Microbiome- and Host-Mediated Effects of Prebiotics in Foods and Feeds

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Food Microbiology".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 406

Special Issue Editors


E-Mail Website
Guest Editor
Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
Interests: gut microbiomes; prebiotics; probiotics; bioremediation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Prebiotics are dietary components that can benefit human and animal health. A key characteristic of prebiotics is that they can pass through the upper intestinal tract to selectively increase the abundance of beneficial bacteria in the hind gut. Microbiome-mediated effects typically include the production of short-chain fatty acids that act as nutritional substrates for gut epithelial cells and modify the expression of genes associated with inflammatory responses. These short chain fatty acids can also affect remote tissues via adsorption and circulation in the blood. Prebiotics can also function in conjunction with the gut microbiota to suppress pathogen challenge and, at a cellular level, to suppress inappropriate pro-inflammatory responses and maintain gut integrity at tight junctions. Native fibre represents an integral prebiotic component of human and animal diets. However, dietary supplements are now available that modify the existing microbiota to promote human health or enhance the welfare and the productivity of livestock.

We invite contributions to this Special Issue that investigate the application and development of prebiotics in foods and feeds with reference to the membership and modification of gut microbial communities.

You may choose our Joint Special Issue in Applied Microbiology.

Prof. Dr. Ian Connerton
Dr. Adam Lee
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • prebiotics
  • gut microbiota
  • gut health
  • gut architecture
  • gut immunomodulation
  • beneficial microbes
  • oligosaccharides
  • microbiome manipulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 3631 KiB  
Article
Prebiotic Xylo-Oligosaccharides Modulate the Gut Microbiome to Improve Innate Immunity and Gut Barrier Function and Enhance Performance in Piglets Experiencing Post-Weaning Diarrhoea
by James S. Stanley, Stephen C. Mansbridge, Michael R. Bedford, Ian F. Connerton and Kenneth H. Mellits
Microorganisms 2025, 13(8), 1760; https://doi.org/10.3390/microorganisms13081760 - 28 Jul 2025
Viewed by 233
Abstract
During commercial pig production, weaning is a major stressor that disrupts the gut microbiome, compromises intestinal barrier integrity, and increases the susceptibility of piglets to pathogens. This often results in post-weaning diarrhoea (PWD), leading to growth retardation, morbidity, and economic loss. This study [...] Read more.
During commercial pig production, weaning is a major stressor that disrupts the gut microbiome, compromises intestinal barrier integrity, and increases the susceptibility of piglets to pathogens. This often results in post-weaning diarrhoea (PWD), leading to growth retardation, morbidity, and economic loss. This study investigated the effects of dietary xylo-oligosaccharide (XOS) supplementation on the growth performance and gut health of 216 piglets with naturally occurring PWD. Piglets received either 0 (CON), 50 (XOS-50), or 500 (XOS-500) mg XOS/kg feed from weaning at 28 days of age (d1) for 54 days. XOS-500 significantly improved body weight at d22 and d54, but had no effect on average daily gain, daily feed intake (DFI), or feed conversion ratio. The intestinal microbiota alpha-diversity was unaffected by XOS, though jejunal beta diversity differed between CON and XOS-500 groups at d22. Jejunal Chao richness correlated positively with d54 body weight, while ileal Chao richness correlated negatively with DFI. Salmonella was present in all diet groups but did not differ in abundance; however, the levels were negatively correlated with alpha diversity. XOSs increased Lactobacillus (d22, d54) and Clostridium_XI (d22), while reducing Veillonellaceae spp. (d22). XOSs reduced jejunal goblet cell (GC) density at d22 but increased duodenal and jejunal GCs and reduced duodenal crypt depth at d54. XOSs upregulated the genes for the tight junction proteins CLDN2, CLDN3, ALPI, and ZO-1, while downregulating the cytokine IL-8. These findings highlight XOSs’ potential to improve growth and gut health in weaning piglets with naturally occurring PWD, to maintain productivity and enhance welfare. Full article
Show Figures

Figure 1

Back to TopTop