Chemical-Physical Properties of Minerals and Minerogenesis in Supergene Environment

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Environmental Mineralogy and Biogeochemistry".

Deadline for manuscript submissions: closed (30 April 2019) | Viewed by 19335

Special Issue Editor


E-Mail Website
Guest Editor
Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
Interests: mineralogy; minerogenesis; applied and environmental mineralogy

Special Issue Information

Dear Colleagues,

The processes involving minerals in supergene environments are those occurring at or near the Earth's surface. In these environments, lithosphere, atmosphere, hydrosphere, and biosphere continuously interact with each other, triggering reactions that lead to the weathering of preexisting minerals and to the genesis of authigenic phases. The theoretical or practical understanding of these processes, the determination of the minerals involved and of their chemical-physical properties are of paramount importance, not only for the fundamentals of mineralogy, but also for their significant implications for environment, ecosystems, and human health protection, agriculture and food security, supergene metal deposit prospection and even for the conservation of cultural heritage. This Special Issue aims to collect articles focusing on minerals, mineral properties, and mineral reactions occurring at Earth’s outer layer due to the interactions among lithosphere, air, water, and biota. Interdisciplinary, cross-disciplinary, and multidisciplinary studies are welcome.

The first round submission deadline is: 30 November 2018

Prof. Marescotti Pietro
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mineral weathering
  • mineral genesis
  • supergene environment
  • authigenic minerals
  • mineral-biosphere interactions

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 6085 KiB  
Article
The Concentration of Asbestos Fibers in Bulk Samples and Its Variation with Grain Size
by Gaia M. Militello, Elisa Sanguineti, Adrián Yus González, Federico Mantovani and Laura Gaggero
Minerals 2019, 9(9), 539; https://doi.org/10.3390/min9090539 - 06 Sep 2019
Cited by 8 | Viewed by 4455
Abstract
The aim of this work was to establish whether asbestos fibers homogeneously occur in the different fractions ground from naturally occurring asbestos lithotypes, and to calculate the contribution of fibers from each fraction to the overall concentration in the sample. Serpentinite, metabasalt, calc-schist, [...] Read more.
The aim of this work was to establish whether asbestos fibers homogeneously occur in the different fractions ground from naturally occurring asbestos lithotypes, and to calculate the contribution of fibers from each fraction to the overall concentration in the sample. Serpentinite, metabasalt, calc-schist, clay, debris material, and soil, were addressed. Grain size fractions below 20 mm were sieved at 2 mm and 0.106 mm; they were then were mechanically milled to obtain powders below 0.106 mm. The three powdered fractions were characterized using a scanning electron microscope coupled with energy dispersive spectroscopy following M.D. 06/09/94. The still in use (in some cases), Italian normative M.D. 161/2012 specifies that analyses must be performed on the <2 mm fraction and the concentration (mg/kg) correlated with the weight of the whole sample <20 mm. However, the fiber counts yielded asbestos concentrations 50–60% lower compared with total asbestos analyses according to the new R.P.D. 120/2017. Consequently, there is a need to standardize the normative worldwide regulations for the management of asbestos-containing materials, by re-evaluation of sample preparation and quantification of asbestos. Full article
Show Figures

