Fungi in Decomposition Processes

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Environmental and Ecological Interactions of Fungi".

Deadline for manuscript submissions: closed (31 July 2022) | Viewed by 18567

Special Issue Editor


E-Mail Website
Guest Editor
Department of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto, Japan
Interests: fungal ecology and biodiversity

Special Issue Information

Dear Colleagues, 

This Special Issue will be a collection of original articles and reviews that examine the ecology, diversity, and functioning of fungi associated with decomposition in terrestrial ecosystems. Articles are welcome relating, but not limited, to such topics as: biogeography along climatic and environmental gradients; succession on decomposing debris; interactions and host relations with fungi, plants, animals, and other organisms; enzymatic activity and physiological profiling; and roles in the decomposition, chemical transformation, and nutrient cycling. Contributions arise both from field works in tropical to temperate and boreal to polar regions and from laboratory works. Research using culture-dependent and culture-independent techniques are covered, including incubation–isolation and metabarcoding. Ecophysiological and ecogenomic studies that have ecological implications are also of interest, but taxonomic studies or mere description or listing of fungi without statistical evaluation of ecological process are out of the scope.

Prof. Dr. Takashi Osono
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biogeography
  • cellulolytic fungi
  • cellulose
  • disturbance
  • diversity
  • delignification
  • ecology
  • ecosystem
  • environmental gradient
  • forest
  • fungal community
  • fungal populations
  • grassland
  • leaves
  • lignin
  • ligninolytic fungi
  • lignocellulose
  • litter
  • nitrogen
  • plant
  • saprotroph
  • soil
  • trait
  • tundra
  • wood

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 1235 KiB  
Article
A Preconditioning Paradox: Contrasting Effects of Initial Phyllosphere and Early Leaf Decomposer Microfungi on Subsequent Colonization by Leaf Decomposing Non-Unit-Restricted Basidiomycetes
by Silvia Bibbo and D. Jean Lodge
J. Fungi 2022, 8(9), 903; https://doi.org/10.3390/jof8090903 - 25 Aug 2022
Viewed by 1025
Abstract
Fungal interactions during leaf decomposition can facilitate or inhibit other fungi. This experiment focused on whether preconditioning of leaf litter by microfungi that were confined to one leaf (Unit-Restricted) made leaf litter less likely to be colonized and decomposed by basidiomycetes that bind [...] Read more.
Fungal interactions during leaf decomposition can facilitate or inhibit other fungi. This experiment focused on whether preconditioning of leaf litter by microfungi that were confined to one leaf (Unit-Restricted) made leaf litter less likely to be colonized and decomposed by basidiomycetes that bind litter into mats (Non-Unit-Restricted) than non-preconditioned litter. Leaves of Manilkara bidentata in litterbags were preconditioned by incubating them for 0, 1, 2 or 3 months in flat litter/seed rain baskets 10 cm above the forest floor to avoid colonization by basidiomycete fungi. Preconditioned and non-preconditioned leaves were transferred to 5 replicate basidiomycete fungal mats of Gymnopus johnstonii for 6 weeks. Both attachment by basidiomycete fungi and percent mass loss after 6 weeks decreased significantly with increasing preconditioning time. In non-preconditioned leaves, gamma irradiation did not affect mass loss or percent white-rot despite having significantly increased numbers of basidiomycete fungal connections as compared to non-irradiated leaves. In non-preconditioned leaves, more basidiomycetes attachmented to non-irradiated than irradiated leaves suggest facilitation by phyllosphere microfungi. While basidiomycete colonization was initially facilitated by phyllosphere fungi, we inferred that degradation of resource quality led to fewer fungal attachments and less mass loss after 1–3 months of preconditioning by microfungi. The date suggest there is a 1-month time window for basidiomycete fungi to incorporate fallen leaves into their litter mats. Full article
(This article belongs to the Special Issue Fungi in Decomposition Processes)
Show Figures

