Advances in Machining of Difficult-to-Cut Materials

Special Issue Editors


E-Mail Website
Guest Editor
Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
Interests: intelligent and sustainable manufacturing; hybrid and assisted machining; difficult-to-machine materials; cooling and lubrication
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Machine Design and Production Engineering Lab, Research Institute for Science and Material Engineering, University of Mons, 7000 Mons, Belgium
Interests: manufacturing; finite element; engineering; virtual manufacturing; Ti6Al4V; composite; additive manufacturing

Special Issue Information

Dear Colleagues,

Materials and alloys such as nickel and titanium alloys and various composites, with high strength, hardness and specific behaviour at high temperatures, are increasingly used in high-performance applications such as the aerospace, automotive, medical and energy industries. Machining remains one of the main manufacturing processes for high-precision manufacturing of functional parts with specific mechanical and surface properties. Machining is also used for the finishing of parts produced using near net shape processes, e.g., additive manufacturing and forging. The material properties that make these materials suitable for high-demand applications also result in difficulties in machining processes in terms of high tool wear, poor surface finish, low productivity and high manufacturing costs.

In this JMMP Special Issue, we are inviting submissions on new investigations, findings and advances in the machining of difficult-to-cut materials such as nickel and titanium alloys, stainless steels, additively manufactured alloys, refractory metals, metal matrix and ceramic matrix composites, CFRP, etc. This includes but is not limited to:

  • Fundamental understanding of material behaviour during cutting;
  • New methods and technologies to improve machining performance;
  • Hybrid and assisted machining processes;
  • Cutting tools and cooling/lubrication technologies;
  • Surface integrity analysis;
  • Computational, analytical and data-driven modelling;
  • Sustainable machining;
  • Process monitoring and control.

Dr. Alborz Shokrani
Dr. François Ducobu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Manufacturing and Materials Processing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • difficult-to-cut materials
  • machining
  • nickel alloys
  • titanium alloys
  • tool life
  • surface integrity
  • milling
  • turning
  • drilling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 7962 KiB  
Article
Chatter Mitigation in Turning Slender Components Using Viscous Fluids
by Matas Griskevicius, Vishal Kharka and Zekai Murat Kilic
J. Manuf. Mater. Process. 2024, 8(4), 128; https://doi.org/10.3390/jmmp8040128 - 21 Jun 2024
Viewed by 836
Abstract
This paper investigates the performance of a novel viscous passive damping solution to mitigate the chatter vibrations issue in the context of turning thin-walled cylindrical shell components for aerospace and other industries. This study involves the use of two different viscous fluids, motor [...] Read more.
This paper investigates the performance of a novel viscous passive damping solution to mitigate the chatter vibrations issue in the context of turning thin-walled cylindrical shell components for aerospace and other industries. This study involves the use of two different viscous fluids, motor oil and silicone oil, which have viscosities of 102 cSt and 350 cSt, respectively, to fill the in-house developed tube components with the aim of improving machining performance. Fast Fourier Transform (FFT) graphs were studied for chatter analysis, and surface roughness parameters such as average surface roughness (Ra) and mean roughness depth (Rz) were considered for studying the effectiveness of the viscous damping fluids. The results obtained with viscous damping were then compared with an undamped/unfilled tube with the same geometry. The cutting experiments showed that the motor oil reduced the excessive vibrations while silicone oil was able to eliminate them. For the tube with motor oil, the magnitude of the process sound at chatter frequency was reduced by 6.6 times as compared to an unfilled tube, whereas for the tube with silicone oil, the amplitude at chatter frequency was reduced by 14.8 times. Moreover, the surface quality of the tubes with motor oil and silicone oil shows almost equal improvement, indicating the need for future research on the type and amount of viscous fluids for implementing the concept in real cases. Full article
(This article belongs to the Special Issue Advances in Machining of Difficult-to-Cut Materials)
Show Figures

