sensors-logo

Journal Browser

Journal Browser

Advanced UAV-Based Sensor Technologies: 2nd Edition

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Remote Sensors".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1981

Special Issue Editors


E-Mail Website
Guest Editor
Department of Engineering, University of Sannio, 82100 Benevento, Italy
Interests: ADC and DAC modeling and testing; digital signal processing; distributed measurement systems; aerial photogrammetry; unmanned aerial systems (UASs); automatic test equipment for UASs
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Engineering, University of Sannio, 82100 Benevento, Italy
Interests: electrical and electronic instrumentation; data acquisition systems (DAQs) based on compressive sampling (CS); biomedical instrumentation; distributed measurement systems, including wireless sensor networks (WSNs); Internet of Things (IoT)
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The use of Unmanned Aerial Vehicles (UAVs), commonly known as drones, in the global civilian market is continually growing. This trend is due to the integration of high-performance processors, sensors, and electronic devices with a lower power consumption on UAV platforms. In particular, increasingly more sensors are being embedded on UAVs to ensure safety and automatic navigation and perform measurements during the flight according to the mission targets.

The aim of this Special Issue is to collect recent advances in sensors and sensing systems for UAV applications. High-quality research articles as well as reviews are welcome.

Of special interest is research work that seeks to address recent developments in new technology for metrology-assisted production in the aerospace industry, UAV component measurement, sensors and associated signal conditioning for aerospace, and calibration methods for electronic testing and measurement for aerospace, as well as relevant prospects in terms of opportunities and challenges.

We encourage papers on topics that include, but are not limited to, the following:

  • Electronic instrumentation for UAVs;
  • Automatic test equipment;
  • Sensors and sensor systems for UAV applications;
  • Wireless sensor network nodes based on UAVs;
  • Attitude and heading reference systems;
  • Monitoring systems;
  • Metrology for navigation and precise positioning;
  • Sensors and data fusion techniques;
  • Flight testing instrumentation and flight test techniques;
  • UAV swarms;
  • UAV safety and security;
  • Aerial photogrammetry;
  • Health structural monitoring with UAVs;
  • Precision agriculture;
  • Search and rescue with UAVs.

Prof. Dr. Pasquale Daponte
Dr. Eulalia Balestrieri
Dr. Francesco Picariello
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sensors
  • UAVs
  • measurement uncertainty
  • calibration
  • navigation
  • sense and avoid
  • image processing
  • signal processing
  • sensor fusion
  • UAV testing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 6859 KiB  
Communication
Drone’s Angle-of-Arrival Estimation Using a Switched-Beam Antenna and Single-Channel Receiver
by Sumin Han and Byung-Jun Jang
Sensors 2025, 25(8), 2376; https://doi.org/10.3390/s25082376 - 9 Apr 2025
Viewed by 315
Abstract
In this study, we propose a method to estimate the Angle-of-Arrival (AoA) of OFDM-based drone signals with wideband and burst characteristics using only a single-channel receiver and a switched-beam antenna. First, six circularly arranged directional antennas are time-division controlled using RF switches to [...] Read more.
In this study, we propose a method to estimate the Angle-of-Arrival (AoA) of OFDM-based drone signals with wideband and burst characteristics using only a single-channel receiver and a switched-beam antenna. First, six circularly arranged directional antennas are time-division controlled using RF switches to measure the received power of each antenna. Next, the maximum beam pattern and the measured power of each antenna are synthesized in vector form, and the direction of the synthesized vector becomes the angle of arrival of the drone signal. To verify the proposed method, an experiment was conducted using the video signal of DJI Phantom 4 Pro with a bandwidth of 10 MHz. As a result, it was confirmed that stable angle-of-arrival estimation of drone video signals was possible with an average error of less than 5°. The proposed system has the advantage of being able to estimate the AoA of a drone with only a single receiver without the need for synchronization. Therefore, the proposed system is expected to be used as a low-cost, compact, and highly portable anti-drone system. Full article
(This article belongs to the Special Issue Advanced UAV-Based Sensor Technologies: 2nd Edition)
Show Figures

Figure 1

28 pages, 9321 KiB  
Article
Considerations on UAS-Based In Situ Weather Sensing in Winter Precipitation Environments
by Gustavo Britto Hupsel de Azevedo, Alyssa Avery, David Schvartzman, Scott Landolt, Stephanie DiVito, Braydon Revard and Jamey D. Jacob
Sensors 2025, 25(3), 790; https://doi.org/10.3390/s25030790 - 28 Jan 2025
Viewed by 606
Abstract
Freezing rain and freezing drizzle can produce nearly undetectable hazards, with potentially catastrophic consequences for aircraft within low altitudes (e.g., the terminal area). However, the lack of direct observations of the low-altitude freezing precipitation environment creates a challenge for forecasters, flight crews, dispatchers, [...] Read more.
Freezing rain and freezing drizzle can produce nearly undetectable hazards, with potentially catastrophic consequences for aircraft within low altitudes (e.g., the terminal area). However, the lack of direct observations of the low-altitude freezing precipitation environment creates a challenge for forecasters, flight crews, dispatchers, and air traffic controllers. This research demonstrates how unmanned aerial vehicles (UAVs) can be designed and instrumented to create unmanned aerial weather measurement systems (WxUAS) capable of characterizing the low-altitude freezing precipitation environment and providing insight into the mechanisms that govern it. In this article, we discuss the design considerations for WxUAS-based in situ sampling during active precipitation. We present results from controlled experiments at the Oklahoma Mesonet’s calibration laboratory as well as results from intercomparison studies with collocated well-established ground-based instruments in Oklahoma and Colorado. Additionally, we explore the insights provided by high-resolution thermodynamic and cloud droplet size distribution profiles and their potential contributions to a better understanding of the low-altitude freezing precipitation environment. Full article
(This article belongs to the Special Issue Advanced UAV-Based Sensor Technologies: 2nd Edition)
Show Figures

Figure 1

Back to TopTop