Graphical abstract

15 pages, 1830 KiB  
Article
The Photodegradation of Lignin Methoxyl C Promotes Fungal Decomposition of Lignin Aromatic C Measured with 13C-CPMAS NMR
by Bei Yao, Xiaoyi Zeng, Lu Pang, Xiangshi Kong, Kai Tian, Yanli Ji, Shucun Sun and Xingjun Tian
J. Fungi 2022, 8(9), 900; https://doi.org/10.3390/jof8090900 - 24 Aug 2022
Viewed by 1823
Abstract
Solar radiation has been regarded as a driver of litter decomposition in arid and semiarid ecosystems. Photodegradation of litter organic carbon (C) depends on chemical composition and water availability. However, the chemical changes in organic C that respond to solar radiation interacting with [...] Read more.
Solar radiation has been regarded as a driver of litter decomposition in arid and semiarid ecosystems. Photodegradation of litter organic carbon (C) depends on chemical composition and water availability. However, the chemical changes in organic C that respond to solar radiation interacting with water pulses remain unknown. To explain changes in the chemical components of litter organic C exposed to UV-B, UV-A, and photosynthetically active radiation (PAR) mediated by water pulses, we measured the chemistry of marcescent Lindera glauca leaf litter by solid-state 13C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) over 494 days of litter decomposition with a microcosm experiment. Abiotic and biotic factors regulated litter decomposition via three pathways: first, photochemical mineralization of lignin methoxyl C rather than aromatic C exposed to UV radiation; second, the biological oxidation and leaching of cellulose O-alkyl C exposed to PAR and UV radiation interacts with water pulses; and third, the photopriming effect of UV radiation on lignin aromatic C rather than cellulose O-alkyl C under the interaction between radiation and water pulses. The robust decomposition index that explained the changes in the mass loss was the ratio of aromatic C to O-alkyl C (AR/OA) under radiation, but the ratio of hydrophobic to hydrophilic C (hydrophobicity), the carbohydrate C to methoxyl C ratio (CC/MC), and the alkyl C to O-alkyl C ratio (A/OA) under radiation were mediated by water pulses. Moreover, the photopriming effect and water availability promoted the potential activities of peroxidase and phenol oxidase associated with lignin degradation secreted by fungi. Our results suggest that direct photodegradation of lignin methoxyl C increases microbial accessibility to lignin aromatic C. Photo-oxidized compounds might be an additional C pool to regulate the stability of the soil C pool derived from plant litter by degrading lignin methoxyl and aromatic C. Full article
(This article belongs to the Special Issue Fungi in Decomposition Processes)
Show Figures

Figure 1

13 pages, 2972 KiB  
Article
Changes in Chemical Structure of Thermally Modified Spruce Wood Due to Decaying Fungi
by Zuzana Vidholdová, František Kačík, Ladislav Reinprecht, Viera Kučerová and Jana Luptáková
J. Fungi 2022, 8(7), 739; https://doi.org/10.3390/jof8070739 - 18 Jul 2022
Cited by 11 | Viewed by 1529
Abstract
Fungi play a critical role in the decomposition of wood and wood-based products in use. The ability of decaying fungi to cause degradation of polysaccharides and lignin in the thermally modified Norway spruce (Picea abies L. Karst.) wood was examined with pure [...] Read more.
Fungi play a critical role in the decomposition of wood and wood-based products in use. The ability of decaying fungi to cause degradation of polysaccharides and lignin in the thermally modified Norway spruce (Picea abies L. Karst.) wood was examined with pure culture decomposition tests in laboratory conditions using the brown-rot fungus Serpula lacrymans (Schumacher ex Fries) S.F. Gray and white-rot fungus Trametes versicolor (Linnaeus ex Fries) Pilat. Spruce wood samples were primary thermally treated under atmospheric pressure at the temperatures of 100, 150, 200, 220, 240 and 260 °C during 1, 3 and 5 h, whereby larger losses in their mass, holocellulose, mannose and xylose were achieved at harder thermal regimes. Meanwhile, the holocellulose percent content reduced considerably, and the percent content of lignin increased sharply. Spruce wood thermally modified at and above 200 °C better resisted to brown-rot fungus S. lacrymans than the white-rot fungus T. versicolor. Due to the decay processes, the mass fractions of holocellulose, cellulose and hemicelluloses were lower in those spruce wood samples in which thermal degradation was more intensive, with achieving the highest mass loss values after thermal treatments, after which the decay attacks were poorer or even none with the minimal mass loss values due to action by the brown-rot fungus S. lacrymans and the white-rot fungus T. versicolor. The mannose and glucose percent content in thermally–fungally attacked spruce wood was intensive reduced, e.g., by 17% to 98% in wood after thermal treatments at temperature equal and above 200 °C. Full article
(This article belongs to the Special Issue Fungi in Decomposition Processes)
Show Figures

