Research Progress on Porcine Reproductive and Respiratory Syndrome Virus

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Animal Viruses".

Deadline for manuscript submissions: closed (31 January 2025) | Viewed by 10028

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
Interests: PRRSV; PRV; molecular epidemiology; vaccine; diagnosis
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China
Interests: PRRSV; genetic evolution; vaccine; diagnose

Special Issue Information

Dear Colleagues,

We are delighted to invite you to submit your next publication to this Special Issue of the journal Viruses. Porcine reproductive and respiratory syndrome (PRRS) caused tremendous economic losses to the global swine industry since first being reported in 1987, and current control technologies are still unsatisfactory in preventing the disease. PRRSV is marked by extensive genetic variation introducing new challenges for prevention, and it also leads to secondary bacterial infections with more serious clinical symptoms and higher mortality. PRRSV works via modulating cellular processes, including inflammatory cytokines, innate immunity, apoptosis, etc. This Special Issue will focus on the genetic evolution, replication regulation, immunological or pathogenic mechanisms and vaccine development relating to PRRSV. Original research articles and reviews are welcome.

Dr. Tongqing An
Dr. Xingyang Cui
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • PRRSV
  • genetic evolution
  • replication regulation
  • immunological or pathogenic mechanism
  • vaccine development
  • prevention and control

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 7287 KiB  
Article
Genome and Pathogenicity Analysis of an NADC30-like PRRSV Strain in China’s Xinjiang Province
by Honghuan Li, Wei Zhang, Yanjie Qiao, Wenxing Wang, Wenxiang Zhang, Yueli Wang, Jihai Yi, Huan Zhang, Zhongchen Ma and Chuangfu Chen
Viruses 2025, 17(3), 379; https://doi.org/10.3390/v17030379 - 6 Mar 2025
Viewed by 583
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) possesses an inherent ability to adapt to environmental transformations and undergo evolutionary changes, which has imposed significant economic pressure on the global pig industry. Given the potential for recombination among PRRSV genomes and variations in [...] Read more.
The porcine reproductive and respiratory syndrome virus (PRRSV) possesses an inherent ability to adapt to environmental transformations and undergo evolutionary changes, which has imposed significant economic pressure on the global pig industry. Given the potential for recombination among PRRSV genomes and variations in pathogenicity, newly emerging PRRSV isolates are of considerable clinical importance. In this study, we successfully isolated a novel strain named XJ-Z5 from PRRSV-positive samples collected in Xinjiang province in 2022. Through comprehensive genomic sequencing, phylogenetic analysis, and recombination analysis, we confirmed that this strain belongs to the NADC30-like recombinant PRRSV. During pathogenicity tests in piglets, this strain exhibited moderate virulence, causing symptoms such as reduced appetite, persistent fever, and weight loss; however, no mortality cases were observed. Tests conducted at various time points detected the presence of PRRSV nucleic acid in nasal swabs, rectal swabs, tissue samples, and blood, with the highest viral loads found in lung tissue and blood. Serum biochemical tests indicated significant impairment of liver and kidney function. PRRSV antibodies began to appear gradually after 10 days post infection. Hematoxylin and eosin staining revealed substantial pathological changes in lung tissue and lymph nodes. This study enhances our understanding of the epidemiology of PRRSV and underscores the importance of ongoing monitoring and research in light of the challenges posed by the continuous evolution of viral strains. Furthermore, the research emphasizes the urgency of the rapid genomic analysis of emerging viral strains. Through these comprehensive research and monitoring strategies, we aimed to curb the spread of PRRSV more effectively and thus reduce the huge economic losses it caused to the pig industry. Full article
Show Figures

