polymers-logo

Journal Browser

Journal Browser

Biodegradable and Functional Polymers for Food Packaging

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Circular and Green Sustainable Polymer Science".

Deadline for manuscript submissions: 31 May 2026 | Viewed by 5948

Special Issue Editors


E-Mail Website
Guest Editor
Food Engineering Program, Faculty of Engineering, Universidad de Cartagena, Cartagena de Indias 130015, Colombia
Interests: food packaging; biodegradable polymers; physical properties
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Chemical Program, Department of Natural and Exact Sciences, Universidad de Cartagena, Cartagena de Indias 130015, Colombia
Interests: polymers; synthesis and characterisation; computational polymer science
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor Assistant
Food Engeneering Program, Faculty of Engineering, Universidad de Cartagena, Cartagena de Indias 130015, Colombia
Interests: food engineering; food packaging; biodegradable polymers

Special Issue Information

Dear Colleagues,

The demand for sustainable polymer applications has surged across various industries, driven by the global commitment to addressing environmental challenges and fostering innovation. This Special Issue of Polymers focuses on cutting-edge research and advancements in polymer science, particularly in the fields of sustainable food packaging, wastewater treatment, predictive microbiology, and computational approaches to polymer synthesis and catalysis.

We welcome contributions in the form of original research articles, reviews, and case studies that explore the following:

  • Development and characterisation of biodegradable or recyclable polymers for eco-friendly food packaging solutions;
  • Applications of advanced polymer materials in the purification of industrial and domestic wastewater;
  • Integration of polymers in predictive microbiology to enhance food safety and shelf-life monitoring;
  • Computational modelling and simulation studies addressing polymer design, synthesis, and catalytic behaviour.

This Special Issue aims to bridge the gap between fundamental research and practical applications, fostering interdisciplinary collaboration to promote sustainable and innovative solutions.

Join us in shaping the future of polymers for a sustainable world.

Prof. Dr. Rodrigo Ortega-Toro
Dr. Joaquín Hernández-Fernández
Guest Editors

Dr. Rafael González-Cuello
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainable polymers
  • biodegradable packaging
  • wastewater treatment
  • predictive microbiology
  • computational polymer science
  • polymer catalysis
  • food safety materials
  • green chemistry
  • eco-friendly materials
  • polymer synthesis and characterisation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 1862 KB  
Article
Computational Environmental Impact Assessment of an Enhanced PVC Production Process
by Arelmys Bustamante Miranda, Segundo Rojas-Flores and Ángel Darío González-Delgado
Polymers 2025, 17(24), 3316; https://doi.org/10.3390/polym17243316 - 16 Dec 2025
Viewed by 90
Abstract
Poly(vinyl chloride) (PVC) is one of the most widely used polymers due to its strength, low cost, and light weight. Industrial production is mainly conducted by suspension polymerization, which facilitates the control of the emissions of vinyl chloride monomer (VCM), a known carcinogen. [...] Read more.
Poly(vinyl chloride) (PVC) is one of the most widely used polymers due to its strength, low cost, and light weight. Industrial production is mainly conducted by suspension polymerization, which facilitates the control of the emissions of vinyl chloride monomer (VCM), a known carcinogen. However, the process consumes large amounts of water and energy and generates residual compounds such as polyvinyl alcohol (PVA) and polymerization initiators, which must be properly managed to mitigate environmental impacts. To improve sustainability, this study applied mass- and energy-integration strategies together with a zero-liquid-discharge (ZLD) water-regeneration system that uses sequential aerobic and anaerobic reactors to recirculate process water with reduced PVA. Although these measures reduce resource consumption, they can displace or intensify other impacts; therefore, a comprehensive evaluation of the system is necessary. Accordingly, the objective of this study is to quantify and compare the potential environmental impacts (PEIs) of the improved PVC production process through a scenario-based assessment using a waste reduction algorithm (WAR). This is applied to four operating scenarios in order to identify the stages and flows that contribute most to the environmental burden. According to our literature review, there is limited published evidence that simultaneously combines mass/energy integration and a ZLD system in PVC processes; thus, this work provides an integrated assessment useful for industrial design. The environmental performance of the improved process was evaluated using WAR GUI software (v 1.0.17, which quantifies PEIs in categories such as toxicity, climate change, and acidification. Four scenarios were compared: Case 1 (excluding both product and energy), Case 2 (product only), Case 3 (energy only), and Case 4 (product and energy). The total PEI increased from 2.46 PEI/day in Case 1 to 6230 PEI/day in Case 4, with the largest contributions from acidification (5140 PEI/day) and global warming (496 PEI/day), mainly due to natural gas consumption (5184 GJ/day). In contrast, Cases 1 and 2 showed negative PEI values (−3160 and −2660 PEI/day), indicating that converting the toxic VCM (LD50: 500 mg/kg; ATP: 26 mg/L) into PVC (LD50: 2000 mg/kg; ATP: 100 mg/L) can reduce the environmental burden in certain respects. In addition, the ZLD system contributed to maintaining low aquatic toxicity in Case 4 (90.70 PEI/day). Full article
(This article belongs to the Special Issue Biodegradable and Functional Polymers for Food Packaging)
Show Figures

