Early Cretaceous A-Type Acidic Magmatic Belt in Northern Lhasa Block: Implications for the Evolution of the Bangong–Nujiang Ocean Lithosphere
Abstract
1. Introduction
2. Geological Background
3. Sample Description and Petrography
4. Analytical Methods and Results
4.1. Zircon U–Pb Geochronology Results
4.2. In Situ Zircon Hf Isotope Results
4.3. Whole-Rock Major- and Trace-Element Results
5. Discussion
5.1. Explanation of Zircon U-Pb Ages
5.2. Assessment of Element Mobility of the Burshulaling Granites
5.3. Petrogenesis of the Burshulaling Granites
5.3.1. An A2-Type Affinity of the Burshulaling Granites
5.3.2. Magma Source of the A-Type Granite
5.4. The A-Type Acidic Magmatic Belt in the Northern Lhasa Block
5.5. Implications for Southward Subduction of BNO or Orogenic Collapse of Lhasa Block
6. Conclusions
- (1)
- Geochemical data show that the Burshulaling Granites are peraluminous high-K calc-alkaline, A-type granites formed in a high temperature–low pressure post-collision environment and underwent a moderately to highly fractionated process.
- (2)
- The 115–113 Ma Burshulaling Granites were formed by the mixing of upwelling of the asthenosphere and the melting of the lower crust due to slab break-off or orogenic root detachment.
- (3)
- There is an A-type acidic magmatic belt along the northern margin of the Lhasa Block, which indicates that the BNO subducted to the south or that an Andean-type orogen collapsed.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loiselle, M.C.; Wones, D.R. Characteristics and origin of anorogenic granites. GSA Bull. 1979, 11, 468. [Google Scholar]
- Zhang, Q.; Ran, H.; Li, C.D. A-type granite: What is the essence? Acta Petrol. Mineral. 2012, 31, 621–626. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Frost, C.D.; Frost, B.R. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. J. Petrol. 2011, 52, 39–53. [Google Scholar] [CrossRef]
- Dall’Agnol, R.; de Oliveira, D.C. Oxidized, magnetite-series rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos 2007, 93, 215–233. [Google Scholar] [CrossRef]
- Collins, W.J.; Huang, H.Q.; Bowden, P.; Kemp, A.I.S. Repeated S–I–A-type granite trilogy in the Lachlan Orogen, and geochemical contrasts with A-type granites in Nigeria: Implications for petrogenesis and tectonic discrimination. Geol. Soc. London 2020, 491, 53–76. [Google Scholar] [CrossRef]
- Whalen, J.; Currie, K.; Chappell, B. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Miner. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- King, P.L.; Chappell, B.W.; Allen, C.M.; White, A.J.R. Are A-type granites the high temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Aust. J. Earth Sci. 2001, 48, 501–514. [Google Scholar] [CrossRef]
- Eby, G.N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 1990, 26, 115–134. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geological evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.H.; Ji, W.H.; Yin, F.G.; Zhang, W.P.; Wang, B.D. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 2012, 53, 3–14. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Zhu, D.C.; Li, S.M.; Cawood, P.A.; Wang, Q.; Zhao, Z.D.; Liu, S.A.; Wang, L.O. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 2016, 245, 7–17. [Google Scholar] [CrossRef]
- Zhang, K.J.; Zhang, Y.X.; Tang, X.C.; Xia, B. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth-Sci. Rev. 2012, 114, 236–249. [Google Scholar] [CrossRef]
- Zhang, K.J.; Xia, B.; Zhang, Y.X.; Liu, W.L.; Zeng, L.; Li, J.F.; Xu, L.F. Central Tibetan Meso-Tethyan oceanic plateau. Lithos 2014, 210, 278–288. [Google Scholar] [CrossRef]
- Song, Y.; Tang, J.X.; Lin, B.; Yang, C.; Sun, H. Metallogeny in the Bangong–Nujiang belt, central Tibet, China: A review. Front. Earth Sci. 2023, 11, 2296–6463. [Google Scholar] [CrossRef]