Figure 1

9 pages, 1127 KiB  
Article
Comparative Adsorption of Porcine Reproductive and Respiratory Syndrome Virus Strains to Minnesota Soils
by Joaquin Alvarez-Norambuena, Angie Quinonez-Munoz, Cesar A. Corzo and Sagar M. Goyal
Viruses 2025, 17(1), 58; https://doi.org/10.3390/v17010058 - 1 Jan 2025
Viewed by 1046
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease affecting the swine industry. The disease is caused by the PRRS virus (PRRSV). Despite extensive biosecurity and control measures, the persistence and seasonality of the virus have raised questions about the virus’s environmental [...] Read more.
Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease affecting the swine industry. The disease is caused by the PRRS virus (PRRSV). Despite extensive biosecurity and control measures, the persistence and seasonality of the virus have raised questions about the virus’s environmental dynamics during the fall season when the yearly epidemic onset begins and when crop harvesting and manure incorporation into the field occur. Therefore, this study aimed to assess the potential for PRRSV to percolate through different soil types, simulating conditions that could lead to groundwater contamination which could represent a risk of herd introduction. An experimental soil column model was used to mimic field conditions. Three PRRSV-2 strains were tested across thirteen Minnesota soils with different physical and chemical characteristics. The findings revealed that PRRSV can percolate through all soil types and that the amount of virus percolated decreases with increased amounts of soil. These results suggest that PRRSV can percolate through different soil types. Further investigations should be undertaken to determine the associated implications for swine health and biosecurity measures. Full article
Show Figures

Graphical abstract

13 pages, 2292 KiB  
Article
Inhibition Effect of STING Agonist SR717 on PRRSV Replication
by Xuanying Si, Xiaoge Wang, Hongju Wu, Zhiwei Yan, Longqi You, Geng Liu, Mao Cai, Angke Zhang, Juncheng Liang, Guoyu Yang, Chen Yao and Yongkun Du
Viruses 2024, 16(9), 1373; https://doi.org/10.3390/v16091373 - 29 Aug 2024
Viewed by 1450
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) belongs to the Arteriviridae family and is a single-stranded, positively stranded RNA virus. The currently available PRRSV vaccines are mainly inactivated and attenuated vaccines, yet none of the commercial vaccines can provide comprehensive, long-lasting, and [...] Read more.
The porcine reproductive and respiratory syndrome virus (PRRSV) belongs to the Arteriviridae family and is a single-stranded, positively stranded RNA virus. The currently available PRRSV vaccines are mainly inactivated and attenuated vaccines, yet none of the commercial vaccines can provide comprehensive, long-lasting, and effective protection against PRRSV. SR717 is a pyridazine-3-carboxamide compound, which is commonly used as a non-nucleoside STING agonist with antitumor and antiviral activities. Nevertheless, there is no evidence that SR717 has any antiviral effects against PRRSV. In this study, a dose-dependent inhibitory effect of SR717 was observed against numerous strains of PRRSV using qRT-PCR, IFA, and WB methods. Furthermore, SR717 was found to stimulate the production of anti-viral molecules and trigger the activation of the signaling cascade known as the stimulator of interferon genes (STING) pathway, which contributed to hindering the reproduction of viruses by a certain margin. Collectively, these results indicate that SR717 is capable of inhibiting PRRSV infection in vitro and may have potential as an antiviral drug against PRRSV. Full article
Show Figures

Figure 1

17 pages, 3308 KiB  
Article
Fidelity Characterization of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and NADC30-like Strain
by Xiang Gao, Ting Bian, Peng Gao, Xinna Ge, Yongning Zhang, Jun Han, Xin Guo, Lei Zhou and Hanchun Yang
Viruses 2024, 16(5), 797; https://doi.org/10.3390/v16050797 - 16 May 2024
Cited by 3 | Viewed by 1721
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) has significantly impacted the global pork industry for over three decades. Its high mutation rates and frequent recombination greatly intensifies its epidemic and threat. To explore the fidelity characterization of Chinese highly pathogenic PRRSV JXwn06 [...] Read more.
The porcine reproductive and respiratory syndrome virus (PRRSV) has significantly impacted the global pork industry for over three decades. Its high mutation rates and frequent recombination greatly intensifies its epidemic and threat. To explore the fidelity characterization of Chinese highly pathogenic PRRSV JXwn06 and the NADC30-like strain CHsx1401, self-recombination and mutation in PAMs, MARC-145 cells, and pigs were assessed. In vitro, CHsx1401 displayed a higher frequency of recombination junctions and a greater diversity of junction types than JXwn06. In vivo, CHsx1401 exhibited fewer junction types yet maintained a higher junction frequency. Notably, JXwn06 showed more accumulation of mutations. To pinpoint the genomic regions influencing their fidelity, chimeric viruses were constructed, with the exchanged nsp9-10 regions between JXwn06 and CHsx1401. The SJn9n10 strain, which incorporates JXwn06’s nsp9-10 into the CHsx1401 genome, demonstrated reduced sensitivity to nucleotide analogs compared to CHsx1401. Conversely, compared with JXwn06, the JSn9n10 strain showed increased sensitivity to these inhibitors. The swapped nsp9-10 also influences the junction frequency and accumulated mutations as their donor strains. The results indicate a propensity for different types of genetic variations between these two strains and further highlight the nsp9-10 region as a critical determinant of their fidelity. Full article
Show Figures

