Growth Regulation of Cereal Crops: Gene Control and Environmental Factors

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Crop Physiology and Crop Production".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 2764

Special Issue Editors


E-Mail Website
Guest Editor
Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
Interests: cereal crops, crop cultivation

E-Mail Website
Guest Editor
Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
Interests: crop production; agronomy; crop physiology; stress physiology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cereal crops, which include grain, tuber, and legume crops, are the most basic necessities for human survival, with great significance in safeguarding global food security. Increases in the yield and quality of these crops can be achieved by internal genetic improvement and external environmental influences. Changes in external conditions mainly includes two aspects: (1) climatic factors in light, temperature, humidness, etc.; and (2) cultivation practices like modes of tillage, fertilization, irrigation, chemical control, and cultivation density. This Special Issue of Plants will mainly focus on genetic and environmental factors in the regulation of cereal crops’ growth and development, in terms of agronomic traits, physiological properties, molecular change profiles, yield, and quality. Reviews and research papers are welcome.

Dr. Yunji Xu
Dr. Guanglong Zhu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • grain crops
  • tuber crops
  • legume crops
  • cultivation approaches
  • agronomic traits
  • physiological properties
  • yield and quality improvement

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 728 KiB  
Article
Yield Performance of Super Hybrid Rice Grown in Subtropical Environments at a Similar Latitude but Different Altitudes in Southwest China
by Peng Jiang, Dingbing Wang, Lin Zhang, Xingbing Zhou, Mao Liu, Hong Xiong, Xiaoyi Guo, Yongchuan Zhu, Changchun Guo and Fuxian Xu
Plants 2025, 14(5), 660; https://doi.org/10.3390/plants14050660 - 21 Feb 2025
Viewed by 434
Abstract
Investigating the variation in and key factors influencing the yield of super hybrid rice cultivated at different altitudes but within the same latitude provides valuable insights for further improvements in super hybrid rice grain yields. Field and pot experiments were conducted using four [...] Read more.
Investigating the variation in and key factors influencing the yield of super hybrid rice cultivated at different altitudes but within the same latitude provides valuable insights for further improvements in super hybrid rice grain yields. Field and pot experiments were conducted using four rice varieties at the following two altitudinal locations in Sichuan Province, China: Hanyuan (high, 1000 m) and Luxian (low, 300 m). The results indicated that Hanyuan achieved an average grain yield of 13.89 t ha−1 in paddy fields, with yields being from 63.6% to 94.2% higher than those at Luxian in the field experiments and from 10.8% to 68.0% higher in the pot experiments. The grain yield was consistently higher in the soil from Hanyuan compared to that from Luxian at the same sites. In the field experiments, the grain yield was influenced by location (L), plant density (P), and variety (V), but there were no significant interactions between these factors. In the pot experiments, the grain yield was significantly impacted by L, soil (S), and the interaction between L and S. Climatic factors, which varied with the altitude of the planting site, played a crucial role in achieving optimal yields of the super hybrid rice. Hanyuan exhibited more cumulative solar radiation with a longer growth duration and lower temperatures and higher soil fertility compared to Luxian. The higher grain yield observed at Hanyuan was linked to increases in panicle numbers, spikelets per panicle, grain filling, pre- and post-heading biomass production, and the harvest index. The variations in biomass production between Hanyuan and Luxian were largely due to differences in pre- and post-heading crop growth rates (CGRs) and pre-heading radiation use efficiency (RUE), which were influenced by differences in the maximum and minimum temperatures and cumulative solar radiation. This study indicated that the differences in the grain yield of super hybrid rice across various ecological sites are primarily influenced by altitude and soil fertility, and further enhancement of the grain yield can be achieved by concurrently increasing biomass production before and after heading through improvements in pre- and post-heading CGR. Full article
Show Figures

Figure 1

17 pages, 7139 KiB  
Article
Exogenous Spermidine and Amino-Ethoxyvinylglycine Improve Nutritional Quality via Increasing Amino Acids in Rice Grains
by Ying Liu, Yi Jiang, Xiaohan Zhong, Chaoqing Li, Yunji Xu, Kuanyu Zhu, Weilu Wang, Junfei Gu, Hao Zhang, Zhiqin Wang, Lijun Liu, Jianhua Zhang, Weiyang Zhang and Jianchang Yang
Plants 2024, 13(2), 316; https://doi.org/10.3390/plants13020316 - 20 Jan 2024
Cited by 1 | Viewed by 1727
Abstract
Polyamines and ethylene are key regulators of the growth and development, quality formation, and stress response of cereal crops such as rice. However, it remains unclear whether the application of these regulators could improve the nutritional quality via increasing amino acids in rice [...] Read more.
Polyamines and ethylene are key regulators of the growth and development, quality formation, and stress response of cereal crops such as rice. However, it remains unclear whether the application of these regulators could improve the nutritional quality via increasing amino acids in rice grains. This study examined the role of exogenous polyamines and ethylene in regulating amino acid levels in the milled rice of earlier-flowered superior grain (SG) and later-flowered inferior grain (IG). Two rice varieties were field grown, and either 1 mmol L−1 spermidine (Spd) or 50 μmol L−1 amino-ethoxyvinylglycine (AVG) was applied to panicles at the early grain-filling stage. The control check (CK) was applied with deionized water. The results showed that the Spd or AVG applications significantly increased polyamine (spermine (Spm) and Spd) contents and decreased ethylene levels in both SG and IG and significantly increased amino acid levels in the milled rice of SG and IG relative to the CK. Collectively, the application of Spd or AVG can increase amino acid-based nutritional quality and grain yield via increasing polyamine (Spm and Spd) contents and reducing ethylene levels in both SG and IG of rice. Full article
Show Figures

Figure 1

Back to TopTop