Evaluating the Potential of White Asparagus (Asparagus officinalis L.) Waste as a Fuel Source in Microbial Fuel Cells Across Different pH Levels
Abstract
:1. Introduction
2. Materials and Methods
- Construction of Microbial Fuel Cells (MFCs)
- b.
- Preparation of Substrate
- c.
- MFC Configuration and Operation
- d.
- Acquisition of physicochemical values of MFCs
3. Result and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernandez, D.; Pasha, L.; Yusuf, D.A.; Nurfaizi, R.; Julianingsih, D. The role of artificial intelligence in sustainable agriculture and waste management: Towards a green future. Int. Trans. Artif. Intell. 2024, 2, 150–157. [Google Scholar] [CrossRef]
- Lee, S.H.; Lum, W.C.; Boon, J.G.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W.; et al. Particleboard from agricultural biomass and recycled wood waste: A review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Phiri, R.; Rangappa, S.M.; Siengchin, S. Agro-waste for renewable and sustainable green production: A review. J. Clean. Prod. 2024, 434, 139989. [Google Scholar] [CrossRef]
- Alola, A.A.; Adebayo, T.S. Analyzing the waste management, industrial and agricultural greenhouse gas emissions of biomass, fossil fuel, and metallic ores utilization in Iceland. Sci. Total Environ. 2023, 887, 164115. [Google Scholar] [CrossRef]
- Peng, X.; Jiang, Y.; Chen, Z.; Osman, A.I.; Farghali, M.; Rooney, D.W.; Yap, P.S. Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: A review. Environ. Chem. Lett. 2023, 21, 765–801. [Google Scholar] [CrossRef]
- Rojas-Villacorta, W.; Rojas-Flores, S.; Benites, S.M.; Delfín-Narciso, D.; De La Cruz-Noriega, M.; Cabanillas-Chirinos, L.; Rodríguez-Serin, H.; Rebaza-Araujo, S. Potential use of pepper waste and microalgae Spirulina sp. for bioelectricity generation. Energy Rep. 2023, 9, 253–261. [Google Scholar] [CrossRef]
- Esteve-Llorens, X.; Ita-Nagy, D.; Parodi, E.; González-García, S.; Moreira, M.T.; Feijoo, G.; Vázquez-Rowe, I. Environmental footprint of critical agro-export products in the Peruvian hyper-arid coast: A case study for green asparagus and avocado. Sci. Total Environ. 2022, 818, 151686. [Google Scholar] [CrossRef]
- Casas, A.; Rioja, R.; Chavez, D. Production of seven asparagus cultivars in the Peruvian central coast. Acta Hortic. 2022, 1376, 71–74. [Google Scholar] [CrossRef]
- Shimizu, T. The Growth of the Fruit and Vegetable Export Industry in Peru; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Aryaningsih, N.N.; Irianto, I.K. The Assessment of Capital Flow and Technology Transfer in Asparagus Production. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 291. [Google Scholar] [CrossRef]
- Šeregelj, V.; Vulić, J.; Ćetković, G.; Čanadanovć-Brunet, J.; Šaponjac, V.T.; Stajčić, S. Natural bioactive compounds in carrot waste for food applications and health benefits. Stud. Nat. Prod. Chem. 2020, 67, 307–344. [Google Scholar] [CrossRef]
- Suffo, M.; De La Mata, M.; Molina, S.I. A sugar-beet waste based thermoplastic agro-composite as substitute for raw materials. J. Clean. Prod. 2020, 257, 120382. [Google Scholar] [CrossRef]
- Fernandez-Fuentes, M.H.; Eras-Almeida, A.A.; Egido-Aguilera, M.A. Characterization of technological innovations in photovoltaic rural electrification, based on the experiences of Bolivia, Peru, and Argentina: Third generation solar home systems. Sustainability 2021, 13, 3032. [Google Scholar] [CrossRef]
