Advances in Halophilic Microorganisms

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Environmental Microbiology".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 4333

Special Issue Editor


E-Mail Website
Guest Editor
Centro de Investigación en Biotecnología de la Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
Interests: fungi; molecular biology; extremophile; halophile

Special Issue Information

Dear Colleagues,

Halophilic microorganisms refer to a type of extremophile microbe that thrives in highly saline environments, represented by archaea, bacteria, and eukaryotes such as fungi. High salinity is an extreme environment that relatively few organisms can adapt to and survive. Mainly, they have different osmotic adaptation strategies to survive in such harsh conditions. The habitat diversity of halophilic microorganisms in hypersaline systems provides information about the evolution of life on Earth. However, more findings are needed to understand the role of halophilic microorganisms in hypersaline environments, their adaptation to these environmental conditions, their genetic and functional diversity, and their phylogenetic position.

For this Special Issue of Microorganisms, we invite you to submit research articles, review articles, brief notes, and communications related to halophilic microorganisms, including, but not limited to, bacteria, fungi, microalgae, and archaea. We look forward to receiving your contributions.

Prof. Dr. Maria del Rayo Sanchez-Carbente
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • halophilic
  • microbe
  • extremophiles
  • biotechnology
  • taxonomy and biodiversity

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 3198 KiB  
Article
Metabolic Responses, Cell Recoverability, and Protein Signatures of Three Extremophiles: Sustained Life During Long-Term Subzero Incubations
by Marcela Ewert, Brook L. Nunn, Erin Firth and Karen Junge
Microorganisms 2025, 13(2), 251; https://doi.org/10.3390/microorganisms13020251 - 24 Jan 2025
Viewed by 968
Abstract
Few halophilic strains have been examined in detail for their culturability and metabolic activity at subzero temperatures, within the ice matrix, over the longer term. Here, we examine three Arctic strains with varied salinity tolerances: Colwellia psychrerythraea str. 34H (Cp34H), Psychrobacter sp. str. [...] Read more.
Few halophilic strains have been examined in detail for their culturability and metabolic activity at subzero temperatures, within the ice matrix, over the longer term. Here, we examine three Arctic strains with varied salinity tolerances: Colwellia psychrerythraea str. 34H (Cp34H), Psychrobacter sp. str. 7E (P7E), and Halomonas sp. str. 3E (H3E). As a proxy for biosignatures, we examine observable cells, metabolic activity, and recoverability on 12-month incubations at −5, −10 and −36 °C. To further develop life-detection strategies, we also study the short-term tracking of new protein synthesis on Cp34H at −5 °C for the first time, using isotopically labeled 13C6-leucine and mass spectrometry-based proteomics. All three bacterial species remained metabolically active after 12 months at −5 °C, while recoverability varied greatly among strains. At −10 and −36 °C, metabolic activity was drastically reduced and recoverability patterns were strain-specific. Cells were observable at high numbers in all treatments, validating their potential as biosignatures. Newly synthesized proteins were detectable and identifiable after one hour of incubation. Proteins prioritized for synthesis with the provided substrate are involved in motility, protein synthesis, and in nitrogen and carbohydrate metabolism, with an emphasis on structural proteins, enzymatic activities in central metabolic pathways, and regulatory functions. Full article
(This article belongs to the Special Issue Advances in Halophilic Microorganisms)
Show Figures