Figure 1

23 pages, 10978 KiB  
Article
Potentially Toxic Elements in Ultramafic Soils: A Study from Metamorphic Ophiolites of the Voltri Massif (Western Alps, Italy)
by Pietro Marescotti, Paola Comodi, Laura Crispini, Lara Gigli, Azzurra Zucchini and Silvia Fornasaro
Minerals 2019, 9(8), 502; https://doi.org/10.3390/min9080502 - 20 Aug 2019
Cited by 18 | Viewed by 4113
Abstract
Ultramafic soils are characterized by severe edaphic conditions induced by a low content of essential nutrients, an adverse Ca/Mg ratio, a low water-holding capacity, and high contents of geogenic potentially toxic elements (PTEs), in particular Cr, Ni, and Co. These metals commonly exceed [...] Read more.
Ultramafic soils are characterized by severe edaphic conditions induced by a low content of essential nutrients, an adverse Ca/Mg ratio, a low water-holding capacity, and high contents of geogenic potentially toxic elements (PTEs), in particular Cr, Ni, and Co. These metals commonly exceed the content limits set by environmental agencies and governments, representing serious environmental risks for ecosystems and human health. In alpine environments, ultramafic soils are characterized by modest thickness and poor horizon differentiation. Several studies on ultramafic soils have shown that their properties may be directly related to the characteristics of the parent rocks, but most of these studies deal with soil chemistry, metal availability, isotopic composition, and pedological characterization. The aim of this research is to investigate how much the geotectonic characteristics of ultramafic bedrocks, such as the degree of serpentinization, metamorphic imprint, and deformation, may affect the mineralogical and chemical variations of ultramafic soils, including the occurrence and potential mobility of the PTEs. Using a multiscale and multi-analytical approach, we fully characterize the properties and mineralogical composition of soil profiles with different ultramafic parent rocks, i.e., partially serpentinized peridotite, massive serpentinites, and foliated serpentinites, sampled within the Voltri Massif High Pressure–Low Temperature (HP–LT) metaophiolite (Western Alps, Italy). Our results, related to soils located at comparable latitude, altitude, landscape position, and pedological environment, outline that the degree of serpentinization, the metamorphic imprint, and the deformation history of the ultramafic parent rocks are key factors influencing soil evolution, mineralogy, and chemistry, as well as PTEs distribution and mobility. Moreover, this study shows that the high content of Cr, Ni, and Co in the studied ultramafic soils has to be considered of geogenic origin and highlights the need for new approaches and methods to obtain indications on the potential contamination of natural or anthropogenic soils. Full article
Show Figures

Figure 1

12 pages, 3386 KiB  
Article
The Use of Heavy Minerals in the Investigation of Barrier-Lagoon Coasts Development in Dapeng Peninsula, China
by Jing Feng and Wei Wang
Minerals 2019, 9(6), 347; https://doi.org/10.3390/min9060347 - 05 Jun 2019
Viewed by 2341
Abstract
Typical barrier-lagoon systems are developed at Dongchong and Xichong on the southern coast of the Dapeng Peninsula of Guangdong, China. This paper studies the evolution of the barrier coasts of the peninsula, using the examples of the Dongchong and Xichong Bays. The Holocene [...] Read more.
Typical barrier-lagoon systems are developed at Dongchong and Xichong on the southern coast of the Dapeng Peninsula of Guangdong, China. This paper studies the evolution of the barrier coasts of the peninsula, using the examples of the Dongchong and Xichong Bays. The Holocene stratigraphic records from borehole drilling on the coast of Dongchong and Xichong show that lagoon sediments are overlaid with beach deposits, indicating that the barriers migrated landward and climbed over the lagoon sediments when the shoreface retreated during the Holocene transgression, reaching the present positions after 7–8 ka BP. Heavy mineral analysis in this paper shows that: (1) the ancient beach sediments of the two bays have the same heavy mineral assemblages, which are different from those of modern beaches; (2) the present beaches of the two bays have different heavy mineral assemblages, even they are located less than 3000 m from each other on the same coast. This supports the hypothesis that the barriers originally came from the inner shelves during the Holocene transgression, but draws a new conclusion that the source of the beach sediments changed to inland rivers over the last thousand years because of a lack of sediment source from the sea floor. Full article
Show Figures