- Kapp, P.; Murphy, M.A.; Yin, A.; Harrison, T.M.; Ding, L.; Guo, J.H. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 2003, 22, 1029. [Google Scholar] [CrossRef]
- Kapp, P.; Yin, A.; Harrison, T.M.; Ding, L. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. GSA Bull. 2005, 117, 865–878. [Google Scholar] [CrossRef]
- Chen, W.Y.; Hu, X.C.; Zhong, Y.; Fu, Y.B.; Li, F.; Wang, Y.G. Comment on “Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing” by A. Ma et al. J. Geophys. Res. Solid Earth 2018, 123, 7338–7342. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wang, L.O.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Van Lente, B.; Ashwal, L.; Pandit, M.; Bowring, S.; Torsvik, T. Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: Implications for late Precambrian tectonic evolution of the Aravalli Craton. Precambrian Res. 2009, 170, 202–222. [Google Scholar] [CrossRef]
- Coulon, C.; Megartsi, M.; Fourcade, S.; Maury, R.; Bellon, H.; Louni-Hacini, A.; Cotton, J.; Coutelle, A.; Hermitte, D. Post-collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria): Magmatic expression of a slab breakoff. Lithos 2002, 62, 87–110. [Google Scholar] [CrossRef]
- Van Hunen, J.; Allen, M.B. Continental collision and slab break-off: A comparison of 3-D numerical models with observations. Earth Planet. Sci. Lett. 2011, 302, 27–37. [Google Scholar] [CrossRef]
- Zeng, Y.C.; Chen, J.L.; Xu, J.F.; Wang, B.D.; Huang, F. Sediment melting during subduction initiation: Geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite mélange, central Tibet. Geochem. Geophys. Geosyst. 2016, 17, 4859–4877. [Google Scholar] [CrossRef]
- Peng, Y.B.; Yu, S.Y.; Li, S.Z.; Liu, Y.J.; Dai, L.M.; Lv, P.; Guo, R.H.; Liu, Y.M.; Wang, Y.H.; Xie, W.M. Early Jurassic and Late Cretaceous granites in the Tongka micro-block, Central Tibet: Implications for the evolution of the Bangong-Nujiang ocean. J. Asian Earth Sci. 2020, 194, 1367–9120. [Google Scholar] [CrossRef]
- Xie, L.; Dun, D.; Zhu, L.D.; Nima, C.; Yang, W.G.; Tao, G.; Li, C.; He, B.; He, Y. Zircon U-Pb geochronology, geochemistry and geological significance of the Zhaduding A-type granites in northern Gangdese, Tibet. Geol. China 2015, 42, 1214–1227. [Google Scholar] [CrossRef]
- Fan, J.J.; Li, C.; Sun, Z.M.; Xu, W.; Wang, M.; Xie, C.M. Early cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean. J. Asian Earth Sci. 2018, 154, 187–201. [Google Scholar] [CrossRef]
- Li, H.; Wang, M.; Zeng, X.W.; Luo, A.B.; Yu, Y.P.; Zeng, X.J. Slab break-off origin of 105 Ma A-type porphyritic granites in the Asa area of Tibet. Geol. Mag. 2020, 157, 1281–1298. [Google Scholar] [CrossRef]
- Kang, Z.Q.; Xu, J.F.; Wang, B.D.; Dong, Y.H.; Wang, S.Q.; Chen, J.L. Geochemistry of Cretaceous volcanic rocks of Duoni formation in Northern Lhasa Block: Discussion of Tectonic setting. Earth Sci. China Univ. Geosci. 2009, 34, 89–104. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, D.C.; Zhao, Z.D.; Meng, F.Y.; Wang, Q.; Santosh, M.; Wang, L.Q.; Dong, G.C.; Mo, X.X. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Res. 2014, 26, 449–463. [Google Scholar] [CrossRef]
- Qu, X.M.; Wang, R.J.; Xin, H.B.; Jiang, J.H.; Chen, H. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau. Lithos 2012, 146, 264–275. [Google Scholar] [CrossRef]
- Zhang, K.J.; Zhang, Y.X.; Tang, X.C.; Xie, Y.W.; Sha, S.L.; Peng, X.J. First report of eclogites from central Tibet, China: Evidence for ultradeep continental subduction prior to the Cenozoic India-Asian collision. Terra Nova 2008, 20, 302–308. [Google Scholar] [CrossRef]
