Nanomaterials in Electrochemical Electrode and Electrochemical Sensor

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanoelectronics, Nanosensors and Devices".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 2266

Special Issue Editor


E-Mail Website
Guest Editor
Biosensor Research Institute, Seoul National University of Science and Technology (SNUST), Seoul 01811, Republic of Korea
Interests: nanotube; electrode; sensor

Special Issue Information

Dear Colleagues,

Electrochemical sensors for micro-, nano-, and pico-sized particle materials have extremely sensitive detection limits. Therefore, depending on the size of the molecular structure, the redox current can be amplified by an exponential function. In other words, it is smaller, cheaper, and has a more sensitive detection limit than complex, large, and expensive analysis equipment. It is also simple, small, and inexpensive, and it allows us to make an instantaneous diagnosis. Therefore, multi-tasking and multi-user capabilities are usable. The application range of these chemical sensors is wide, including medicine, aviation, space exploration, robots, food, environmental, and others. In addition, anyone can use it anytime, anywhere.

For this Special Issue, we invite researchers to submit original research articles and letters, as well as review articles and prospective view articles on nanomaterials applied to electrodes and sensors.

Dr. Suwyoung Ly
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electrochemical analysis
  • nanoscale
  • amplifier
  • multi-tasking
  • molecular structure

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4260 KiB  
Article
Microwave-Assisted Synthesis of N, S Co-Doped Carbon Quantum Dots for Fluorescent Sensing of Fe(III) and Hydroquinone in Water and Cell Imaging
by Zhaochuan Yu, Chao Deng, Wenhui Ma, Yuqian Liu, Chao Liu, Tingwei Zhang and Huining Xiao
Nanomaterials 2024, 14(22), 1827; https://doi.org/10.3390/nano14221827 - 14 Nov 2024
Cited by 8 | Viewed by 1892
Abstract
The detection of heavy metal ions and organic pollutants from water sources remains critical challenges due to their detrimental effects on human health and the environment. Herein, a nitrogen and sulfur co-doped carbon quantum dot (NS-CQDs) fluorescent sensor was developed using a microwave-assisted [...] Read more.
The detection of heavy metal ions and organic pollutants from water sources remains critical challenges due to their detrimental effects on human health and the environment. Herein, a nitrogen and sulfur co-doped carbon quantum dot (NS-CQDs) fluorescent sensor was developed using a microwave-assisted carbonization method for the detection of Fe3+ ions and hydroquinone (HQ) in aqueous solutions. NS-CQDs exhibit excellent optical properties, enabling sensitive detection of Fe3+ and HQ, with detection limits as low as 3.40 and 0.96 μM. Notably, with the alternating introduction of Fe3+ and HQ, NS-CQDs exhibit significant fluorescence (FL) quenching and recovery properties. Based on this property, a reliable “on-off-on” detection mechanism was established, enabling continuous and reversible detection of Fe3+ and HQ. Furthermore, the low cytotoxicity of NS-CQDs was confirmed through successful imaging of HeLa cells, indicating their potential for real-time intracellular detection of Fe3+ and HQ. This work not only provides a green and rapid synthesis strategy for CQDs but also highlights their versatility as fluorescent probes for environmental monitoring and bioimaging applications. Full article
(This article belongs to the Special Issue Nanomaterials in Electrochemical Electrode and Electrochemical Sensor)
Show Figures

Figure 1

Back to TopTop