polymers-logo

Journal Browser

Journal Browser

Polymer Materials and Polymer Composites—on the Way to Sustainable Development

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: closed (15 December 2024) | Viewed by 5122

Special Issue Editors


E-Mail Website
Guest Editor
Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
Interests: 3D printing; processes; sol-gel; composites; materials processing; bio-polymers; bio-composites; industry; hydrogen

E-Mail Website
Guest Editor
Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland
Interests: biomaterials; biomedical engineering; composite materials; material characterization; ceramics; biopolymers
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland
Interests: bio-polymers; bio-composites; composites; polymers; tribology

Special Issue Information

Dear Colleagues,

In recent years, the demand for polymer materials has increased. They are used in many industries and in large quantities in our everyday life. At the same time, the main problem that has arisen with the increased production of elements from polymer materials is environmental pollution. Therefore, polymers and polymer materials have recently gained publicity in the media. They are blamed for many negative phenomena in the natural environment. The scientific community is responsible for correcting this message by showing the role of polymer materials in building a responsible, sustainable industry. In this case, we want to pay attention to renewable raw materials, biopolymers and biocomposites, biofillers and issues related to Life Cycle Assessment and carbon footprints. As conscious scientists, we want to look not only at our narrow specialization but also from a horizontal perspective at the global society.

The purpose of this Special Issue is to address the negative perception trends of polymer materials. We invite researchers to present research and information in the form of original articles, reviews, research notes, and case studies.

Dr. Robert Przekop
Dr. Eliza Romanczuk-Ruszuk
Dr. Marek Jałbrzykowski
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer materials
  • polymer composites
  • sustainable
  • environment renewable Life Cycle Assessment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 11757 KiB  
Article
Mechanical Performance Enhancement in Natural Fibre-Reinforced Thermoplastic Composites Through Surface Treatment and Matrix Functionalisation
by Ângela Pinto, Dina Esteves, Luís Nobre, João Bessa, Fernando Cunha and Raúl Fangueiro
Polymers 2025, 17(4), 532; https://doi.org/10.3390/polym17040532 - 18 Feb 2025
Viewed by 646
Abstract
This study aims to investigate the behaviour of thermoplastic composites reinforced with natural fibres. Composite materials were developed using reactive methyl methacrylate (MMA) resin, commercially known as Elium® (Arkema, Colombes, France), with the incorporation of cellulose nanocrystals (CNCs), dispersed in the matrix [...] Read more.
This study aims to investigate the behaviour of thermoplastic composites reinforced with natural fibres. Composite materials were developed using reactive methyl methacrylate (MMA) resin, commercially known as Elium® (Arkema, Colombes, France), with the incorporation of cellulose nanocrystals (CNCs), dispersed in the matrix at different concentrations. Natural fibres, such as flax, were chemically treated by immersion in an aqueous solution based on NaHCO3, during different periods of exposure. After this treatment, flax fibres were washed with distilled water and dried. The degree of fibre surface tension was measured in terms of the contact angle. Then, cellulose nanocrystals were incorporated and mixed in the thermoplastic resin, and the samples were developed via the incorporation of intercalated layers of treated flax fibres. The composites were produced using compression moulding. After that, the samples were evaluated, regarding their mechanical performance and morphology. The research results show that flax fibres treated with 9 wt. % NaHCO3 for 48 h had improved flexural strength as a result of removing impurities and exposing hydroxyl groups that react with Na+ ions present in NaHCO3, which enhances its mechanical properties. The incorporation of 1% CNCs into thermoplastic resin significantly enhanced the fibre/matrix interface, resulting in a remarkable 38% increase in flexural strength. These findings demonstrate the effectiveness of using treated natural fibres and CNCs to improve composites’ performance. Full article
Show Figures

Figure 1

14 pages, 5040 KiB  
Article
A Solar-Heated Phase Change Composite Fiber with a Core–Shell Structure for the Recovery of Highly Viscous Crude Oil
by Chenxin Lin, Yifan Wang, Cenyu Liu, Kaiyue Meng, Endong Chang, Xiaowen Wu and Jiancheng Wang
Polymers 2025, 17(2), 135; https://doi.org/10.3390/polym17020135 - 8 Jan 2025
Cited by 1 | Viewed by 715
Abstract
Due to the high viscosity and low fluidity of viscous crude oil, how to effectively recover spilled crude oil is still a major global challenge. Although solar thermal absorbers have made significant progress in accelerating oil recovery, its practical application is largely restricted [...] Read more.
Due to the high viscosity and low fluidity of viscous crude oil, how to effectively recover spilled crude oil is still a major global challenge. Although solar thermal absorbers have made significant progress in accelerating oil recovery, its practical application is largely restricted by the variability of solar radiation intensity, which is influenced by external environmental factors. To address this issue, this study created a new composite fiber that not only possesses solar energy conversion and storage capabilities but also facilitates crude oil removal. PF@PAN@PEG was obtained by coaxial electrospinning processing, with PEG within PAN fibers, and a coating layer was applied to the fiber surface to impart oleophilicity and hydrophobicity. PF@PAN@PEG exhibited a high latent heat value (77.12 J/g), high porosity, and excellent photothermal conversion and oil storage capabilities, significantly reducing the viscosity of crude oil. PF@PAN@PEG can adsorb approximately 11.65 g/g of crude oil under sunlight irradiation. Notably, due to the encapsulation of PEG, PF@PAN@PEG can continuously maintain the crude oil at a phase change temperature by releasing latent heat under specific conditions, effectively reducing its viscosity with no PEG leakage at all. When solar light intensity varied, the crude oil collection efficiency increased by 21.99% compared to when no phase change material was added. This research offers a potential approach for the effective use of clean energy and the collection of viscous crude oil spill pollution. Full article
Show Figures