- Hu, X.M.; Ma, A.L.; Xue, W.W.; Garzanti, E.; Cao, Y.; Li, S.M.; Sun, G.Y.; Lai, W. Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Sci. Rev. 2022, 229, 104031. [Google Scholar] [CrossRef]
- Liu, W.B.; Qian, Q.; Yue, G.L.; Li, Q.S.; Zhang, Q.; Zhou, M.F. The geochemical characteristics of fore-arc ophiolite from Dingqing area. Tibet. Acta Petrol. Sin. 2020, 18, 392–400. [Google Scholar] [CrossRef]
- Guynn, J.H.; Kapp, P.; Pullen, A.; Heizler, M.; Gehrels, G.; Ding, L. Tibetan basement rocks near Amdo reveal “missing Mesozoic tectonism along the Bangong suture, central Tibet. Geology 2006, 34, 505–508. [Google Scholar] [CrossRef]
- Tang, Y.; Zhai, O.G.; Hu, P.Y.; Xiao, X.C.; Wang, H.T.; Wang, W.; Zhu, Z.C.; Wu, H. Jurassic high-Mg andesitic rocks in the middle part of the Bangong-Nujiang suture zone. Tibet: New constraints for the tectonic evolution of the Meso-Tethys Ocean. Acta Petrol. Sin. 2019, 35, 3097–3114. [Google Scholar] [CrossRef]
- Wang, X.C.; Xia, B.; Liu, W.L.; Zhong, Y.; Hu, X.C.; Guan, Y.; Huang, W.; Yin, Z.X. Geochronology, geochemistry and petrogenesis of the Pungco ophiolite, Tibet. Geotecton. Metallog. 2018, 42, 550–569. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, X.; Cao, H.; Ettensohn, F.R.; Chen, W.; Lang, X. Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Oiangtang revealed: Stratigraphic and geochronological evidence from Gaize, Tibet. Basin Res. 2014, 28, 147–157. [Google Scholar] [CrossRef]
- Li, S.; Ding, L.; Guilmette, C.; Fu, J.; Xu, O.; Yue, Y.; Henrique-Pinto, R. The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet. Tectonophysics 2017, 702, 42–60. [Google Scholar] [CrossRef]
- Ji, C.; Yan, L.L.; Lu, L.; Jin, X.; Huang, Q.T.; Zhang, K.J. Anduo Late Cretaceous high-K calc-alkaline and shoshonitic volcanic rocks in central Tibet, western China: Relamination of the subducted Meso-Tethyan oceanic plateau. Lithos 2021, 400, 106345. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Liu, C.Z.; Liu, T.; Zhang, C.; Zhang, Z.Y. Subduction initiation triggered by accretion of a Jurassic oceanic plateau along the Bangong–Nujiang Suture in central Tibet. Terra Nova 2021, 33, 150–158. [Google Scholar] [CrossRef]
- Baxter, A.T.; Aitchison, J.C.; Zyabrev, S.V. Radiolarian age constraints on Meso-Tethyan ocean evolution, and their implications for development of the Bangong-Nujiang suture, Tibet. J. Geol. Soc. 2009, 166, 689–694. [Google Scholar] [CrossRef]
- Shi, R.D.; Griffin, W.L.; O’Reilly, S.Y.; Huang, Q.T.; Zhang, X.R.; Liu, D.L. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet. Gondwana Res. 2012, 21, 194–206. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Z.F. Origin of continental arc andesites: The composition of source rocks is the key. J. Asian Earth Sci. 2017, 145, 217–232. [Google Scholar] [CrossRef]
- Fan, S.Y.; Ding, L.; Murphy, M.A.; Yao, W.; Yin, A. Late Paleozoic and Mesozoic evolution of the Lhasa Terrane in the Xainza area of southern Tibet. Tectonophysics 2017, 721, 415–434. [Google Scholar] [CrossRef]
- Huang, T.T.; Xu, J.F.; Chen, J.L.; Wu, J.B.; Zeng, Y.C. Sedimentary record of Jurassic northward subduction of the Bangong-Nujiang Ocean: Insights from detrital zircons. Int. Geol. Rev. 2017, 59, 166–184. [Google Scholar] [CrossRef]
- Li, Q.H.; Lu, L.; Zhang, K.J.; Yan, L.L.; Huangfu, P.; Hui, J.; Ji, C. Late Cretaceous post-orogenic delamination in the western Gangdese arc: Evidence from geochronology, petrology, geochemistry, and Sr–Nd–Hf isotopes of intermediate–acidic igneous rocks. Lithos 2022, 424, 106763. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Li, Z.W.; Yang, W.G.; Zhu, L.D.; Jin, S.; Zhou, X.Y.; Tao, G.; Zhang, K.J. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China. J. Asian Earth Sci. 2017, 135, 212–242. [Google Scholar] [CrossRef]