Figure 1

26 pages, 8699 KiB  
Article
Taxonomical, Physiological, and Biochemical Characteristics of Dunaliella salina DSTA20 from Hypersaline Environments of Taean Salt Pond, Republic of Korea
by Chang Rak Jo, Kichul Cho, Sung Min An, Jeong-Mi Do, Ji Won Hong, Ju Hyoung Kim, Sun Young Kim, Hyeon Gyeong Jeong and Nam Seon Kang
Microorganisms 2024, 12(12), 2467; https://doi.org/10.3390/microorganisms12122467 - 30 Nov 2024
Cited by 1 | Viewed by 1562
Abstract
Dunaliella salina, a halophilic unicellular chlorophyte, produces bioactive compounds and biofuels applicable to various industries. Despite its industrial significance, comprehensive studies on the morphological, physiological, and biochemical characteristics of the genus Dunaliella remain challenging. In this study, we characterized an axenically isolated [...] Read more.
Dunaliella salina, a halophilic unicellular chlorophyte, produces bioactive compounds and biofuels applicable to various industries. Despite its industrial significance, comprehensive studies on the morphological, physiological, and biochemical characteristics of the genus Dunaliella remain challenging. In this study, we characterized an axenically isolated green alga from a salt pond in Taean, Republic of Korea, and assessed its industrially relevant traits. The morphological characteristics were typical of D. salina, and molecular phylogenetic analysis of the SSU, ITS1-5.8S-ITS, LSU regions of rDNA, and rbcL gene confirmed the isolate as D. salina strain DSTA20. The optimal temperature, salinity, and photon flux density required for its growth were determined to be 21 °C, 0.5 M NaCl, and 88 µmol m−2 s−1, respectively. Dried biomass analysis revealed 42.87% total lipids, with major fatty acids, including α-linolenic acid (31.55%) and palmitic acid (21.06%). The alga produced high-value carotenoids, including β-carotene (2.47 mg g−1 dry weight (DW)) and lutein (1.39 mg g−1 DW), with peak levels at 0.25 M salinity. Glucose (195.5 mg g−1 DW) was the predominant monosaccharide. These findings highlight the potential of D. salina DSTA20 for biodiesel production and as a source of ω-3 fatty acids, carotenoids, and glucose. Morphological traits provide insights relevant to the industrial potential of the species. Full article
(This article belongs to the Special Issue Advances in Halophilic Microorganisms)
Show Figures

Figure 1

12 pages, 2363 KiB  
Article
A Haloarchaeal Transcriptional Regulator That Represses the Expression of CRISPR-Associated Genes
by Israela Turgeman-Grott, Yarden Shalev, Netta Shemesh, Rachel Levy, Inbar Eini, Metsada Pasmanik-Chor and Uri Gophna
Microorganisms 2024, 12(9), 1772; https://doi.org/10.3390/microorganisms12091772 - 27 Aug 2024
Viewed by 1281
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) systems provide acquired heritable protection to bacteria and archaea against selfish DNA elements, such as viruses. These systems must be tightly regulated because they can capture DNA fragments from foreign selfish elements, and also [...] Read more.
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) systems provide acquired heritable protection to bacteria and archaea against selfish DNA elements, such as viruses. These systems must be tightly regulated because they can capture DNA fragments from foreign selfish elements, and also occasionally from self-chromosomes, resulting in autoimmunity. Most known species from the halophilic archaeal genus Haloferax contain type I-B CRISPR-Cas systems, and the strongest hotspot for self-spacer acquisition by H. mediterranei was a locus that contained a putative transposable element, as well as the gene HFX_2341, which was a very frequent target for self-targeting spacers. To test whether this gene is CRISPR-associated, we investigated it using bioinformatics, deletion, over-expression, and comparative transcriptomics. We show that HFX_2341 is a global transcriptional regulator that can repress diverse genes, since its deletion results in significantly higher expression of multiple genes, especially those involved in nutrient transport. When over-expressed, HFX_2341 strongly repressed the transcript production of all cas genes tested, both those involved in spacer acquisition (cas1, 2 and 4) and those required for destroying selfish genetic elements (cas3 and 5–8). Considering that HFX_2341 is highly conserved in haloarchaea, with homologs that are present in species that do not encode the CRISPR-Cas system, we conclude that it is a global regulator that is also involved in cas gene regulation, either directly or indirectly. Full article
(This article belongs to the Special Issue Advances in Halophilic Microorganisms)
Show Figures

Figure 1

Back to TopTop