Figure 1

20 pages, 2070 KB  
Article
Effect of Water Regeneration and Integration on Technical Indicators of PVC Manufacturing Using Process System Engineering
by Eduardo Andrés Aguilar-Vásquez, Segundo Rojas-Flores and Ángel Darío González-Delgado
Polymers 2025, 17(17), 2418; https://doi.org/10.3390/polym17172418 - 6 Sep 2025
Viewed by 1082
Abstract
The suspension polymerization process of polyvinyl chloride (PVC) production involves significant freshwater consumption alongside substantial wastewater emissions. Mass integration strategies have been used to address this problem, but only through direct recycling approaches. Therefore, in this study, a regeneration approach was applied to [...] Read more.
The suspension polymerization process of polyvinyl chloride (PVC) production involves significant freshwater consumption alongside substantial wastewater emissions. Mass integration strategies have been used to address this problem, but only through direct recycling approaches. Therefore, in this study, a regeneration approach was applied to integrate a PVC suspension process to improve water management. The reuse network was evaluated through a water–energy–product (WEP) technical analysis after being simulated in AspenPlus software v.14. The mass integration allowed for a 61% reduction in freshwater consumption and an 83% reduction in wastewater. However, 258.6 t/day of residual wastewater still remained after regeneration. The WEP analysis found that the process was efficient in handling raw materials and process products due to the high yield and recovery of unreacted materials. Similarly, the integration significantly benefitted the process performance as water usage indicators improved substantially, with freshwater consumption of 83%, a wastewater production rate of 63%, and freshwater water costs of $267,322 per year (from $694,080 before integration). In terms of energy performance, the results were regular. The processes showed high energy consumption (below 50%), with indicators related to the use of natural gas, electricity, and energy costs being affected by the regeneration. However, the limited heat integration provided minor energy savings (11 MJ/h). Finally, this work gives an interesting insight into water conservation and the circular economy, since the study used the latest systems in regeneration of effluents for plastic plants (emerging technologies), showcasing important benefits and trade-offs of these strategies. Full article
(This article belongs to the Special Issue Biodegradable and Functional Polymers for Food Packaging)
Show Figures

Figure 1

24 pages, 2652 KB  
Article
Influence of Water Regeneration on Chemical and Process Indices in an Energy-Integrated PVC Production Process
by Arelmys Bustamante-Miranda, Eduardo Aguilar-Vásquez, Miguel Ramos-Olmos, Segundo Rojas-Flores and Ángel Darío González-Delgado
Polymers 2025, 17(12), 1639; https://doi.org/10.3390/polym17121639 - 13 Jun 2025
Viewed by 1209
Abstract
Water regeneration in PVC production is a key issue to consider, given the high freshwater consumption rate of the process. This research evaluates the inherent safety of poly(vinyl chloride) (PVC) production via suspension polymerization by implementing mass and energy integration strategies in combination [...] Read more.
Water regeneration in PVC production is a key issue to consider, given the high freshwater consumption rate of the process. This research evaluates the inherent safety of poly(vinyl chloride) (PVC) production via suspension polymerization by implementing mass and energy integration strategies in combination with wastewater regeneration under a zero-liquid-discharge (ZLD) approach. The impact of these integrations on process safety was examined by considering the risks associated with the handling of hazardous materials and critical operations, as well as the reduction in waste generation. To this end, the Inherent Safety Index (ISI) methodology was employed, which quantifies hazards based on factors such as toxicity and flammability, enabling the identification of risks arising from system condition changes due to the implementation of sustainable water treatment technologies. Although the ISI methodology has been applied to various chemical processes, there are few documented cases of its specific application in PVC plants that adopt circular production strategies and water resource sustainability. Therefore, in this study, ISI was used to thoroughly evaluate each stage of the process, providing a comprehensive picture of the safety risks associated with the use of sustainable technologies. The assessment was carried out using simulation software, computer-aided process engineering (CAPE) methodologies, and information obtained from safety repositories and expert publications. Specifically, the Chemical Safety Index score was 22 points, with the highest risk associated with flammability, which scored 4 points, followed by toxicity (5 points), explosiveness (2 points), and chemical interactions, with 4 points attributed to vinyl chloride monomer (VCM). In the toxicity sub-index, both VCM and PVC received 5 points, while substances such as sodium hydroxide (NaOH) and sodium chloride (NaCl) scored 4 points. In the heat of reaction sub-index, the main reaction scored 3 points due to its high heat of reaction (−1600 kJ/kg), while the secondary reactions from PVA biodegradation scored 0 points for the anoxic reaction (−156.5 kJ/kg) and 3 points for the aerobic reaction (−2304 kJ/kg), significantly increasing the total index. The Process Safety Index scored 15 points, with the highest risk found in the inventory of hazardous substances within the inside battery limits (ISBL) of the plant, where a flow rate of 3241.75 t/h was reported (5 points). The safe equipment sub-index received 4 points due to the presence of boilers, burners, compressors, and reactors. The process structure scored 3 points, temperature 2, and pressure 1, reflecting the criticality of certain operating conditions. Despite sustainability improvements, the process still presented significant chemical and operational risks. However, the implementation of control strategies and safety measures could optimize the process, balancing sustainability and safety without compromising system viability. Full article
(This article belongs to the Special Issue Biodegradable and Functional Polymers for Food Packaging)
Show Figures