- Pan, G.T.; Ding, J.; Yao, D.S.; Wang, L.Q. Guidebook of 1:1,500,000 Geologic Map of the Qinghai–Xizang (Tibet) Plateau and Adjacent Areas; Cartographic Publishing House: Chengdu, China, 2004; pp. 1–148. [Google Scholar]
- Ding, L.; Kapp, P.; Wan, X. Paleocene–Eocene record of ophiolite obduction and initial India–Asia collision, south-central Tibet. Tectonics 2005, 24, TC3001. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Hu, Z.C.; Zhang, W.; Liu, Y.S.; Gao, S.; Li, M.; Zong, K.Q.; Chen, H.H.; Hu, S.H. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Hoskin, P.W.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Xu, W.C.; Zhang, H.F.; Parrish, R.; Harris, N.; Guo, L.; Yuan, H.L. Timing of granulite-facies metamorphism in the eastern himalayan syntaxis and its tectonic implications. Tectonophysics 2010, 485, 231–244. [Google Scholar] [CrossRef]
- Guo, L.; Wang, C.; Zhang, H.F.; Harris, N.; Pan, F.B. Detrital zircon u-pb geochronology, trace-element and hf isotope geochemistry of the metasedimentary rocks in the eastern himalayan syntaxis: Tectonic and paleogeographic implications. Gondwana Res. 2017, 41, 207–221. [Google Scholar] [CrossRef]
- Hu, P.; Zhai, Q.; Tang, Y.; Wang, H.; Wu, H. The middle Neoproterozoic meta-gabbro from the north Lhasa terrane of Tibet and its geological implications. Geol. Bull. China 2016, 37, 1400–1405. [Google Scholar]
- Guynn, J.H.; Kapp, P.; Gehrels, G.E.; Ding, L. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications. J. Asian Earth Sci. 2012, 43, 23–50. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Dong, X.; Liu, F.; Lin, Y.H.; Yan, R.; Santosh, M. Tectonic Evolution of the Amdo Terrane, Central Tibet: Petrochemistry and Zircon U-Pb Geochronology. J. Geology 2012, 120, 431–451. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Li, S.; Santosh, M.; Yu, S. Neoproterozoic amdo and jiayuqiao microblocks in the tibetan plateau: Implications for rodinia reconstruction. GSA Bull. 2020, 133, 663–678. [Google Scholar] [CrossRef]
- Polat, A.; Hofmann, A.W. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Res. 2003, 126, 197–218. [Google Scholar] [CrossRef]
- Ordóñez-Calderón, J.C.; Polat, A.; Fryer, B.J.; Gagnon, J.E.; Raith, J.G.; Appel, P.W.U. Evidence for HFSE and REE mobility during calc-silicate metasomatism, Mesoarchean (~3075 Ma) Ivisaartoq greenstone belt, southern West Greenland. Precambrian Res. 2008, 161, 317–340. [Google Scholar] [CrossRef]
- Pearce, J.A.; Deng, W. The ophiolites of the Tibet geotraverse, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philos. Trans. R. Soc. A 1988, 327, 215–238. [Google Scholar] [CrossRef]
- Condie, K.C.; Pisarevsky, S.A.; Puetz, S.J.; Roberts, N.M.W.; Spencer, C.J. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events. Earth Planet. Sci. Lett. 2023, 610, 118125. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.P. Generation of metaluminous A-type granites by low pressure melting of calc-alkaline granitoids. Geology 1997, 25, 743–746. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Chung, S.L.; Wilde, S.A.; Chu, M.F. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr\Nd\Hf isotopic evidence. Lithos 2006, 89, 89–106. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Wang, C.Y.; Zhou, M.F.; Yang, Y.H. Zircon Lu–Hf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China): Constraints on the mantle source. J. Asian Earth Sci. 2009, 35, 45–55. [Google Scholar] [CrossRef]
- Douce, P. Amphibolite to granulite transition in aluminous greywackes from the Sierra de Comechingones, Córdoba, Argentina. J. Metamorph. Geol. 1999, 17, 415–434. [Google Scholar] [CrossRef]