- Rios, R.; Duarte, S. Selection of ideal sites for the development of large-scale solar photovoltaic projects through Analytical Hierarchical Process–Geographic information systems (AHP-GIS) in Peru. Renew. Sustain. Energy Rev. 2021, 149, 111310. [Google Scholar] [CrossRef]
- Navarro, C.E.B.; Álvarez-Quiroz, V.J.; Sampi, J.; Sánchez, A.A.A. Does economic growth promote electric power consumption? Implications for electricity conservation, expansive, and security policies. Electr. J. 2023, 36, 107235. [Google Scholar] [CrossRef]
- Rinaldi, F.; Moghaddampoor, F.; Najafi, B.; Marchesi, R. Economic feasibility analysis and optimization of hybrid renewable energy systems for rural electrification in Peru. Clean Technol. Environ. Policy 2021, 23, 731–748. [Google Scholar] [CrossRef]
- Segura, R.D.R. Organizational structure and administrative management in the electric power supply service in Peru, 2019. Cienc. Tecnol. J. 2024, 20, 75–87. [Google Scholar] [CrossRef]
- Alca-Cruz, M.; Alvarez-Rozas, K. Behavior of financial profitability in electricity generating companies in Peru: 2008-2018. Gest. J. Bus. Gov. 2024, 4, 41–55. [Google Scholar] [CrossRef]
- Boas, J.V.; Oliveira, V.B.; Simões, M.; Pinto, A.M. Review on microbial fuel cells applications, developments and costs. J. Environ. Manag. 2022, 307, 114525. [Google Scholar] [CrossRef]
- Obileke, K.; Onyeaka, H.; Meyer, E.L.; Nwokolo, N. Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochem. Commun. 2021, 125, 107003. [Google Scholar] [CrossRef]
- Mohyudin, S.; Farooq, R.; Jubeen, F.; Rasheed, T.; Fatima, M.; Sher, F. Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation. Environ. Res. 2022, 204, 112387. [Google Scholar] [CrossRef]
- He, J.; Xin, X.; Pei, Z.; Chen, L.; Chu, Z.; Zhao, M.; Wu, X.; Li, B.; Tang, X.; Xiao, X. Microbial profiles associated improving bioelectricity generation from sludge fermentation liquid via microbial fuel cells with adding fruit waste extracts. Bioresour. Technol. 2021, 337, 125452. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.A.; Guerrero–Barajas, C.; Ibrahim, M.N.M.; Umar, K.; Yaakop, A.S. Local fruit wastes driven benthic microbial fuel cell: A sustainable approach to toxic metal removal and bioelectricity generation. Environ. Sci. Pollut. Res. 2022, 29, 32913–32928. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-Cerna, C.; Rodríguez-Soto, J.C.; Barraza-Jáuregui, G.; Huanes-Carranza, J.; Cruz-Monzón, J.A.; Ugarte-López, W.; Hurtado-Butrón, F.; Samanamud-Moreno, F.; Haro-Carranza, D.; Valdivieso-Moreno, S.; et al. Bioconversion of agroindustrial asparagus waste into bacterial cellulose by Komagataeibacter rhaeticus. Sustainability 2024, 16, 736. [Google Scholar] [CrossRef]
- Redondo-Cuenca, A.; García-Alonso, A.; Rodríguez-Arcos, R.; Castro, I.; Alba, C.; Rodríguez, J.M.; Goni, I. Nutritional composition of green asparagus (Asparagus officinalis L.), edible part and by-products, and assessment of their effect on the growth of human gut-associated bacteria. Food Res. Int. 2023, 163, 112284. [Google Scholar] [CrossRef]
- Godain, A.; Vogel, T.M.; Fongarland, P.; Haddour, N. Influence of shear stress on electroactive biofilm characteristics and performance in microbial fuel cells. Biosens. Bioelectron. 2024, 244, 115806. [Google Scholar] [CrossRef]
