercalated LDH (bentonite-CoAl-LDH) for uptake of Cr(VI) from water were modeled using response surface methodology (RSM) and artificial neural network (ANN), and their performance for predicting equilibrium, thermodynamics and kinetics of the Cr(VI) uptake were assessed and compared based on coefficient of determination (R2) and root mean square error (RMSE). The uptake of Cr(VI) fits well quartic RSM polynomial models and ANN models based on Levenberg–Marquardt algorithms (ANN-LMA). Both models predicted a better fit for the Langmuir model compared to the Freundlich model for the Cr(VI) uptake. The predicted non-linear Langmuir model contestant (KL) values, for both the RSM and ANN-LMA models yielded better ΔG°, ΔH and ΔS predictions which supported the actual feasible, spontaneous and greater order of reaction as well as exothermic nature of Cr(VI) uptake onto the tested adsorbents. Employing the linear Langmuir model KL values dwindles the thermodynamic parameter predictions, especially for the RSM models. The excellent kinetic parameter predictions for the ANN-LMA models further indicate a mainly pseudo-second-order process, thus confirming the predominant chemisorption mechanism as established by the Cr(VI) speciation and surface charges for the Cr(VI) uptake by both CoAl-LDH and bentonite-CoAl-LDH. The ANN-LMA models showed consistent and insignificant decline in their predictions under different mechanistic studies carried out compared to the RSM models. This study demonstrates the high potential reliability of ANN-LMA models in capturing Cr(VI) adsorption data for LDHs nanocomposite heavy metal uptake in water and wastewater treatment. Full article
Show Figures

Graphical abstract

Back to TopTop