molecules-logo

Journal Browser

Journal Browser

Anti-inflammatory Activity of Natural Products and Alternative Medicine: 2nd Edition

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 8703

Special Issue Editors


E-Mail Website
Guest Editor
Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
Interests: natural products; atopic dermatitis; contact dermatitis; allergy; asthma; chronic obstructive pulmonary disease (COPD)
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
Interests: natural products; inflammatory bowel disease; colorectal cancer; ulcerative colitis; tight junction; Crohn's disease
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, there has been a growing interest in harnessing the therapeutic potential of natural products and alternative medicine to combat inflammation—a pervasive factor in various health conditions. This Special Issue serves as a dedicated platform to explore and dissect the multifaceted aspects of the "Anti-Inflammatory Activity of Natural Products and Alternative Medicine: 2nd Edition"

Inflammation, while a vital aspect of the body's defense mechanism, can become chronic and contribute to the development and progression of numerous diseases, including atopic dermatitis, rhinitis, allergic conjunctivitis, asthma, chronic obstructive pulmonary disease (COPD), and inflammatory bowel disease. The use of natural products and alternative medical approaches has garnered attention for their potential to mitigate inflammation and improve overall health outcomes.

This Special Issue brings together a diverse array of research articles, reviews, and studies that delve into the following key themes:

Natural compounds: unveiling the anti-inflammatory properties of natural compounds, ranging from botanical extracts and dietary constituents to minerals and herbal remedies.  

Pharmacological mechanisms: investigating the underlying molecular pathways and biological mechanisms through which natural products exert their anti-inflammatory effects.

We cordially invite you to publish research or review papers in this Special Issue, which aims to summarize the findings of recent studies on the bioactivity of natural and alternative medicines and the evolving landscape of the "Anti-Inflammatory Activity of Natural Products and Alternative Medicine: 2nd Edition."

Dr. Ju-Hye Yang
Dr. Kwang-Il Park
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • inflammatory diseases
  • environmental factors
  • atopic dermatitis
  • rhinitis
  • allergic conjunctivitis
  • asthma
  • inflammatory bowel disease

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 7763 KiB  
Article
The Antioxidant and Anti-Inflammatory Activities of the Methanolic Extract, Fractions, and Isolated Compounds from Eriosema montanum Baker f. (Fabaceae)
by Gaétan Tchangou Tabakam, Emmanuel Mfotie Njoya, Chika Ifeanyi Chukwuma, Samson Sitheni Mashele, Yves Martial Mba Nguekeu, Mathieu Tene, Maurice Ducret Awouafack and Tshepiso Jan Makhafola
Molecules 2024, 29(24), 5885; https://doi.org/10.3390/molecules29245885 - 13 Dec 2024
Viewed by 4279
Abstract
Background: Inflammation is a natural body’s defense mechanism against harmful stimuli such as pathogens, chemicals, or irradiation. But when the inflammatory response becomes permanent, it can lead to serious health problems. In the present study, the antioxidant and anti-inflammatory potentials of the Eriosema [...] Read more.
Background: Inflammation is a natural body’s defense mechanism against harmful stimuli such as pathogens, chemicals, or irradiation. But when the inflammatory response becomes permanent, it can lead to serious health problems. In the present study, the antioxidant and anti-inflammatory potentials of the Eriosema montanum methanolic extract (EMME), as well as its isolated fractions (FA-FJ) and compounds (17), were evaluated by using in vitro and cellular models. Methods: The total phenolic and flavonoid contents were determined using, respectively, Folin–Ciocalteu and aluminum chloride colorimetric methods, while 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2′-diphenyl-1-picrylhy-drazyl (DPPH), and ferric ion reducing antioxidant power (FRAP) were used to determine the antioxidant activity. Thin Layer Chromatography (TLC) and column chromatography (CC) were used to isolate and purify the compounds and their elucidation using their NMR spectroscopic data. Results: EMME had moderate antioxidant and anti-inflammatory activities, while fraction FF showed much higher efficacy with IC50 values of 34.64, 30.60, 16.43, and 77.29 μg/mL against DPPH, ABTS, NO, and 15-LOX inhibitory activities, respectively. The EMME fraction was found to be very rich in flavonoids and phenolic compounds, with 82.11 mgQE/g and 86.77 mgGAE/g of dry extract, respectively. Its LC-MS profiling allowed us to identify genistin (5) as the most concentrated constituent in this plant species, which was further isolated together with six other known compounds, namely, n-hexadecane (1), heptacosanoic acid (2), tricosan-1-ol (3), lupinalbin A (4), d-pinitol (6), and stigmasterol glucoside (7). Given these compounds, genistin (5) showed moderate activity against reactive oxygen species (ROS) and NO production in LPS-stimulated RAW264.7 cells compared to EMME, which suggested a synergy of (5) with other compounds. To the best of our knowledge, compounds (1), (2), and (3) were isolated for the first time from this plant species. Full article
Show Figures