- Segundo, R.F.; Magaly, D.L.C.N.; Luis, C.C.; Otiniano, N.M.; Soto-Deza, N.; Terrones-Rodríguez, N. Reducing Plastic Waste and Generating Bioelectricity Simultaneously through Fuel Cells Using the Fungus Pleurotus ostreatus. Sustainability 2024, 16, 7909. [Google Scholar] [CrossRef]
- López, A.C.C.; Marín, A.A.L.; De las Heras Pérez, M.Á.; Stepanovic, M.B. The concept of pH and its logarithmic scale: A Micro Bit experience through inquiry, modeling, and computational thinking. Eurasia J. Math. Sci. Technol. Educ. 2024, 20, em2424. [Google Scholar] [CrossRef]
- Genç, N.; Pişkin, E.D. Evaluation of simultaneous energy production and biotic and abiotic nitrate removal in microbial fuel cells (MFCs): Selection of the most suitable MFC by a multi-criteria decision methodology. Process Saf. Environ. Prot. 2025, 194, 807–815. [Google Scholar] [CrossRef]
- Avci, K. Development of a wearable activity tracker based on BBC micro: Bit and its performance analysis for detecting bachata dance steps. Sci. Rep. 2024, 14, 30700. [Google Scholar] [CrossRef]
- Li, X.; Lu, Y.; Luo, H.; Liu, G.; Torres, C.I.; Zhang, R. Effect of pH on bacterial distributions within cathodic biofilm of the microbial fuel cell with maltodextrin as the substrate. Chemosphere 2021, 265, 129088. [Google Scholar] [CrossRef]
- Bagchi, S.; Behera, M. Evaluation of the effect of anolyte recirculation and anolyte pH on the performance of a microbial fuel cell employing ceramic separator. Process Biochem. 2021, 102, 207–212. [Google Scholar] [CrossRef]
- Tan, W.H.; Chong, S.; Fang, H.W.; Pan, K.L.; Mohamad, M.; Lim, J.W.; Tiong, T.J.; Chan, Y.J.; Huang, C.M.; Yang, T.C.K. Microbial fuel cell technology—A critical review on scale-up issues. Processes 2021, 9, 985. [Google Scholar] [CrossRef]
- Karuppiah, T.; Uthirakrishnan, U.; Sivakumar, S.V.; Authilingam, S.; Arun, J.; Sivaramakrishnan, R.; Pugazhendhi, A. Processing of electroplating industry wastewater through dual chambered microbial fuel cells (MFC) for simultaneous treatment of wastewater and green fuel production. Int. J. Hydrogen Energy 2022, 47, 37569–37576. [Google Scholar] [CrossRef]
- Akinwumi, O.D.; Dada, E.O.; Agarry, S.E.; Aremu, M.O.; Agbede, O.O.; Alade, A.O.; Aworanti, O.A.; Alao, A.I. Effects of retention time, pH, temperature and type of fruit wastes on the bioelectricity generation performance of microbial fuel cell during the biotreatment of pharmaceutical wastewater: Experimental study, optimization and modelling. Environ. Process. 2024, 11, 51. [Google Scholar] [CrossRef]
- Sigalingging, R.; Sitorus, Y. Study of Fruit Waste as Bio-battery Materials for Alternative Electricity. J. Sustain. Agric. Biosyst. Eng. 2024, 2, 1–10. [Google Scholar] [CrossRef]
- Zha, Z.; Zhang, Z.; Xiang, P.; Zhu, H.; Shi, X.; Chen, S. Porous graphitic carbon from mangosteen peel as efficient electrocatalyst in microbial fuel cells. Sci. Total Environ. 2021, 764, 142918. [Google Scholar] [CrossRef]
- Teng, P. A Novel Portable Oxidation-Reduction Potential and Microbial Fuel Cell-Based Sensor to Monitor Microbial Growth. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2023. [Google Scholar]
- Hsu, J.Y.; Lee, C.C.; Jian, Z.R.; Chen, J.C.; Lin, C.H. The Potential of Using Microbial Fuel Cells as a “Quality” Monitor for Ornamental Seawater Aquarium. J. Appl. Biotechnol. Rep. 2022, 9, 799–806. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, Y.; Xie, K.; Li, S.; Wang, Y. Carbon-coated Fe3O4@ cotton fiber biomass carbon for the oxygen reduction reaction in air cathode microbial fuel cells. J. Alloys Compd. 2024, 982, 173843. [Google Scholar] [CrossRef]