Graphical abstract

18 pages, 8274 KiB  
Article
Origin of Smectite in Salinized Soil of Junggar Basin in Xinjiang of China
by Haixia Xie, Shuai He, Chuanqin Huang and Wenfeng Tan
Minerals 2019, 9(2), 100; https://doi.org/10.3390/min9020100 - 10 Feb 2019
Cited by 4 | Viewed by 3322
Abstract
In this paper, salinized soils with different degrees of salinity are sampled in Junggar Basin of Xinjiang of China. The X-ray diffraction, transmission electron microscopy, and inductively coupled plasma mass spectrometry are employed to investigate the morphology and distribution characteristics of smectite in [...] Read more.
In this paper, salinized soils with different degrees of salinity are sampled in Junggar Basin of Xinjiang of China. The X-ray diffraction, transmission electron microscopy, and inductively coupled plasma mass spectrometry are employed to investigate the morphology and distribution characteristics of smectite in salinized soil profiles. In the salinized soil profiles of this region, crystals of smectite are poor where lattice fringes are not parallel. In all soil layers, the content of smectite in the soil increases with the decrease in content of illite, which has demonstrated significant negative correlation (r = 0.79, n = 50, p < 0.01) between illite and smectite. This phenomenon has demonstrated that illite may be transformed into smectite in salinized soils of studied regions. In general, the transformation process of illite to smectite is affected by climate condition. The δ18O values of secondary carbonate in the 0–10 cm soil layers is higher than that in deep soil layers, which indicates that δ18O concentrates in surface soil and reflects temperature rise during soil layer formation. The δ13C values of secondary carbonate and soil organic matter in 0–10 cm soil layers are higher than that in deep soil layers. It indicates that C4 plants were the main plants, which reflects that the climate was relatively dry during the formation of the surface soil. Thus, the climate during the surface soil formation is arid, which is not conducive for leaching K+ from illite of the 0–10 cm soil to form smectite. As a result, the content of the smectite becomes lowest in the soil surface. In the relative humid condition of deep soil layers, the K+ of the illite of the soil would be relative easily leached and more smectite may be formed. Furthermore, the presence of salt in the salinized soil would promote the formation of smectite in Junggar Basin of Xinjiang. A lot of Ca2+, Na+ and Mg2+ in the soil solution of salinized soils would enter into the illite and occupy K+ positions. The studied result shows that the amount of smectite would increase with the increase of salt below 10 cm of the soil layer, where the amount of smectite would be significantly correlated with soil electrical conductivity (r = 0.64, n = 39, p < 0.01). In the Junggar Basin in Xinjiang, therefore, the salinized soil below 10 cm would have the necessary water conditions and chemical components for illite transformation to smectite. Full article
Show Figures

Figure 1

12 pages, 1876 KiB  
Article
Crystallization Behaviour of Iron-Hydroxide Sulphates by Aging under Ambient Temperature Conditions
by Amalia Jiménez, Ana Hernández and Manuel Prieto
Minerals 2019, 9(1), 27; https://doi.org/10.3390/min9010027 - 05 Jan 2019
Cited by 11 | Viewed by 4431
Abstract
The crystallization behaviour of jarosite and schwertmannite has been studied by precipitation-aging experiments performed using different parent-solution concentrations at acidic conditions and ambient temperature. Schwertmannite exhibits low crystallinity and is the only mineral identified during low-concentration (LC) experiments. However, in high-concentration (HC) experiments, [...] Read more.
The crystallization behaviour of jarosite and schwertmannite has been studied by precipitation-aging experiments performed using different parent-solution concentrations at acidic conditions and ambient temperature. Schwertmannite exhibits low crystallinity and is the only mineral identified during low-concentration (LC) experiments. However, in high-concentration (HC) experiments, a relatively rapid Ostwald ripening process leads to the transformation of schwertmannite into natrojarosite. The presence of sodium modifies the morphology and stability of the obtained phases. TEM observations reveal that schwertmannite particles consist of disoriented nanodomains (~6 nm) spread in an amorphous mass. In contrast, natrojarosite particles exhibit a single-domain, highly crystalline core, with the crystallinity decreasing from core to rim. The thermal behaviour of these phases depends on both their composition and their degree of crystallinity. TG and DTG analyses show that, below 500 °C, the amount of structural water is clearly higher in schwertmannite than in natrojarosite. The present results highlight the role of the ripening processes in epigenetic conditions and could be important in interpreting the formation of jarosite in Earth and Martian surface environments. Full article
Show Figures

Figure 1

Back to TopTop