Figure 1

21 pages, 1409 KiB  
Article
Fungal Community Composition as Affected by Litter Chemistry and Weather during Four Years of Litter Decomposition in Rainshadow Coastal Douglas-Fir Forests
by Philip-Edouard Shay, Richard S. Winder, C. Peter Constabel and J. A. (Tony) Trofymow
J. Fungi 2022, 8(7), 735; https://doi.org/10.3390/jof8070735 - 16 Jul 2022
Viewed by 1598
Abstract
Climate and litter chemistry are major factors influencing litter decay, a process mediated by microbes, such as fungi, nitrogen-fixing bacteria and ammonia-oxidizing bacteria. Increasing atmospheric CO2 concentrations can decrease nitrogen (N) and increase condensed tannin (CT) content in foliar litter, reducing litter [...] Read more.
Climate and litter chemistry are major factors influencing litter decay, a process mediated by microbes, such as fungi, nitrogen-fixing bacteria and ammonia-oxidizing bacteria. Increasing atmospheric CO2 concentrations can decrease nitrogen (N) and increase condensed tannin (CT) content in foliar litter, reducing litter quality and slowing decomposition. We hypothesized that reduced litter quality inhibits microbes and is the mechanism causing decomposition to slow. Litterbags of Douglas-fir needles and poplar leaves with a range of N (0.61–1.57%) and CT (2.1–29.1%) treatment and natural acid unhydrolyzable residue (35.3–41.5%) concentrations were placed along climatic gradients in mature Douglas-fir stands of coastal British Columbia rainshadow forests. The structure (diversity, richness and evenness) and composition of microbial communities were analyzed using DGGE profiles of 18S, NifH-universal and AmoA PCR amplicons in foliar litter after 7, 12, 24 and 43 months of decay. High CT and low N concentrations in leaf litter were associated with changes in microbial community composition, especially fungi. Contrary to our hypothesis, high CT and low N treatments did not inhibit microbial colonization or diversity. The joint effects of air temperature and soil moisture on microbial community composition at our sites were more important than the effects of initial litter chemistry. Full article
(This article belongs to the Special Issue Fungi in Decomposition Processes)
Show Figures

Figure 1

14 pages, 2005 KiB  
Article
Metabolic Diversity of Xylariaceous Fungi Associated with Leaf Litter Decomposition
by Kohei Tabuchi, Dai Hirose, Motohiro Hasegawa and Takashi Osono
J. Fungi 2022, 8(7), 701; https://doi.org/10.3390/jof8070701 - 01 Jul 2022
Cited by 2 | Viewed by 1347
Abstract
Fungi in the family Xylariaceae are primary agents of leaf litter decomposition. However, the diversity of carbon source utilization by xylariaceous fungi and the relative effects on this from environmental and phylogenetic factors are largely unknown. This study assessed the metabolic diversity and [...] Read more.
Fungi in the family Xylariaceae are primary agents of leaf litter decomposition. However, the diversity of carbon source utilization by xylariaceous fungi and the relative effects on this from environmental and phylogenetic factors are largely unknown. This study assessed the metabolic diversity and redundancy of xylariaceous fungi, associated with leaf litter decomposition, by measuring their in vitro capacity to utilize multiple carbon sources. The work identified the relative influences of geographic and climatic sources, as well as the taxonomic and phylogenetic relatedness, of the fungi. Using Biolog EcoPlateTM, 43 isolates belonging to Nemania, Xylaria, Nodulisporium, Astrocystis, and Hypoxylon, isolated from Castanopsis sieboldii leaf litter at eight sites in Japan, were found to have the capacity to utilize a variety of carbohydrates, amino acids/amines, carboxylic acids, and polymers. The genera of xylariaceous fungi and their origins significantly affected their metabolic diversity and utilization of carbon sources. Variation partitioning demonstrated that dissimilarities in carbon utilization among fungal isolates were mostly attributable to site differences, especially climatic factors: mean annual temperature and precipitation, and maximum snow depth. Moreover, xylariaceous isolates that originated from adjacent sites tended to have similar patterns of carbon source utilization, suggesting metabolic acclimation to local environmental conditions. Full article
(This article belongs to the Special Issue Fungi in Decomposition Processes)
Show Figures