Figure 1

13 pages, 5119 KiB  
Article
Sorbus commixta Fruit Extract Suppresses Lipopolysaccharide-Induced Neuroinflammation in BV-2 Microglia Cells via the MAPK and NF-κB Signaling Pathways
by Yon-Suk Kim, Jin-Hwa Jung and Ki-Tae Kim
Molecules 2024, 29(23), 5592; https://doi.org/10.3390/molecules29235592 - 26 Nov 2024
Viewed by 778
Abstract
Sorbus commixta Hedl. is a traditional medicinal plant in Korea, China, and Japan with known antioxidative, anti-inflammatory, anti-atherogenic, and anti-melanin activities. However, its anti-neuroinflammatory effects remain largely unknown. In this study, we investigated the inhibitory effects of S. commixta fruit extracts on lipopolysaccharide-stimulated [...] Read more.
Sorbus commixta Hedl. is a traditional medicinal plant in Korea, China, and Japan with known antioxidative, anti-inflammatory, anti-atherogenic, and anti-melanin activities. However, its anti-neuroinflammatory effects remain largely unknown. In this study, we investigated the inhibitory effects of S. commixta fruit extracts on lipopolysaccharide-stimulated pro-inflammatory factors in BV-2 microglia. We compared the anti-neuroinflammatory activity of S. commixta fruit water extract (SFW) and 70% ethanol extract using a nitric oxide assay. Our data indicated that the SFW (25–100 μg/mL) treatment significantly inhibited excessive nitric oxide production in lipopolysaccharide-stimulated BV-2 microglia compared to the 70% ethanol extract. It also attenuated the expression of inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines such as interleukin-6 and tumor necrosis factor α. Moreover, SFW exhibited its anti-inflammatory properties by downregulating the expression of factors involved in the extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase pathways and by suppressing nuclear factor kappa B. Caffeic acid was identified as a primary component of SFW showing anti-neuroinflammatory activity. These findings suggest that SFW may offer substantial therapeutic potential for the treatment of neurodegenerative diseases involving microglia activation. Full article
Show Figures

Figure 1

14 pages, 3255 KiB  
Article
Anti-Inflammatory and Neurotrophic Factor Production Effects of 3,5,6,7,8,3′,4′-Heptamethoxyflavone in the Hippocampus of Lipopolysaccharide-Induced Inflammation Model Mice
by Toshiki Omasa, Atsushi Sawamoto, Mitsunari Nakajima and Satoshi Okuyama
Molecules 2024, 29(23), 5559; https://doi.org/10.3390/molecules29235559 - 25 Nov 2024
Viewed by 834
Abstract
Citrus fruits contain several bioactive components. Among them, one of the major components is 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF), which has previously shown protective effects in the brain in some disease models; moreover, HMF has been shown to penetrate the brain. In recent years, inflammation has [...] Read more.
Citrus fruits contain several bioactive components. Among them, one of the major components is 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF), which has previously shown protective effects in the brain in some disease models; moreover, HMF has been shown to penetrate the brain. In recent years, inflammation has been identified as a defense response in the body; however, a chronic inflammatory response may trigger several diseases. Inflammation in the peripheral tissues spreads to the brain and is suggested to be closely associated with diseases of the central nervous system. HMF has shown anti-inflammatory effects in the hippocampus following global cerebral ischemia; however, its effects on acute and chronic inflammation in the brain remain unclear. Therefore, in the present study, we examined the effects of HMF in a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) administration. In this study, HMF suppressed LPS-induced microglial activation in the brains of acute inflammation model mice two days after LPS administration. In addition, 24 days after the administration of LPS in a chronic inflammation model, HMF promoted BDNF production and neurogenesis in the brain, which also tended to suppress tau protein phosphorylation at Ser396. These results suggest that HMF has anti-inflammatory and neurotrophic effects in the brains of model mice with lipopolysaccharide-induced systemic inflammation. Full article
Show Figures

Graphical abstract

14 pages, 6839 KiB  
Article
Anti-Inflammatory Effect of Chamaecyparis obtusa (Siebold & Zucc.) Endl. Leaf Essential Oil
by Sung-Hee Kim, Young-Ah Jang and Yong-Jin Kwon
Molecules 2024, 29(5), 1117; https://doi.org/10.3390/molecules29051117 - 1 Mar 2024
Viewed by 1981
Abstract
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) belongs to the Cupressaceae family and is native to East Asian regions. Essential oils extracted from the leaves, bark, branches, and roots of C. obtusa have both aesthetic and medicinal properties and are [...] Read more.
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) belongs to the Cupressaceae family and is native to East Asian regions. Essential oils extracted from the leaves, bark, branches, and roots of C. obtusa have both aesthetic and medicinal properties and are thus widely used. However, detailed analyses of the active ingredients of C. obtusa extract are lacking. In this study, the sabinene content in the hydro-distillation of C. obtusa leaf essential oil (COD) was analyzed using GC-MS, and the anti-inflammatory effect of COD was compared with that of pure sabinene. Cell viability was evaluated by MTT assay, and nitric oxide (NO) production was measured using Griess reagent. Relative mRNA and protein levels were analyzed using RT-qPCR and western blot, and secreted cytokines were analyzed using a cytokine array kit. The results showed that both COD and sabinene inhibited the expression of inducible nitric oxide synthase (iNOS) and the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 in lipopolysaccharide (LPS)-induced RAW 264.7 cells. COD and sabinene also reduced the production of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, IL-27, IL-1 receptor antagonist (IL-1ra), and granulocyte-macrophage colony-stimulating factor (GM-CSF). The anti-inflammatory mechanisms of COD and sabinene partially overlap, as COD was shown to inhibit MAPKs and the JAK/STAT axis, and sabinene inhibited MAPKs, thereby preventing LPS-induced macrophage activation. Full article
Show Figures

Figure 1

Back to TopTop