- Martin, H.; Smithies, R.H.; Rapp, R.; Moyen, J.F.; Champion, D. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Wang, W.; Pandit, M.K.; Zhao, J.H.; Chen, W.T.; Zheng, J.P. Slab break-off triggered lithosphere-asthenosphere interaction at a convergent margin: The Neoproterozoic bimodal magmatism in NW India. Lithos 2018, 296, 281–296. [Google Scholar] [CrossRef]
- Wu, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Highly fractionated granites: Recognition and research. Sci. China Earth Sci. 2017, 60, 1201–1219. [Google Scholar] [CrossRef]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tartèse, R.; Vigneresse, J.L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Wu, F.Y.; Ji, W.Q.; Liu, C.Z.; Chung, S.L. Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chem. Geol. 2010, 271, 13–25. [Google Scholar] [CrossRef]
- Zhang, K.J.; Xia, B.D.; Wang, G.M.; Li, Y.T.; Ye, H.F. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. GSA Bull. 2004, 116, 1202–1222. [Google Scholar] [CrossRef]
- Kapp, P.; DeCelles, P.G.; Gehrels, G.E.; Heizler, M.; Ding, L. Geological records of the Lhasa Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GSA Bull. 2007, 119, 917–933. [Google Scholar] [CrossRef]
- Liang, H.D.; Fang, H.; Xiao, D.; Zhong, Q.; He, M.X.; Pei, F.G.; Wang, G.; Zhang, X.B.; Bai, D.W.; Lü, Q.Y. Divergent double subduction of Bangong-Nujiang Ocean revealed by high-resolution magnetotelluric data at 86° E in the northern Tibetan Plateau. Tectonophysics 2023, 862, 229960. [Google Scholar] [CrossRef]
- Otofuji, Y.I.; Mu, C.L.; Tanaka, K.; Miura, D.; Inokuchi, H.; Kamei, R.; Tamai Takemoto, K.; Zaman, H.; Yokoyama, M. Spatial gap between Lhasa and Qiangtang blocks inferred from Middle Jurassic to Cretaceous paleomagnetic data. Earth Planet. Sci. Lett. 2007, 262, 581–593. [Google Scholar] [CrossRef]
Point | Content (ppm) | Th/U | Isotopic Ratios | Isotopic Ages (Ma) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pb | Th | U | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 206Pb/238U | 1σ | ||
D2363-02 | 47.2 | 889 | 2256 | 0.4 | 0.1262 | 0.0032 | 0.0185 | 0.0002 | 118 | 1.2 |
D2363-05 | 14.0 | 406 | 654 | 0.6 | 0.1140 | 0.0054 | 0.0179 | 0.0002 | 114 | 1.3 |
D2363-06 | 14.7 | 513 | 647 | 0.8 | 0.1246 | 0.0051 | 0.0179 | 0.0002 | 115 | 1.5 |
D2363-07 | 16.1 | 401 | 742 | 0.5 | 0.1226 | 0.0061 | 0.0188 | 0.0003 | 120 | 2.1 |
D2363-08 | 11.4 | 330 | 531 | 0.6 | 0.1143 | 0.0049 | 0.0178 | 0.0002 | 114 | 1.4 |
D2363-09 | 48.1 | 1632 | 2119 | 0.8 | 0.1264 | 0.0035 | 0.0185 | 0.0002 | 118 | 1.1 |
D2363-11 | 135.6 | 3702 | 6447 | 0.6 | 0.1267 | 0.0031 | 0.0183 | 0.0002 | 117 | 1.4 |
D2363-12 | 23.2 | 530 | 1131 | 0.5 | 0.1162 | 0.0040 | 0.0177 | 0.0002 | 113 | 1.1 |
D2363-13 | 93.6 | 1418 | 4579 | 0.3 | 0.1193 | 0.0028 | 0.0184 | 0.0002 | 117 | 1.0 |
D2363-14 | 5.3 | 159 | 245 | 0.6 | 0.1217 | 0.0075 | 0.0182 | 0.0003 | 116 | 1.8 |
D2363-15 | 11.1 | 286 | 510 | 0.6 | 0.1239 | 0.0065 | 0.0185 | 0.0002 | 118 | 1.5 |
D2363-16 | 9.5 | 252 | 445 | 0.6 | 0.1158 | 0.0059 | 0.0179 | 0.0003 | 115 | 1.7 |
D2363-17 | 3.2 | 100 | 139 | 0.7 | 0.1247 | 0.0085 | 0.0182 | 0.0004 | 116 | 2.4 |
D2363-19 | 16.4 | 440 | 777 | 0.6 | 0.1199 | 0.0059 | 0.0180 | 0.0003 | 115 | 1.7 |
D2363-20 | 11.3 | 492 | 477 | 1.0 | 0.1242 | 0.0064 | 0.0179 | 0.0002 | 114 | 1.6 |
D2363-21 | 69.0 | 1080 | 3466 | 0.3 | 0.1270 | 0.0033 | 0.0177 | 0.0001 | 113 | 0.9 |
D2363-22 | 74.1 | 1105 | 3747 | 0.3 | 0.1225 | 0.0030 | 0.0178 | 0.0001 | 114 | 0.9 |
D2363-23 | 16.7 | 486 | 793 | 0.6 | 0.1117 | 0.0045 | 0.0175 | 0.0002 | 112 | 1.3 |
D2363-24 | 19.3 | 922 | 791 | 1.2 | 0.1248 | 0.0049 | 0.0178 | 0.0002 | 114 | 1.3 |
D2363-25 | 39.3 | 143 | 227 | 0.6 | 1.4943 | 0.0561 | 0.1550 | 0.0033 | 929 | 18.6 |
D2363-26 | 10.4 | 69 | 555 | 0.1 | 0.1217 | 0.0048 | 0.0178 | 0.0002 | 114 | 1.2 |