- Erenler, S.A.; Unver, T.; Ozaslan, B.F.; Koytepe, S.; Sezer, S. Development of microbial chondroitin sulfate-based proton exchange membranes for microbial fuel cells. Fuel 2024, 363, 130976. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Li, Y.; Chen, P.; Ma, H.; Han, P.; Wang, C.; Liu, W.; Wang, Y.; Qing, R.; et al. Investigating the effect of anode materials on the performance and microbial community in an integrated chamber-free microbial fuel cell. Fuel 2024, 357, 129648. [Google Scholar] [CrossRef]
- Li, C.; Luo, M.; Zhou, S.; He, H.; Cao, J.; Luo, J. Comparison analysis on simultaneous decolorization of Congo red and electricity generation in microbial fuel cell (MFC) with l-threonine-/conductive polymer-modified anodes. Environ. Sci. Pollut. Res. 2021, 28, 4262–4275. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Duan, C.; Duan, W.; Sun, F.; Cui, H.; Zhang, S.; Chen, X. Role of electrode materials on performance and microbial characteristics in the constructed wetland coupled microbial fuel cell (CW-MFC): A review. J. Clean. Prod. 2021, 301, 126951. [Google Scholar] [CrossRef]
- Flores, S.R.; Nazario-Naveda, R.; Delfín-Narciso, D.; Cardenas, M.G.; Diaz, N.D.; Ravelo, K.V. Generation of bioelectricity from organic fruit waste. Environ. Res. Eng. Manag. 2021, 77, 6–14. [Google Scholar] [CrossRef]
- Shadman, P.; Shakeri, A.; Zinadini, S. Improving MFC efficiency in power generation and COD removal by using protic ionic liquid in MWCNT-CS-2-aminothiazole-SO3H nanoparticle-infused sulfonated PES. Energy Convers. Manag. 2024, 301, 118049. [Google Scholar] [CrossRef]
- Yang, J.; Cao, X.; Sun, Y.; Yang, G.; Yi, W. Recovery of microbial fuel cells with high COD molasses wastewater and analysis of the microbial community. Biomass Bioenergy 2022, 161, 106450. [Google Scholar] [CrossRef]
- Liu, T.; Nadaraja, A.V.; Friesen, J.; Gill, K.; Lam, M.I.; Roberts, D.J. Narrow pH tolerance found for a microbial fuel cell treating winery wastewater. J. Appl. Microbiol. 2021, 131, 2280–2293. [Google Scholar] [CrossRef]
- Hassan, M.; Kanwal, S.; Singh, R.S.; SA, M.A.; Anwar, M.; Zhao, C. Current challenges and future perspectives associated with configuration of microbial fuel cell for simultaneous energy generation and wastewater treatment. Int. J. Hydrogen Energy 2024, 50, 323–350. [Google Scholar] [CrossRef]
- Ng, C.A.; Chew, S.N.; Bashir, M.J.; Abunada, Z.; Wong, J.W.; Habila, M.A.; Khoo, K.S. Enhancing microbial fuel cell performance for sustainable treatment of palm oil mill wastewater using carbon cloth anode coated with activated carbon. Int. J. Hydrogen Energy 2024, 52, 1092–1104. [Google Scholar] [CrossRef]
- Apollon, W.; Rusyn, I.; Kuleshova, T.; Luna-Maldonado, A.I.; Pierre, J.F.; Gwenzi, W.; Kumar, V. An overview of agro-industrial wastewater treatment using microbial fuel cells: Recent advancements. J. Water Process Eng. 2024, 58, 104783. [Google Scholar] [CrossRef]
- Mulyono, T.; Misto, M.; Cahyono, B.E.; Fahmidia, N.H. The impact of adding vegetable waste on the functioning of microbial fuel cell. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2022; Volume 2663, No. 1. [Google Scholar] [CrossRef]