Figure 1

15 pages, 1922 KiB  
Article
Prevalence, Time of Infection, and Diversity of Porcine Reproductive and Respiratory Syndrome Virus in China
by Chaosi Li, Aihua Fan, Zhicheng Liu, Gang Wang, Lei Zhou, Hongliang Zhang, Lv Huang, Jianfeng Zhang, Zhendong Zhang and Yan Zhang
Viruses 2024, 16(5), 774; https://doi.org/10.3390/v16050774 - 13 May 2024
Cited by 8 | Viewed by 2195
Abstract
Porcine reproductive and respiratory syndrome virus (PRRVS) is a major swine viral pathogen that affects the pig industry worldwide. Control of early PRRSV infection is essential, and different types of PRRSV-positive samples can reflect the time point of PRRSV infection. This study aims [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRVS) is a major swine viral pathogen that affects the pig industry worldwide. Control of early PRRSV infection is essential, and different types of PRRSV-positive samples can reflect the time point of PRRSV infection. This study aims to investigate the epidemiological characteristics of PRRSV in China from Q4 2021 to Q4 2022, which will be beneficial for porcine reproductive and respiratory syndrome virus (PRRSV)control in the swine production industry in the future. A total of 7518 samples (of processing fluid, weaning serum, and oral fluid) were collected from 100 intensive pig farms in 21 provinces, which covered all five pig production regions in China, on a quarterly basis starting from the fourth quarter of 2021 and ending on the fourth quarter of 2022. Independent of sample type, 32.1% (2416/7518) of the total samples were PCR-positive for PRRSV, including 73.6% (1780/2416) samples that were positive for wild PRRSV, and the remaining were positive for PRRSV vaccine strains. On the basis of the time of infection, 58.9% suckling piglets (processing fluid) and 30.8% weaning piglets (weaning serum) showed PRRSV infection at an early stage (approximately 90% of the farms). The sequencing analysis results indicate a wide range of diverse PRRSV wild strains in China, with lineage 1 as the dominant strain. Our study clearly demonstrates the prevalence, infection stage, and diversity of PRRSV in China. This study provides useful data for the epidemiological understanding of PRRSV, which can contribute to the strategic and systematic prevention and control of PRRSV in China. Full article
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 1256 KiB  
Review
Recombination of Porcine Reproductive and Respiratory Syndrome Virus: Features, Possible Mechanisms, and Future Directions
by Xing-Yang Cui, Da-Song Xia, Ling-Zhi Luo and Tong-Qing An
Viruses 2024, 16(6), 929; https://doi.org/10.3390/v16060929 - 7 Jun 2024
Cited by 13 | Viewed by 2069
Abstract
Recombination is a pervasive phenomenon in RNA viruses and an important strategy for accelerating the evolution of RNA virus populations. Recombination in the porcine reproductive and respiratory syndrome virus (PRRSV) was first reported in 1999, and many case reports have been published in [...] Read more.
Recombination is a pervasive phenomenon in RNA viruses and an important strategy for accelerating the evolution of RNA virus populations. Recombination in the porcine reproductive and respiratory syndrome virus (PRRSV) was first reported in 1999, and many case reports have been published in recent years. In this review, all the existing reports on PRRSV recombination events were collected, and the genotypes, parental strains, and locations of the recombination breakpoints have been summarized and analyzed. The results showed that the recombination pattern constantly changes; whether inter- or intra-lineage recombination, the recombination hotspots vary in different recombination patterns. The virulence of recombinant PRRSVs was higher than that of the parental strains, and the emergence of virulence reversion was caused by recombination after using MLV vaccines. This could be attributed to the enhanced adaptability of recombinant PRRSV for entry and replication, facilitating their rapid propagation. The aim of this paper was to identify common features of recombinant PRRSV strains, reduce the recombination risk, and provide a foundation for future research into the mechanism of PRRSV recombination. Full article
Show Figures

Figure 1

Back to TopTop