D2363-27 | 8.7 | 250 | 401 | 0.6 | 0.1255 | 0.0062 | 0.0181 | 0.0002 | 115 | 1.6 |
D2363-30 | 43.4 | 811 | 2144 | 0.4 | 0.1232 | 0.0035 | 0.0178 | 0.0002 | 114 | 1.0 |
D2366-01 | 26.9 | 686 | 1280 | 0.5 | 0.1196 | 0.0041 | 0.0175 | 0.0002 | 112 | 1.1 |
D2366-02 | 37.4 | 772 | 1816 | 0.4 | 0.1176 | 0.0037 | 0.0178 | 0.0002 | 114 | 1.1 |
D2366-04 | 14.1 | 780 | 529 | 1.5 | 0.1196 | 0.0056 | 0.0176 | 0.0002 | 112 | 1.3 |
D2366-05 | 25.1 | 590 | 1194 | 0.5 | 0.1150 | 0.0042 | 0.0176 | 0.0002 | 112 | 1.2 |
D2366-06 | 4.0 | 116 | 174 | 0.7 | 0.1212 | 0.0087 | 0.0180 | 0.0003 | 115 | 2.1 |
D2366-07 | 12.1 | 320 | 556 | 0.6 | 0.1244 | 0.0061 | 0.0176 | 0.0002 | 112 | 1.5 |
D2366-09 | 15.7 | 424 | 721 | 0.6 | 0.1132 | 0.0051 | 0.0177 | 0.0002 | 113 | 1.2 |
D2366-10 | 2.7 | 97 | 115 | 0.8 | 0.1081 | 0.0100 | 0.0175 | 0.0004 | 112 | 2.5 |
D2366-11 | 29.7 | 594 | 1433 | 0.4 | 0.1209 | 0.0042 | 0.0176 | 0.0002 | 112 | 1.0 |
D2366-12 | 26.8 | 1312 | 1082 | 1.2 | 0.1184 | 0.0047 | 0.0178 | 0.0002 | 114 | 1.4 |
D2366-13 | 3.4 | 104 | 154 | 0.7 | 0.1213 | 0.0113 | 0.0175 | 0.0004 | 112 | 2.2 |
D2366-14 | 16.2 | 517 | 718 | 0.7 | 0.1245 | 0.0051 | 0.0181 | 0.0002 | 115 | 1.3 |
D2366-15 | 5.2 | 162 | 223 | 0.7 | 0.1298 | 0.0082 | 0.0180 | 0.0003 | 115 | 1.8 |
D2366-17 | 11.7 | 364 | 534 | 0.7 | 0.1146 | 0.0054 | 0.0179 | 0.0002 | 114 | 1.4 |
D2366-18 | 2.5 | 65 | 117 | 0.6 | 0.1272 | 0.0087 | 0.0177 | 0.0004 | 113 | 2.3 |
D2366-19 | 16.7 | 406 | 797 | 0.5 | 0.1241 | 0.0049 | 0.0178 | 0.0003 | 114 | 1.7 |
D2366-21 | 5.8 | 196 | 264 | 0.7 | 0.1129 | 0.0061 | 0.0177 | 0.0003 | 113 | 1.8 |
D2366-22 | 6.0 | 201 | 267 | 0.8 | 0.1250 | 0.0079 | 0.0178 | 0.0003 | 114 | 1.9 |
D2366-25 | 9.6 | 299 | 441 | 0.7 | 0.1153 | 0.0060 | 0.0176 | 0.0002 | 113 | 1.5 |
D2366-26 | 9.8 | 277 | 463 | 0.6 | 0.1284 | 0.0066 | 0.0176 | 0.0003 | 112 | 1.6 |
D2366-28 | 8.4 | 450 | 319 | 1.4 | 0.1219 | 0.0064 | 0.0178 | 0.0002 | 114 | 1.6 |
D2366-30 | 11.2 | 317 | 522 | 0.6 | 0.1230 | 0.0055 | 0.0176 | 0.0002 | 112 | 1.5 |
Point | Ages (Ma) | 176Yb/177Hf | 1σ | 176Hf/177Hf | 1σ | 176Lu/177Hf | 1σ | εHf(0) | εHf(t) | TDM (Ma) | (Ma) | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|
D2363-02 | 118 | 0.054295 | 0.002399 | 0.282628 | 0.000013 | 0.001721 | 0.000089 | −5.1 | −2.6 | 900 | 1339 | −0.95 |
D2363-05 | 114 | 0.031156 | 0.000223 | 0.282669 | 0.000014 | 0.001003 | 0.000013 | −3.7 | −1.2 | 826 | 1247 | −0.97 |
D2363-06 | 115 | 0.030894 | 0.000336 | 0.282635 | 0.000014 | 0.000965 | 0.000009 | −4.8 | −2.4 | 873 | 1322 | −0.97 |
D2363-07 | 120 | 0.042053 | 0.000644 | 0.282649 | 0.000014 | 0.001332 | 0.000025 | −4.3 | −1.8 | 861 | 1289 | −0.96 |
D2363-08 | 114 | 0.021805 | 0.000176 | 0.282645 | 0.000013 | 0.000695 | 0.000004 | −4.5 | −2.1 | 853 | 1300 | −0.98 |
D2363-09 | 118 | 0.074151 | 0.000446 | 0.282618 | 0.000014 | 0.002355 | 0.000013 | −5.4 | −3 | 930 | 1364 | −0.93 |
D2363-11 | 117 | 0.142634 | 0.004410 | 0.282666 | 0.000016 | 0.004224 | 0.000139 | −3.8 | −1.5 | 908 | 1267 | −0.87 |
D2363-12 | 113 | 0.032751 | 0.000446 | 0.282656 | 0.000013 | 0.000978 | 0.000007 | −4.1 | −1.7 | 844 | 1277 | −0.97 |
D2363-13 | 117 | 0.074383 | 0.000179 | 0.28262 | 0.000015 | 0.002285 | 0.000004 | −5.4 | −3 | 926 | 1361 | −0.93 |
D2363-14 | 116 | 0.030295 | 0.000452 | 0.282679 | 0.000014 | 0.000946 | 0.000016 | −3.3 | −0.8 | 810 | 1222 | −0.97 |
D2363-15 | 118 | 0.027974 | 0.000274 | 0.282624 | 0.000012 | 0.000915 | 0.000006 | −5.2 | −2.7 | 887 | 1344 | −0.97 |
D2363-16 | 115 | 0.023157 | 0.000307 | 0.282683 | 0.000014 | 0.000753 | 0.000009 | −3.1 | −0.7 | 800 | 1213 | −0.98 |
D2363-17 | 116 | 0.019409 | 0.000077 | 0.282719 | 0.000012 | 0.000638 | 0.000002 | −1.9 | 0.6 | 747 | 1130 | −0.98 |
