Technologies and Applications of Digital Holography

A special issue of Photonics (ISSN 2304-6732).

Deadline for manuscript submissions: closed (20 March 2024) | Viewed by 5060

Special Issue Editor


E-Mail Website
Guest Editor
College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
Interests: digital holography; two-wavelength digital holography; phase retrieval algorithm; image processing; 3D imaging

Special Issue Information

Dear Colleagues,

Digital holography is a promising quantitative phase imaging technique and has attracted intense scientific interest owning to its capability of achieving multidimensional information acquisition. Meanwhile, digital holography can acquire holograms rapidly and flexibly, and obtain full information consisting of phase and amplitude of the optical field easily. As a result of the rapid development of high-quality lasers and imaging devices, digital holography has been widely applied in many interesting fields, such as biological cell and tissues imaging, particle tracking, MEMS measurement, etc. Therefore, digital holography attracts increasing amounts of attention from the scientific community, and promotes various holographic systems, phase retrieval algorithms and image processing techniques.

This Special Issue aims to present a coverage of innovative research, development and application in digital holography. We are excited to invite researchers to submit their contributions to this Special Issue. Topics of interest include, but are not limited to, the following:

  • Digital holographic microscopy;
  • Digital holographic reconstruction;
  • Digital holographic tomography;
  • Digital holographic biomedical applications;
  • Digital holographic material applications;
  • Digital holographic polarization imaging;
  • Digital holographic sound field imaging;
  • Digital holographic imaging through scattering media;
  • Digital holographic image encryption;
  • Quantitative phase imaging;
  • Measurement and industrial detection applications;
  • Multimodal imaging based on digital holography;
  • Incoherent digital holography;
  • Super-resolution digital holography;
  • Digital holography-based near/far field imaging:
  • Deep learning for digital holography;
  • Compressive holography;
  • Emerging applications of digital holography.

Dr. Lei Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • digital holography
  • two-wavelength digital holography
  • digital holographic microscopy
  • quantitative phase imaging
  • phase retrieval algorithm
  • image processing
  • 3D imaging

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 2756 KiB  
Article
Polarization Diffraction Gratings in PAZO Polymer Thin Films Recorded with Digital Polarization Holography: Polarization Properties and Surface Relief Formation
by Nataliya Berberova-Buhova, Lian Nedelchev, Georgi Mateev, Ludmila Nikolova, Elena Stoykova, Branimir Ivanov, Velichka Strijkova, Keehoon Hong and Dimana Nazarova
Photonics 2024, 11(5), 425; https://doi.org/10.3390/photonics11050425 - 3 May 2024
Viewed by 1443
Abstract
In this work, we study the polarization properties of diffraction gratings recorded in thin films of the azopolymer PAZO (poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt]) using digital polarization holography. Using two quarter-wave plates, the phase retardation of each pixel of the SLM is converted into [...] Read more.
In this work, we study the polarization properties of diffraction gratings recorded in thin films of the azopolymer PAZO (poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt]) using digital polarization holography. Using two quarter-wave plates, the phase retardation of each pixel of the SLM is converted into the azimuth rotation of linearly polarized light. When recording from the azopolymer side of the sample, significant surface relief amplitude is observed with atomic force microscopy. In contrast, recording from the substrate side of the sample allows the reduction of the surface relief modulation and the obtaining of polarization gratings with characteristics close to an ideal grating, recorded with two orthogonal circular polarizations. This can be achieved even with a four-pixel period of grating, as demonstrated by our results. Full article
(This article belongs to the Special Issue Technologies and Applications of Digital Holography)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 5605 KiB  
Review
Imaging of Live Cells by Digital Holographic Microscopy
by Emilia Mitkova Mihaylova
Photonics 2024, 11(10), 980; https://doi.org/10.3390/photonics11100980 - 18 Oct 2024
Viewed by 936
Abstract
Imaging of microscopic objects is of fundamental importance, especially in life sciences. Recent fast progress in electronic detection and control, numerical computation, and digital image processing, has been crucial in advancing modern microscopy. Digital holography is a new field in three-dimensional imaging. Digital [...] Read more.
Imaging of microscopic objects is of fundamental importance, especially in life sciences. Recent fast progress in electronic detection and control, numerical computation, and digital image processing, has been crucial in advancing modern microscopy. Digital holography is a new field in three-dimensional imaging. Digital reconstruction of a hologram offers the remarkable capability to refocus at different depths inside a transparent or semi-transparent object. Thus, this technique is very suitable for biological cell studies in vivo and could have many biomedical and biological applications. A comprehensive review of the research carried out in the area of digital holographic microscopy (DHM) for live-cell imaging is presented. The novel microscopic technique is non-destructive and label-free and offers unmatched imaging capabilities for biological and bio-medical applications. It is also suitable for imaging and modelling of key metabolic processes in living cells, microbial communities or multicellular plant tissues. Live-cell imaging by DHM allows investigation of the dynamic processes underlying the function and morphology of cells. Future applications of DHM can include real-time cell monitoring in response to clinically relevant compounds. The effect of drugs on migration, proliferation, and apoptosis of abnormal cells is an emerging field of this novel microscopic technique. Full article
(This article belongs to the Special Issue Technologies and Applications of Digital Holography)
Show Figures

Figure 1

Back to TopTop