Bovine Viral Diarrhea Viruses and Other Pestiviruses

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Animal Viruses".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 867

Special Issue Editor


E-Mail Website
Guest Editor
Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna Bruno Ubertini, Brescia, Italy
Interests: diagnosis, surveillance and control of viral diseases of livestock; viral diseases of pets and wild animals

Special Issue Information

Dear Colleagues,

We are delighted to invite you to submit your next publication to the journal Viruses for a Special Issue entitled “Bovine Viral Diarrhea Viruses and Other Pestiviruses”. The genus Pestivirus, encompassing small positive-strand RNA viruses in the family Flaviviridae, comprises viruses of very significant economic impact to the cattle, swine and sheep industries worldwide. Bovine Viral Diarrhea Viruses which cause mucosal disease, respiratory and gastrointestinal tract infections, and reproductive problems in cattle are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. The diversity of BVDV includes both genetic and antigenic differences. This diversity impacts both diagnostic testing and vaccination. In recent years, many subgenotypes of BVDV have emerged and immunologically escaped from the current available vaccines, causing new challenges in the prevention of Bovine Viral Diarrhea and required the updating of existing vaccines. DIVA vaccines, multivalent vaccines, and antigen-precise-designed vaccines are the focus of current Bovine Viral Diarrhea Viruses vaccine research.

For this purpose, the scope of this issue is open to the submission of manuscripts associated with multiple aspects of the biology of Bovine Viral Diarrhea Viruses and other Pestiviruses, including the epidemiology, evolution, pathogenesis, vaccines, drug development and diagnostics. We look forward to receiving your contributions.

Dr. Enrica Sozzi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • epidemiological survey
  • prevalence
  • seroprevalence
  • bovine viral diarrhoea
  • mucosal disease
  • neutralizing antibodies
  • taxonomy
  • antiviral drugs
  • vaccines
  • species and subgenotypes
  • wild animal

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

25 pages, 3117 KiB  
Article
Postnatal Epigenetic Alterations in Calves Persistently Infected with Bovine Viral Diarrhea Virus
by Jessica N. Kincade, Dilyara A. Murtazina, Hanah M. Georges, Carolina L. Gonzalez-Berrios, Jeanette V. Bishop, Terry E. Engle, Marcela Henao-Tamayo, Jordan M. Eder, Erin M. McDonald, Darcy M. Deines, Brie M. Wright, Hana Van Campen and Thomas R. Hansen
Viruses 2025, 17(5), 708; https://doi.org/10.3390/v17050708 - 15 May 2025
Viewed by 208
Abstract
Bovine viral diarrhea virus (BVDV) is a globally prevalent pathogen causing severe detriment to the cattle industry. Vertical infection occurring before the development of the fetal adaptive immune response, before 125 days of gestation, results in an immunotolerant, persistently infected (PI) calf. It [...] Read more.
Bovine viral diarrhea virus (BVDV) is a globally prevalent pathogen causing severe detriment to the cattle industry. Vertical infection occurring before the development of the fetal adaptive immune response, before 125 days of gestation, results in an immunotolerant, persistently infected (PI) calf. It was hypothesized that epigenetic alterations observed in the splenic tissue of PI fetuses at gestational day 245 would persist into the postnatal period. White blood cell DNA from five PI and five control heifers at 4 months of age was subjected to reduced representation bisulfite sequencing and interpreted within the context of complete blood count and flow cytometry data herein. Analysis revealed 8367 differentially methylated sites contained within genes associated with the immune and cardiac system, as well as hematopoiesis. Differences observed in the complete blood counts of PI heifers include increased monocytes, microcytic anemia, and elevated platelets with decreased mean platelet volume. Flow cytometry revealed increased classical monocytes, B cells, and CD4+/CD8B+ and CD25+/CD127 T cells, as well as decreased γδ+, CD4+, and CD4/CD8B T cells. Investigation of the PI methylome provides a new perspective on the mechanisms of pathologies and provides potential biomarkers for the rapid identification of PI cattle. Full article
(This article belongs to the Special Issue Bovine Viral Diarrhea Viruses and Other Pestiviruses)
Show Figures