Figure 1

16 pages, 5026 KiB  
Article
Grazing Effects of Soil Fauna on White-Rot Fungi: Biomass, Enzyme Production and Litter Decomposition Ability
by Yunru Chen, Tingting Cao, Meiqi Lv, You Fang, Run Liu, Yunchao Luo, Chi Xu and Xingjun Tian
J. Fungi 2022, 8(4), 348; https://doi.org/10.3390/jof8040348 - 28 Mar 2022
Cited by 3 | Viewed by 2446
Abstract
Soil invertebrates and microorganisms are two major drivers of litter decomposition. Even though the importance of invertebrates and microorganisms in biogeochemical soil cycles and soil food webs has been studied, the effects of invertebrates on fungi are not well understood compared to other [...] Read more.
Soil invertebrates and microorganisms are two major drivers of litter decomposition. Even though the importance of invertebrates and microorganisms in biogeochemical soil cycles and soil food webs has been studied, the effects of invertebrates on fungi are not well understood compared to other organisms. In this work, we investigated the effects of soil invertebrates on fungi as a factor that cannot be ignored in the study of nutrient cycling. The result showed the grazing of isopods on white-rot fungi was transitive and persistent. The grazed fungi appeared “compensatory” growing. The biomass of fungi increased after grazing. The activities of enzymes associated with nutrient cycling were increased under grazing. The zymography images showed the enzyme hotspots and activities also increased significantly in the grazing area. The results suggest that invertebrate grazing can significantly increase the fungal biomass and enzyme activity, accelerating litter decomposition in the unreached grazer area. The grazing effects of invertebrate plays an important role in promoting the nutrient cycling of the forest ecosystem. We believe that this study will be a good reference related to showing the relationship between soil invertebrates, fungi and soil biogeochemical cycles. Full article
(This article belongs to the Special Issue Fungi in Decomposition Processes)
Show Figures

Figure 1

15 pages, 3707 KiB  
Article
Timing of Resource Addition Affects the Migration Behavior of Wood Decomposer Fungal Mycelia
by Yu Fukasawa and Koji Kaga
J. Fungi 2021, 7(8), 654; https://doi.org/10.3390/jof7080654 - 12 Aug 2021
Cited by 1 | Viewed by 2966
Abstract
Studies of fungal behavior are essential for a better understanding of fungal-driven ecological processes. Here, we evaluated the effects of timing of resource (bait) addition on the behavior of fungal mycelia when it remains in the inoculum and when it migrates from it [...] Read more.
Studies of fungal behavior are essential for a better understanding of fungal-driven ecological processes. Here, we evaluated the effects of timing of resource (bait) addition on the behavior of fungal mycelia when it remains in the inoculum and when it migrates from it towards a bait, using cord-forming basidiomycetes. Experiments allowed mycelium to grow from an inoculum wood across the surface of a soil microcosm, where it encountered a new wood bait 14 or 98 d after the start of growth. After the 42-d colonization of the bait, inoculum and bait were individually moved to a dish containing fresh soil to determine whether the mycelia were able to grow out. When the inoculum and bait of mycelia baited after 14 d were transferred to new soil, there was 100% regrowth from both inoculum and bait in Pholiota brunnescens and Phanerochaete velutina, indicating that no migration occurred. However, when mycelium was baited after 98 d, 3 and 4 out of 10 replicates of P. brunnescens and P. velutina, respectively, regrew only from bait and not from inoculum, indicating migration. These results suggest that prolonged periods without new resources alter the behavior of mycelium, probably due to the exhaustion of resources. Full article
(This article belongs to the Special Issue Fungi in Decomposition Processes)
Show Figures