Graphical abstract

17 pages, 8823 KiB  
Article
Modifying Cassava Starch via Extrusion with Phosphate, Erythorbate and Nitrite: Phosphorylation, Hydrolysis and Plasticization
by Phanwipa Wongphan, Cristina Nerin and Nathdanai Harnkarnsujarit
Polymers 2024, 16(19), 2787; https://doi.org/10.3390/polym16192787 - 1 Oct 2024
Viewed by 1335
Abstract
Extrusion processing of plasticized cassava starch, a prominent industrial crop, with chemical additives offers a thermo-mechanical approach to modify starch structures through physical and chemical interactions. This research investigates the interaction and morphology of thermoplastic cassava starch (TPS) blended with tetrasodium pyrophosphate (Na [...] Read more.
Extrusion processing of plasticized cassava starch, a prominent industrial crop, with chemical additives offers a thermo-mechanical approach to modify starch structures through physical and chemical interactions. This research investigates the interaction and morphology of thermoplastic cassava starch (TPS) blended with tetrasodium pyrophosphate (Na4P2O7), sodium tripolyphosphate (Na5P3O10), sodium hexametaphosphate (Na6(PO3)6), sodium erythorbate (C6H7O6Na), and sodium nitrite (NaNO2) via twin-screw extrusion. The effects of these additives on the chemical structure, thermal profile, water absorption, and solubility of the TPS were examined. The high temperature and shearing forces within the extruder disrupted hydrogen bonding at α-(1-4) and α-(1-6) glycosidic linkages within anhydroglucose units. Na4P2O7, Na5P3O10 and Na6(PO3)6 induced starch phosphorylation, while 1H NMR and ATR-FTIR analyses revealed that C6H7O6Na and NaNO2 caused starch hydrolysis. These additives hindered starch recrystallization, resulting in higher amorphous fractions that subsequently influenced the thermal properties and stability of the extruded TPS. Furthermore, the type and content of the added modifier influenced the water absorption and solubility of the TPS due to varying levels of interaction. These modified starch materials exhibited enhanced antimicrobial properties against Escherichia coli and Staphylococcus aureus in polyester blends fabricated via extrusion, with nitrite demonstrating the most potent antimicrobial efficacy. These findings suggest that starch modification via either phosphorylation or acid hydrolysis impacts the thermal properties, morphology, and hydrophilicity of extruded cassava TPS. Full article
Show Figures

Figure 1

19 pages, 16813 KiB  
Article
The 3D-Printed (FDM/FFF) Biocomposites Based on Polylactide and Carbonate Lake Sediments—Towards a Circular Economy
by Robert E. Przekop, Ewa Gabriel, Marta Dobrosielska, Agnieszka Martyła, Paulina Jakubowska, Julia Głowacka, Piotr Marciniak, Daria Pakuła, Marek Jałbrzykowski and Grzegorz Borkowski
Polymers 2023, 15(13), 2817; https://doi.org/10.3390/polym15132817 - 26 Jun 2023
Cited by 2 | Viewed by 1525
Abstract
In this study, composites containing polylactide and carbonate lake sediment in concentrations of 2.5, 5, 10, and 15% by weight were prepared by a 3D printing method. The material for 3D printing was obtained by directly diluting the masterbatch on an injection moulder [...] Read more.
In this study, composites containing polylactide and carbonate lake sediment in concentrations of 2.5, 5, 10, and 15% by weight were prepared by a 3D printing method. The material for 3D printing was obtained by directly diluting the masterbatch on an injection moulder to the desired concentrations, and after granulation, it was extruded into a filament. The material prepared thusly was used to print standardised samples for mechanical testing. To compare the mechanical properties of the composites obtained by 3D printing and injection moulding, two sets of tests were performed, i.e., mechanical tests (tensile strength, flexural strength, and impact strength) and hydrophobic–hydrophilic surface character testing. The degree of composite waste in the 3D printing was also calculated. Mechanical and surface tests were performed for both systems conditioned at room temperature and after accelerated ageing in a weathering chamber. The study showed differences in the properties of composites obtained by 3D printing. Sedimentary fillers improved the hydrophobicity of the systems compared with pure PLA, but it was not a linear relationship. The PLA/CLS sedB composite had higher strength parameters, especially after ageing in a weathering chamber. This is due to its composition, in which, in addition to calcite and silica, there are also aluminosilicates, causing a strengthening of the PLA matrix. Full article
Show Figures

Figure 1

Back to TopTop