polymers-logo

Journal Browser

Journal Browser

Supramolecular Polymers: Design, Characterization, and Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Chemistry".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 1816

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
Interests: supramolecular chemistry; cage compound; anion coordination; stimuli-responsive materials; host–guest systems; molecular switch
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Supramolecular polymers represent a dynamic and rapidly evolving field in material science, known for their self-assembly and adaptive properties, with vast potential for innovative applications, such as responsive and smart materials. The Special Issue "Supramolecular Polymers: Design, Characterization, and Applications" focuses on the cutting-edge advancements in the field of supramolecular polymer science and aims to curate a high-quality collection of articles, including both review and original research papers, that explore the latest developments in the design, characterization, and applications of supramolecular polymers. Manuscripts focusing on the following topics are highly welcome: (1) innovative strategies for the design and synthesis of supramolecular polymers; (2) advanced characterization techniques that disclose the complex architectures and interactions within these materials; (3) development of responsive and smart materials; (5) emerging uses in biological, environmental, and industrial applications. We invite you to contribute your research and join us in advancing this exciting field.

Prof. Dr. Chuandong Jia
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • supramolecular polymers
  • stimuli-responsive materials
  • smart materials
  • self-assembly
  • adaptive properties

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 9597 KiB  
Article
High-Strength, Self-Healing Copolymers of Acrylamide and Acrylic Acid with Co(II), Ni(II), and Cu(II) Complexes of 4′-Phenyl-2,2′:6′,2″-terpyridine: Preparation, Structure, Properties, and Autonomous and pH-Triggered Healing
by Evgeny S. Sorin, Rose K. Baimuratova, Mikhail V. Zhidkov, Maria L. Bubnova, Evgeniya O. Perepelitsina, Ainur F. Abukaev, Denis V. Anokhin, Dmitry A. Ivanov and Gulzhian I. Dzhardimalieva
Polymers 2024, 16(22), 3127; https://doi.org/10.3390/polym16223127 - 9 Nov 2024
Viewed by 1380
Abstract
The utilization of self-healing polymers is a promising way of solving problems associated with the wear and tear of polymer products, such as those caused by mechanical stress or environmental factors. In this study, a series of novel self-healing, high-strength copolymers of acrylamide, [...] Read more.
The utilization of self-healing polymers is a promising way of solving problems associated with the wear and tear of polymer products, such as those caused by mechanical stress or environmental factors. In this study, a series of novel self-healing, high-strength copolymers of acrylamide, acrylic acid, and novel acrylic complexes of 4′-phenyl-2,2′:6′,2″-terpyridine [Co(II), Ni(II), and Cu(II)] was prepared. A systematic study of the composition and properties of the obtained polymers was carried out using a variety of physicochemical techniques (elemental analysis, gel permeation chromatography (GPC), attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FT-IR), ultraviolet-visible spectroscopy (UV-vis), small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), confocal laser scanning microscopy (CLSM), and tensile testing). All metallopolymer samples exhibit autonomous intrinsic healing along with maintaining high tensile strength values (for some samples, the initial tensile strength exceeded 100 MPa). The best values of healing efficiency are possessed by metallopolymers with a nickel complex (up to 83%), which is most likely due to the highest lability of the metal–heteroatom coordination bonds. The example of this system shows the ability to re-heal with negligible deterioration of the mechanical properties. The possibility of tuning the mechanical properties of self-healing films through the use of different metal ions has been demonstrated. Full article
(This article belongs to the Special Issue Supramolecular Polymers: Design, Characterization, and Applications)
Show Figures

Graphical abstract

Back to TopTop