- Rojas-Villacorta, W.; Rojas-Flores, S.; Benites, S.M.; Nazario-Naveda, R.; Romero, C.V.; Gallozzo-Cardenas, M.; Delfín-Narciso, D.; Díaz, F.; Murga-Torres, E. Preliminary study of bioelectricity generation using lettuce waste as substrate by microbial fuel cells. Sustainability 2023, 15, 10339. [Google Scholar] [CrossRef]
- Latuihamallo, Y.; Mahulette, F.; Watuguly, T.W. Potential of vegetable waste as alternative production bioelectricity. BIOEDUPAT Pattimura J. Biol. Learn. 2023, 3, 90–94. [Google Scholar] [CrossRef]
- Rokhim, D.A.; Vitarisma, I.Y.; Sumari, S.; Utomo, Y.; Asrori, M.R. Optimizing Household Wastes (Rice, Vegetables, and Fruit) as an Environmentally Friendly Electricity Generator. J. Renew. Mater. 2024, 12, 275–284. [Google Scholar] [CrossRef]
- Din, M.I.; Iqbal, M.; Hussain, Z.; Khalid, R. Bioelectricity generation from waste potatoes using single chambered microbial fuel cell. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 12596–12606. [Google Scholar] [CrossRef]
- Rathinavel, N.; Veleeswaran, A.; Rathinam, Y.; Alagarsamy, A. Turning Waste into Watt: Usage of natural biomass activated carbon-based anode and septic tank wastewater for Microbial Fuel Cell (MFC) based electricity generation. Carbon Trends 2025, 19, 100461. [Google Scholar] [CrossRef]
Organic Waste | pH | MFC Type | Electrodes | Voltage (V) | Current (mA) | Power Density mW/m2 | Ref. |
---|---|---|---|---|---|---|---|
maltodextrina | 8.5 | single chamber | activated carbon | 0.820 | 1221 ± 96 | [31] | |
vegetable waste | 5 | single chamber | graphite fiber | 0.804 | 2.37 | 211 | [52] |
lettuce waste | 7.867 ± 0.147 | single chamber | Zn/Cu | 0.959 ± 0.026 | 5.697 ± 0.065 | 378.145 ± 5.417 | [53] |
vegetable waste | 6.51 | single chamber | carbon | 0.288 | 9.48 | 152.10 | [54] |
rice, vegetable, and fruit wastes | 4.85 | single chamber | Cu/Mg | 5.53 | 11.5 | 12.719 | [55] |
potato wastes | 4.5 | single chamber | Zn/Cu | 1.12 | 12.45 | 1.2 | [56] |
orange peel, loofah sponge, and sugarcane bagass | 6 | single chamber | carbon | 0.986 ± 0.002 | 163.84 ± 0.5 | [57] | |
asparagus waste | 7 | single chamber | Carbon/Zn | 0.965 | 4.859 | 2.149 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segundo, R.-F.; Luis, C.-C.; Otiniano, N.M.; De La Cruz-Noriega, M. Evaluating the Potential of White Asparagus (Asparagus officinalis L.) Waste as a Fuel Source in Microbial Fuel Cells Across Different pH Levels. Sustainability 2025, 17, 4486. https://doi.org/10.3390/su17104486
Segundo R-F, Luis C-C, Otiniano NM, De La Cruz-Noriega M. Evaluating the Potential of White Asparagus (Asparagus officinalis L.) Waste as a Fuel Source in Microbial Fuel Cells Across Different pH Levels. Sustainability. 2025; 17(10):4486. https://doi.org/10.3390/su17104486
Chicago/Turabian StyleSegundo, Rojas-Flores, Cabanillas-Chirinos Luis, Nélida Milly Otiniano, and Magaly De La Cruz-Noriega. 2025. "Evaluating the Potential of White Asparagus (Asparagus officinalis L.) Waste as a Fuel Source in Microbial Fuel Cells Across Different pH Levels" Sustainability 17, no. 10: 4486. https://doi.org/10.3390/su17104486
APA StyleSegundo, R.-F., Luis, C.-C., Otiniano, N. M., & De La Cruz-Noriega, M. (2025). Evaluating the Potential of White Asparagus (Asparagus officinalis L.) Waste as a Fuel Source in Microbial Fuel Cells Across Different pH Levels. Sustainability, 17(10), 4486. https://doi.org/10.3390/su17104486