D2363-19 | 115 | 0.025402 | 0.000372 | 0.282686 | 0.000013 | 0.000838 | 0.00001 | −3.0 | −0.6 | 798 | 1206 | −0.97 |
D2363-20 | 114 | 0.034504 | 0.001628 | 0.282706 | 0.000015 | 0.001101 | 0.000048 | −2.3 | 0.1 | 775 | 1163 | −0.97 |
D2363-21 | 113 | 0.050703 | 0.000466 | 0.282622 | 0.000011 | 0.001596 | 0.000013 | −5.3 | −2.9 | 906 | 1355 | −0.95 |
D2363-23 | 112 | 0.030186 | 0.000099 | 0.282629 | 0.000014 | 0.000988 | 0.000004 | −5.0 | −2.7 | 881 | 1337 | −0.97 |
D2363-24 | 114 | 0.084543 | 0.001134 | 0.28265 | 0.000016 | 0.002557 | 0.000025 | −4.3 | −2 | 889 | 1296 | −0.92 |
D2363-26 | 114 | 0.006518 | 0.000067 | 0.282527 | 0.000012 | 0.000205 | 0.000003 | −8.7 | −6.2 | 1005 | 1562 | −0.99 |
D2366-01 | 112 | 0.052516 | 0.002292 | 0.282638 | 0.000013 | 0.001724 | 0.000079 | −6.0 | −2.4 | 887 | 1396 | −0.97 |
D2366-02 | 114 | 0.048036 | 0.000440 | 0.282603 | 0.000013 | 0.001559 | 0.000015 | −2.8 | −3.6 | 932 | 1194 | −0.98 |
D2366-04 | 112 | 0.095200 | 0.001723 | 0.282695 | 0.000018 | 0.002916 | 0.000045 | −4.8 | −0.5 | 831 | 1323 | −0.97 |
D2366-05 | 112 | 0.032529 | 0.000143 | 0.282603 | 0.000011 | 0.001018 | 0.000002 | −4.9 | −3.6 | 919 | 1327 | −0.95 |
D2366-06 | 115 | 0.022135 | 0.000141 | 0.282692 | 0.000011 | 0.000687 | 0.000004 | −3.9 | −0.4 | 787 | 1266 | −0.97 |
D2366-07 | 112 | 0.031263 | 0.000801 | 0.282635 | 0.000012 | 0.000964 | 0.000024 | −3.8 | −2.4 | 872 | 1260 | −0.96 |
D2366-09 | 113 | 0.051599 | 0.000991 | 0.282635 | 0.000012 | 0.00159 | 0.000041 | −4.8 | −2.5 | 888 | 1320 | −0.97 |
D2366-10 | 112 | 0.033289 | 0.000407 | 0.282661 | 0.000015 | 0.001048 | 0.000012 | −2.2 | −1.5 | 838 | 1156 | −0.97 |
D2366-11 | 112 | 0.037606 | 0.000103 | 0.282664 | 0.000012 | 0.001181 | 0.000006 | −5.1 | −1.4 | 837 | 1338 | −0.98 |
D2366-12 | 114 | 0.032850 | 0.001036 | 0.282636 | 0.000013 | 0.001016 | 0.000028 | −4.3 | −2.4 | 872 | 1285 | −0.98 |
D2366-13 | 112 | 0.032916 | 0.001992 | 0.28271 | 0.000013 | 0.001038 | 0.000065 | −4.3 | 0.2 | 768 | 1285 | −0.97 |
D2366-14 | 115 | 0.026127 | 0.000310 | 0.282628 | 0.000012 | 0.000812 | 0.000004 | −2.9 | −2.6 | 880 | 1201 | −0.97 |
D2366-15 | 115 | 0.021164 | 0.000087 | 0.282651 | 0.000013 | 0.000701 | 0.000003 | −4.2 | −1.8 | 844 | 1280 | −0.97 |
D2366-17 | 114 | 0.028872 | 0.000122 | 0.282652 | 0.000013 | 0.000961 | 0.000004 | −5.0 | −1.8 | 849 | 1334 | −0.98 |
D2366-18 | 113 | 0.034857 | 0.000852 | 0.28269 | 0.000013 | 0.001104 | 0.00003 | −2.9 | −0.5 | 799 | 1197 | −0.98 |
D2366-19 | 114 | 0.025911 | 0.000147 | 0.282654 | 0.000013 | 0.000834 | 0.000002 | −3.6 | −1.8 | 844 | 1243 | −0.98 |
D2366-21 | 113 | 0.023946 | 0.000129 | 0.28263 | 0.000012 | 0.000724 | 0.000004 | −5.2 | −2.6 | 874 | 1348 | −0.98 |
D2366-22 | 114 | 0.023801 | 0.000090 | 0.28269 | 0.000013 | 0.00073 | 0.000004 | −6.9 | −0.4 | 790 | 1316 | −0.97 |
D2366-25 | 113 | 0.023172 | 0.000209 | 0.28267 | 0.000013 | 0.00075 | 0.000003 | −8.5 | −1.2 | 818 | 1330 | −0.97 |
D2366-26 | 112 | 0.025076 | 0.000142 | 0.282624 | 0.000011 | 0.00082 | 0.000002 | −10.2 | −2.8 | 885 | 1343 | −0.97 |
Sample | D2360 | D2361 | D2362 | D2363 | D2364 | D2365 | D2366 |
---|---|---|---|---|---|---|---|
SiO2 | 74.50 | 73.97 | 74.65 | 74.18 | 72.60 | 76.44 | 74.12 |
Al2O3 | 13.24 | 13.46 | 13.09 | 13.11 | 13.22 | 12.24 | 13.19 |
FeO | 0.33 | 1.19 | 1.13 | 1.45 | 1.95 | 0.94 | 0.69 |
Fe2O3 | 0.75 | 0.36 | 0.50 | 0.18 | 0.96 | 0.29 | 0.96 |
Na2O | 2.80 | 3.19 | 3.26 | 3.58 | 3.24 | 2.92 | 3.19 |
K2O | 5.89 | 5.26 | 4.85 | 4.11 | 4.35 | 5.03 | 4.92 |
MgO | 0.15 | 0.24 | 0.23 | 0.30 | 0.43 | 0.16 | 0.31 |
CaO | 0.48 | 1.11 | 1.09 | 1.07 | 1.37 | 0.74 | 1.19 |
MnO | 0.03 | 0.04 | 0.04 | 0.04 | 0.06 | 0.03 | 0.04 |
P2O5 | 0.05 | 0.08 | 0.07 | 0.08 | 0.13 | 0.06 | 0.08 |
TiO2 | 0.11 | 0.18 | 0.18 | 0.19 | 0.32 | 0.13 | 0.18 |