Figure 1

19 pages, 17613 KiB  
Article
Simulation-Assisted Tool Design for Pulsed Electrochemical Machining of Magnetic Shape-Memory Alloys
by Falko Böttcher, Ingo Schaarschmidt, Jan Edelmann and Andreas Schubert
J. Manuf. Mater. Process. 2024, 8(2), 46; https://doi.org/10.3390/jmmp8020046 - 1 Mar 2024
Viewed by 1875
Abstract
Shape-memory alloys set high demands on the production technologies being used. During cutting, continuous heat input and mechanical stress have an undesirable influence on the shape-memory effect. Pulsed electrochemical machining (PECM), which is based on anodic dissolution, enables force-free machining without thermomechanical influence [...] Read more.
Shape-memory alloys set high demands on the production technologies being used. During cutting, continuous heat input and mechanical stress have an undesirable influence on the shape-memory effect. Pulsed electrochemical machining (PECM), which is based on anodic dissolution, enables force-free machining without thermomechanical influence on the edge-zone properties of the workpiece. Depending on the desired geometry, the development of a customized PECM fixture is necessary. The design of the fixtures is often based on the experiences of the designers and manufacturers, which often results in an estimation of the functionally critical dimensions. For this reason, the study focuses on a methodical approach for evaluating crucial fixture dimensions using knowledge of the specific material dissolution behavior linked with a numerical simulation model. It has been shown that the shape-memory alloy NiMnGa has a non-linear dissolution behavior in sodium nitrate. A reduction of stray currents up to 20% resulting from a lateral gap between the cathode and electrical insulation was demonstrated using numerical simulation. The study shows that a low cathode shaping height has the strongest influence on precise processing. Varying the process parameters allowed for the lateral gap to be adjusted between 0.15 and 0.25 mm. Full article
(This article belongs to the Special Issue Advances in Machining of Difficult-to-Cut Materials)
Show Figures

Figure 1

19 pages, 15512 KiB  
Article
Ultrasonic-Vibration-Superimposed Face Turning of Aluminium Matrix Composite Components for Enhancing Friction-Surface Preconditioning
by Patrick Eiselt, Sarah Johanna Hirsch, Ismail Ozdemir, Andreas Nestler, Thomas Grund, Andreas Schubert and Thomas Lampke
J. Manuf. Mater. Process. 2024, 8(1), 32; https://doi.org/10.3390/jmmp8010032 - 7 Feb 2024
Viewed by 1917
Abstract
Aluminium matrix composites (AMCs) represent an important group of high-performance materials. Due to their specific strength and a high thermal conductivity, these composites have been considered for the large-scale production of brake discs. However, preconditioning the friction surfaces is necessary to avoid severe [...] Read more.
Aluminium matrix composites (AMCs) represent an important group of high-performance materials. Due to their specific strength and a high thermal conductivity, these composites have been considered for the large-scale production of brake discs. However, preconditioning the friction surfaces is necessary to avoid severe wear of both the brake discs and the brake linings. This can be achieved through controlled friction against commercially available brake-lining materials and the formation of transfer or reactive layers (tribosurfaces). Homogeneous tribosurfaces allow for nearly wear-free brake systems under moderate brake conditions. In this work, preconditioning was carried out with a pin-on-disc tester, aiming for the fast creation of homogeneously formed and stable tribosurfaces. The influence of surface microedges perpendicular to the direction of friction on the machined AMC surfaces on the build-up speed and homogeneity of the tribosurfaces was investigated. The microedges were generated using ultrasonic-vibration-superimposed face turning. Thereby, the vibration direction corresponded to the direction of the passive force. For research purposes, the distance of the microedges was changed by varying the cutting speed and feed. The experiments were carried out using AMC disc specimens with a reinforcement content of a 35% volume proportion of silicon carbide particles. Machining was realised with CVD-diamond-tipped indexable inserts. The evaluation of the generated surfaces before and after preconditioning was achieved using 3D laser scanning microscopy and scanning electron microscopy. It was demonstrated that ultrasonic-vibration-superimposed face turning effectively generated microedges on the AMC surfaces. The results show that larger distances between the microedges enhanced the formation of stable tribosurfaces. Thus, the tribosystem’s steady state was reached quickly. Therefore, the benefits of AMC-friction-surface microstructuring on the generation of tribosurfaces under laboratory conditions were proven. These findings contribute to the development of high-performance AMC brake systems. Full article
(This article belongs to the Special Issue Advances in Machining of Difficult-to-Cut Materials)
Show Figures