Figure 1

17 pages, 2567 KB  
Article
Enhancing Technical Performance of PVC Production: A WEP-Based Energy and Water Assessment
by Rolando Manuel Guardo-Ruiz, Linda Mychell Puello-Castellón, Rodrigo Ortega-Toro, Eduardo Andrés Aguilar-Vásquez and Ángel Darío González-Delgado
Polymers 2025, 17(11), 1561; https://doi.org/10.3390/polym17111561 - 4 Jun 2025
Cited by 4 | Viewed by 1475
Abstract
Polyvinyl chloride (PVC) is one of the most widely used polymers due to its physical properties and versatility. Water consumption of the suspension method is a critical issue that hinders competitiveness. In that case, this study implements water integration through direct recycling, with [...] Read more.
Polyvinyl chloride (PVC) is one of the most widely used polymers due to its physical properties and versatility. Water consumption of the suspension method is a critical issue that hinders competitiveness. In that case, this study implements water integration through direct recycling, with the aim of minimizing both freshwater consumption and wastewater generation. The source–sink diagram was used to generate the recycled water network, and the integrated process was simulated using software. From simulation data, the water–energy–product (WEP) analysis method was used to assess the process performance, and sustainability indicators for water, energy, and product were evaluated. Fractional water consumption and wastewater production ratio indicators increased to 51.1% and 55.0%, compared to 41% and 54% in the non-integrated process, showing improved water efficiency and cost reduction. The unreacted material reuse index reached 100%, while the production yield was 99.8%, due to effective recycling of unreacted VCM. The use of natural gas and energy integration led to optimal performance in TCE, NGCI, and EECI indicators. However, the ESI indicator was high (3.59 MJ/t) due to energy demands from thermal control equipment for water recirculation. Full article
(This article belongs to the Special Issue Biodegradable and Functional Polymers for Food Packaging)
Show Figures

Figure 1

16 pages, 2722 KB  
Article
Development and Comparative Analysis of Hard and Soft Wheat Flour Films Enriched with Yellow and White Chlorella vulgaris Algae
by Alexis López-Padilla, Misael Cortés-Rodríguez and Rodrigo Ortega-Toro
Polymers 2025, 17(6), 785; https://doi.org/10.3390/polym17060785 - 15 Mar 2025
Cited by 3 | Viewed by 1122
Abstract
Chlorella vulgaris is a microalga with antioxidant and antimicrobial capacity that contains high levels of starch and proteins, essential for producing biodegradable packaging. This study aims to develop and characterize biofilms from soft wheat flour (SWF) and durum wheat flour (DWF) with yellow [...] Read more.
Chlorella vulgaris is a microalga with antioxidant and antimicrobial capacity that contains high levels of starch and proteins, essential for producing biodegradable packaging. This study aims to develop and characterize biofilms from soft wheat flour (SWF) and durum wheat flour (DWF) with yellow and white Chlorella vulgaris. The films were made using the compression molding method and characterized according to their physical, mechanical, and structural properties. The results indicated that yellow Chlorella films increase thickness and gloss and reduce water vapor permeability, which benefits applications requiring moisture retention. On the other hand, white Chlorella increases opacity and color saturation, making it suitable for less transparent packaging. Films with durum wheat and microalgae are stiffer and less elastic, while formulations with soft wheat and without microalgae are flexible. The surface texture is rougher in films with yellow Chlorella and more homogeneous in white Chlorella. These results suggest that Chlorella vulgaris allows biodegradable films to be tailored for specific applications in sustainable packaging. Full article
(This article belongs to the Special Issue Biodegradable and Functional Polymers for Food Packaging)
Show Figures

Figure 1

Back to TopTop