Figure 1

9 pages, 1457 KiB  
Communication
Using MALDI-FTICR-MS Imaging to Track Low-Molecular-Weight Aromatic Derivatives of Fungal Decayed Wood
by Dušan Veličković, Mowei Zhou, Jonathan S. Schilling and Jiwei Zhang
J. Fungi 2021, 7(8), 609; https://doi.org/10.3390/jof7080609 - 28 Jul 2021
Cited by 6 | Viewed by 2434
Abstract
Low-molecular-weight (LMW) aromatics are crucial in meditating fungal processes for plant biomass decomposition. Some LMW compounds are employed as electron donors for oxidative degradation in brown rot (BR), an efficient wood-degrading strategy in fungi that selectively degrades carbohydrates but leaves modified lignins. Previous [...] Read more.
Low-molecular-weight (LMW) aromatics are crucial in meditating fungal processes for plant biomass decomposition. Some LMW compounds are employed as electron donors for oxidative degradation in brown rot (BR), an efficient wood-degrading strategy in fungi that selectively degrades carbohydrates but leaves modified lignins. Previous understandings of LMW aromatics were primarily based on “bulk extraction”, an approach that cannot fully reflect their real-time functions during BR. Here, we applied an optimized molecular imaging method that combines matrix-assisted laser desorption ionization (MALDI) with Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to directly measure the temporal profiles of BR aromatics as Rhodonia placenta decayed a wood wafer. We found that some phenolics were pre-existing in wood, while some (e.g., catechin-methyl ether and dihydroxy-dimethoxyflavan) were generated immediately after fungal activity. These pinpointed aromatics might be recruited to drive early BR oxidative mechanisms by generating Fenton reagents, Fe2+ and H2O2. As BR progressed, ligninolytic products were accumulated and then modified into various aromatic derivatives, confirming that R. placenta depolymerizes lignin. Together, this work confirms aromatic patterns that have been implicated in BR fungi, and it demonstrates the use of MALDI-FTICR-MS imaging as a new approach to monitor the temporal changes of LMW aromatics during wood degradation. Full article
(This article belongs to the Special Issue Fungi in Decomposition Processes)
Show Figures

Figure 1

8 pages, 362 KiB  
Article
Decomposition of Organic Chemical Components in Wood by Tropical Xylaria Species
by Takashi Osono
J. Fungi 2020, 6(4), 186; https://doi.org/10.3390/jof6040186 - 23 Sep 2020
Cited by 5 | Viewed by 1960
Abstract
The ability of Xylaria species obtained from tropical wood and leaf litter to cause a mass loss of lignin and carbohydrates in wood was examined in vitro with pure culture decomposition tests. The mass loss of wood of four tree species caused by [...] Read more.
The ability of Xylaria species obtained from tropical wood and leaf litter to cause a mass loss of lignin and carbohydrates in wood was examined in vitro with pure culture decomposition tests. The mass loss of wood of four tree species caused by nine Xylaria isolates ranged from 4.5% to 28.4% of the original wood mass. These Xylaria isolates have a potential ability to decompose lignin and other recalcitrant compounds, collectively registered as acid unhydrolyzable residues or Klason lignin in wood. The origin of isolates (i.e., isolates from wood versus leaf litter) did not affect the mass loss of acid unhydrolyzable residue in wood. The Xylaria isolates tested generally caused a selective decomposition of polymer carbohydrates in wood in preference to acid unhydrolyzable residue. The mass loss of acid unhydrolyzable residue caused by Xylaria isolates varied with the tree species of the wood and was negatively related to the initial content of acid unhydrolyzable residue in wood, implying the limiting effect of lignin and recalcitrant compounds on wood decomposition by Xylaria isolates. Full article
(This article belongs to the Special Issue Fungi in Decomposition Processes)
Show Figures

Figure 1

Back to TopTop