Figure 1

14 pages, 4521 KiB  
Article
Surface Characteristics and Residual Stress Variation in Semi-Deep Hole Machining of Ti6Al4V ELI with Low-Frequency Vibration-Assisted Drilling
by Joon-Hyeok Choe, Ju Hyung Ha, Jisoo Kim and Dong Min Kim
J. Manuf. Mater. Process. 2023, 7(6), 209; https://doi.org/10.3390/jmmp7060209 - 27 Nov 2023
Cited by 1 | Viewed by 1896
Abstract
This study examined the impact of vibration-assisted drilling (VAD) on hole quality and residual stress in Ti-6Al-4V ELI (Extra Low Interstitials) material. Ti-6Al-4V ELI possesses excellent mechanical properties but presents challenges in machining, including chip evacuation, burr formation, and elevated cutting temperatures. VAD, [...] Read more.
This study examined the impact of vibration-assisted drilling (VAD) on hole quality and residual stress in Ti-6Al-4V ELI (Extra Low Interstitials) material. Ti-6Al-4V ELI possesses excellent mechanical properties but presents challenges in machining, including chip evacuation, burr formation, and elevated cutting temperatures. VAD, particularly low-frequency vibration-assisted drilling (LF-VAD), has been explored as a potential solution to address these issues. The research compares LF-VAD with conventional drilling (CD) under various cutting and cooling conditions. LF-VAD exhibits higher maximum thrust forces under specific conditions, which result in accelerated tool wear. However, it also demonstrates lower RMS (root mean square) forces compared to CD, offering better control over chip formation, reduced burr formation, and improved surface roughness within the hole. Furthermore, LF-VAD generates greater compressive residual stresses on the hole’s inner surface compared to CD, suggesting enhanced fatigue performance. These findings indicate that LF-VAD holds promise for improving the hole’s surface characteristics, fatigue life, and overall component durability in Ti-6Al-4V machining applications. Full article
(This article belongs to the Special Issue Advances in Machining of Difficult-to-Cut Materials)
Show Figures

Figure 1

11 pages, 469 KiB  
Article
Impact of Green Ceramic Hybrid Machining (GCHM) on Reliability and Repeatability of the Properties of Sintered Yttrium-Tetragonal Zirconia Polycrystal Parts
by François Ducobu, Anthonin Demarbaix, Edouard Rivière-Lorphèvre, Laurent Spitaels, Fabrice Petit, Nicolas Preux, Charles Duterte, Marylou Mulliez and Bert Lauwers
J. Manuf. Mater. Process. 2023, 7(3), 118; https://doi.org/10.3390/jmmp7030118 - 20 Jun 2023
Cited by 1 | Viewed by 1708
Abstract
The innovative Green Ceramic Hybrid Machining (GCHM) process sequentially combines milling with a cutting tool (GCM, Green Ceramic Machining) and laser beam machining (GCLBM) of a ceramic material (black Y-TZP in this study) at the green stage mainly to increase productivity, avoid taper [...] Read more.
The innovative Green Ceramic Hybrid Machining (GCHM) process sequentially combines milling with a cutting tool (GCM, Green Ceramic Machining) and laser beam machining (GCLBM) of a ceramic material (black Y-TZP in this study) at the green stage mainly to increase productivity, avoid taper angle limitations of laser beam machining, and obtain micro-features. The study focuses on the reliability and the repeatability of the properties of sintered parts obtained by three manufacturing processes (GCM, GCLBM, GCHM) to assess the performance of hybridisation. It turns out that GCHM is a compromise of both milling and laser beam processes; it increases the repeatability of the surface quality and it slightly reduces (less than 7%) the flexural strength by comparison to milling for a similar reliability. The study also highlights that the surface quality of GCLBM processed parts relies on of the surface generated by the previous operation. Milling that surface at the previous step is therefore recommended, corresponding to the sequence adopted by GCHM. Full article
(This article belongs to the Special Issue Advances in Machining of Difficult-to-Cut Materials)
Show Figures

Figure 1

16 pages, 4501 KiB  
Article
Analysis of Tool Wear and Hole Delamination for Large-Diameter Drilling of CFRP Aircraft Fuselage Components: Identifying Performance Improvement Drivers and Optimization Opportunities
by Juan Fernández-Pérez, Carlos Domínguez-Monferrer, María Henar Miguélez and José Luis Cantero
J. Manuf. Mater. Process. 2023, 7(2), 76; https://doi.org/10.3390/jmmp7020076 - 15 Apr 2023
Cited by 6 | Viewed by 2735
Abstract
This study provides a comprehensive analysis of the one-shot drilling (CFRP) strategy for machining CFRP materials in the assembly of aircraft components, focusing on key factors such as tool wear, hole delamination, and the evolution of machining forces. The research uses adapted parts [...] Read more.
This study provides a comprehensive analysis of the one-shot drilling (CFRP) strategy for machining CFRP materials in the assembly of aircraft components, focusing on key factors such as tool wear, hole delamination, and the evolution of machining forces. The research uses adapted parts of the tail-cone structure of a commercial aircraft as workpieces and employs large-diameter cutting tools to perform drilling operations, with results that can be readily applied to the industry. The study selects cutting conditions by analyzing the effect of cutting parameters on tool life in drilled holes and accumulated cutting time, with the end-of-life criterion based on the extension of the wear suffered by the main cutting edge of the first step. The results show that all tested cutting conditions achieve a similar value of tool life expressed in terms of holes drilled, with differences smaller than 7%. However, one of the cutting conditions analyzed completes the same number of holes within 40% less time. Therefore, considering productivity criteria, it will be interesting to evaluate the use of high values for the cutting parameters. Overall, this research provides valuable insights for improving the efficiency and effectiveness of CFRP machining in aircraft manufacturing. Full article
(This article belongs to the Special Issue Advances in Machining of Difficult-to-Cut Materials)
Show Figures