Graphical abstract

18 pages, 9413 KiB  
Article
Primary Cells from a CD46-Edited Bovine Heifer Have Reduced BVDV Susceptibility Despite Viral Adaptation to Heparan Sulfate
by Alexandria C. Krueger, Brian L. Vander Ley, Michael P. Heaton, Tad S. Sonstegard and Aspen M. Workman
Viruses 2025, 17(5), 634; https://doi.org/10.3390/v17050634 - 28 Apr 2025
Viewed by 246
Abstract
A precision genome edit in the bovine CD46 gene (A82LPTFS87) dramatically reduced bovine viral diarrhea virus (BVDV) susceptibility in a cloned heifer. However, pathogen evolution threatens the long-term efficacy of such interventions. Here, our aim is two-fold: first, to [...] Read more.
A precision genome edit in the bovine CD46 gene (A82LPTFS87) dramatically reduced bovine viral diarrhea virus (BVDV) susceptibility in a cloned heifer. However, pathogen evolution threatens the long-term efficacy of such interventions. Here, our aim is two-fold: first, to determine whether BVDV can adapt in vitro to use the edited CD46 receptor to infect Madin–Darby bovine kidney (MDBK) cells, and second, to evaluate the ex vivo infectivity of culture-adapted viruses in cells from the CD46-edited heifer. Serial passage of BVDV on CD46-edited MDBK cells selected for virus variants capable of CD46-independent infection. Virus genome sequencing revealed mutations in the viral ERNS gene predicted to enhance HS-mediated entry. HS adaptation was confirmed by inhibiting virus infection with heparin or Heparinase I/III treatment. A naturally occurring HS-adapted field isolate from a persistently infected calf showed similar results. However, when tested on primary cells from the CD46-edited heifer, HS-adapted viruses showed reduced infectivity in skin fibroblasts, monocytes, and lymphocytes in a manner that correlated with HS expression. Thus, although BVDV can adapt to use HS as an alternative entry receptor, HS adaptation does not overcome the protection conferred by the CD46 edit in all relevant cell types. Full article
(This article belongs to the Special Issue Bovine Viral Diarrhea Viruses and Other Pestiviruses)
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 2899 KiB  
Review
A Systematic Study of Bovine Viral Diarrhoea Virus Co-Infection with Other Pathogens
by Zhiwei Hou, Jiahui Wang, Bin Tan and Shuqin Zhang
Viruses 2025, 17(5), 700; https://doi.org/10.3390/v17050700 - 14 May 2025
Viewed by 288
Abstract
Bovine viral diarrhoea virus (BVDV) is the causative agent of bovine viral diarrhoea/mucocutaneous disease (BVD-MD). Its associated co-infections pose a threat to the cattle industry, which is becoming a key breakthrough in the global system of prevention in the cattle industry. In recent [...] Read more.
Bovine viral diarrhoea virus (BVDV) is the causative agent of bovine viral diarrhoea/mucocutaneous disease (BVD-MD). Its associated co-infections pose a threat to the cattle industry, which is becoming a key breakthrough in the global system of prevention in the cattle industry. In recent years, cases of co-infection have occurred and been reported from time to time, and this situation not only poses certain difficulties in controlling the outbreak and in treatment in the farming industry, but also poses considerable challenges in detection and diagnosis. In this review, by systematically integrating studies on BVDV co-infection, we firstly compared and analysed the characteristics of BVDV co-infection with viruses, bacteria and other pathogens in in vivo/in vitro models in terms of synergism, host immune response and epidemiological transmission. Then we systematically constructed a BVDV Co-infection Impact Map, which demonstrates a paradigm of pathogen–host–immune interactions in the transmission of BVDV and provides a theoretical framework for breaking through the current precision diagnostic strategies and showcasing the effectiveness of integrated prevention and control. Full article
(This article belongs to the Special Issue Bovine Viral Diarrhea Viruses and Other Pestiviruses)
Show Figures

Figure 1

Back to TopTop