LOI | 0.93 | 0.57 | 1.01 | 1.07 | 0.46 | 0.39 | 0.61 |
Total | 99.27 | 99.66 | 100.11 | 99.36 | 99.09 | 99.37 | 99.46 |
Zr | 116.7 | 133.7 | 131.3 | 144.2 | 208.8 | 102.8 | 126.0 |
Hf | 5.59 | 4.46 | 5.04 | 5.77 | 7.33 | 3.71 | 4.99 |
La | 35.60 | 38.60 | 46.50 | 47.70 | 72.50 | 33.10 | 39.10 |
Ce | 77.70 | 81.00 | 97.50 | 101.00 | 164.00 | 72.50 | 80.60 |
Pr | 9.62 | 9.87 | 11.80 | 12.30 | 18.70 | 8.58 | 10.20 |
Nd | 35.10 | 35.50 | 45.30 | 46.20 | 66.90 | 30.60 | 37.10 |
Sm | 9.57 | 8.12 | 10.70 | 11.30 | 14.50 | 7.16 | 9.49 |
Eu | 0.25 | 0.53 | 0.46 | 0.46 | 0.47 | 0.35 | 0.54 |
Gd | 9.33 | 7.78 | 10.00 | 10.50 | 12.50 | 6.19 | 8.86 |
Tb | 1.94 | 1.53 | 1.99 | 2.08 | 2.14 | 1.15 | 1.81 |
Dy | 13.00 | 9.48 | 12.80 | 13.40 | 12.40 | 6.73 | 11.80 |
Ho | 2.50 | 1.86 | 2.46 | 2.57 | 2.20 | 1.27 | 2.20 |
Er | 7.57 | 5.69 | 7.47 | 7.69 | 6.41 | 3.68 | 6.85 |
Tm | 1.28 | 0.93 | 1.24 | 1.29 | 0.98 | 0.63 | 1.11 |
Yb | 8.20 | 5.87 | 7.82 | 7.96 | 6.06 | 3.81 | 6.91 |
Lu | 1.20 | 0.85 | 1.19 | 1.19 | 0.89 | 0.57 | 1.03 |
Be | 8.16 | 6.12 | 6.11 | 10.30 | 7.10 | 6.07 | 6.58 |
V | 4.70 | 8.09 | 7.53 | 9.72 | 14.90 | 5.23 | 9.67 |
Cr | 10.70 | 17.50 | 14.30 | 10.00 | 13.70 | 8.68 | 11.40 |
Ni | 0.71 | 1.93 | 1.34 | 1.98 | 2.33 | 1.44 | 2.85 |
Ga | 18.30 | 21.10 | 21.90 | 21.90 | 24.30 | 19.60 | 21.20 |
Rb | 772 | 510 | 538 | 420 | 492 | 530 | 550 |
Sr | 24.5 | 49 | 36.4 | 47.4 | 46.1 | 32.2 | 60.4 |
Nb | 26.3 | 20.2 | 22.6 | 24.2 | 31.2 | 16.3 | 21.3 |
Cd | 0.038 | 0.031 | 0.028 | 0.098 | 0.039 | 0.036 | 0.029 |
Cs | 21 | 12.6 | 19.5 | 28.4 | 40.5 | 13.4 | 20.1 |
Ba | 114 | 171 | 134 | 130 | 128 | 99.4 | 179 |
Ta | 5.88 | 2.9 | 3.6 | 4.42 | 2.78 | 2.33 | 3.52 |
Ti | 3.65 | 2.19 | 2.47 | 2.4 | 2.33 | 2.26 | 2.44 |
Pb | 49.1 | 51.4 | 54.7 | 49.2 | 47.5 | 52.3 | 55.5 |
Th | 43.7 | 37.7 | 50.4 | 33.2 | 91 | 38.8 | 42.2 |
U | 15.2 | 7.47 | 14.4 | 14.1 | 12.5 | 9.18 | 13.2 |
Y | 78 | 59.8 | 74.1 | 43.8 | 66.1 | 36.9 | 68 |
Zr/Hf | 20.9 | 30.0 | 26.1 | 25.0 | 28.5 | 27.7 | 25.3 |
Nb/Ta | 4.5 | 6.9 | 6.3 | 5.5 | 11.2 | 7.0 | 6.1 |
M | 1.37 | 1.33 | 1.26 | 1.38 | 1.36 | 1.37 | 1.31 |
T (°C) | 1042.4 | 1045.3 | 1044.9 | 1055.5 | 1085.0 | 1028.6 | 1040.6 |
Ga/Al | 2.61 | 2.96 | 3.16 | 3.15 | 3.47 | 3.02 | 3.04 |
δEu | 0.08 | 0.20 | 0.14 | 0.13 | 0.11 | 0.16 | 0.18 |
δCe | 1.03 | 1.02 | 1.02 | 1.02 | 1.09 | 1.05 | 0.99 |
A/CNK | 1.12 | 1.04 | 1.04 | 1.07 | 1.05 | 1.06 | 1.04 |
A/NK | 1.21 | 1.23 | 1.23 | 1.27 | 1.32 | 1.19 | 1.25 |
La/Yb | 4.34 | 6.58 | 5.95 | 5.99 | 11.96 | 8.69 | 5.66 |
Sr/Y | 0.31 | 0.82 | 0.49 | 1.08 | 0.70 | 0.87 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, D.; Yang, X.; Teng, C.; Cheng, T.; Zhu, N.; Cao, J. Early Cretaceous A-Type Acidic Magmatic Belt in Northern Lhasa Block: Implications for the Evolution of the Bangong–Nujiang Ocean Lithosphere. Minerals 2024, 14, 681. https://doi.org/10.3390/min14070681
Xiao D, Yang X, Teng C, Cheng T, Zhu N, Cao J. Early Cretaceous A-Type Acidic Magmatic Belt in Northern Lhasa Block: Implications for the Evolution of the Bangong–Nujiang Ocean Lithosphere. Minerals. 2024; 14(7):681. https://doi.org/10.3390/min14070681
Chicago/Turabian StyleXiao, Deng, Xinjie Yang, Chao Teng, Tianshe Cheng, Ning Zhu, and Jun Cao. 2024. "Early Cretaceous A-Type Acidic Magmatic Belt in Northern Lhasa Block: Implications for the Evolution of the Bangong–Nujiang Ocean Lithosphere" Minerals 14, no. 7: 681. https://doi.org/10.3390/min14070681
APA StyleXiao, D., Yang, X., Teng, C., Cheng, T., Zhu, N., & Cao, J. (2024). Early Cretaceous A-Type Acidic Magmatic Belt in Northern Lhasa Block: Implications for the Evolution of the Bangong–Nujiang Ocean Lithosphere. Minerals, 14(7), 681. https://doi.org/10.3390/min14070681