Figure 1

21 pages, 8614 KiB  
Article
Simulated Study of the Machinability of the Nomex Honeycomb Structure
by Tarik Zarrouk, Mohammed Nouari and Hamid Makich
J. Manuf. Mater. Process. 2023, 7(1), 28; https://doi.org/10.3390/jmmp7010028 - 20 Jan 2023
Cited by 15 | Viewed by 2382
Abstract
The Nomex honeycomb core has been widely used in many industrial fields, especially the aircraft and aerospace industries, due to its high strength and stiffness to heaviness ratio. Machining of the Nomex honeycomb structure is usually associated with tearing of the walls, deformations [...] Read more.
The Nomex honeycomb core has been widely used in many industrial fields, especially the aircraft and aerospace industries, due to its high strength and stiffness to heaviness ratio. Machining of the Nomex honeycomb structure is usually associated with tearing of the walls, deformations of the cells and the appearance of burrs. Therefore, milling of the Nomex honeycomb structure represents an industrial hurdle challenge for scientists and researchers about the quality of the machined surface and the integrity of the cutting tool. In response to this problem, we have developed a three-dimensional numerical model of finite elements based on the real conditions of experimental work by means of the analysis software Abaqus. Based on the developed numerical model, an experimental validation was performed by comparing the quality of the surface and the adhesive wear of the cutting tool determined from the numerical simulation and that established by the experiment. In addition, the effect of geometric parameters in terms of wedge angle and cutting tool diameter on material accumulation, chip size, generated surface and cutting forces was analyzed. The results of the quantitative analysis prove that the choice of cutting conditions and cutting tool geometry in terms of favorable rake angle and tool diameter improves the surface quality of the generated part and optimizes the integrity of the cutting tool. Full article
(This article belongs to the Special Issue Advances in Machining of Difficult-to-Cut Materials)
Show Figures

Figure 1

Review

Jump to: Research

33 pages, 3726 KiB  
Review
Recent Trends and Developments in the Electrical Discharge Machining Industry: A Review
by Anna A. Kamenskikh, Karim R. Muratov, Evgeny S. Shlykov, Sarabjeet Singh Sidhu, Amit Mahajan, Yulia S. Kuznetsova and Timur R. Ablyaz
J. Manuf. Mater. Process. 2023, 7(6), 204; https://doi.org/10.3390/jmmp7060204 - 20 Nov 2023
Cited by 7 | Viewed by 5399
Abstract
Electrical discharge machining (EDM) is a highly precise technology that not only facilitates the machining of components into desired shapes but also enables the alteration of the physical and chemical properties of workpieces. The complexity of the process is due to a number [...] Read more.
Electrical discharge machining (EDM) is a highly precise technology that not only facilitates the machining of components into desired shapes but also enables the alteration of the physical and chemical properties of workpieces. The complexity of the process is due to a number of regulating factors such as the material of the workpiece and tools, dielectric medium, and other process parameters. Based on the material type, electrode shape, and process configuration, various shapes and degrees of accuracy can be generated. The study of erosion is based on research into processing techniques, which are the primary tools for using EDM. Empirical knowledge with subsequent optimization of technological parameters is one of the ways to obtain the required surface quality of the workpiece with defect minimization, as well as mathematical and numerical modeling of the EDM process. This article critically examines all key aspects of EDM, reflecting both the early foundations of electrical erosion and the current state of the industry, noting the current trends towards the transition of EDM to the 5.0 industry zone in terms of safety and minimizing the impact of the process on the environment. Full article
(This article belongs to the Special Issue Advances in Machining of Difficult-to-Cut Materials)
Show Figures

Figure 1

Back to TopTop