Hematological, Biochemical, and Performance Adaptations in Amateur Soccer Players Following a 4-Week Preseason Training Period
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Participants
2.3. Procedure
2.3.1. Blood Sampling and Analysis
2.3.2. Vertical Jump Test
2.3.3. Aerobic Fitness
2.3.4. Rating of Perceived Exertion (RPE)
2.4. Statistical Analysis
3. Results
3.1. Performance Assessments
3.1.1. Body Composition
3.1.2. Aerobic Fitness
3.1.3. Vertical Jump
3.1.4. Session Rating of Perceived Exertion
3.2. Blood Analyses
3.2.1. Hematological Parameters
3.2.2. Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
C | Cortisol |
CK | Creatine kinase |
CMJ | Countermovement jump |
Cr | Creatinine |
EPO | Erythropoietin |
GPS | Global positioning system |
Hb | Hemoglobin |
HDL | High-density lipoprotein cholesterol |
Hct | Hematocrit |
HIIT | High Intensity Interval Training |
HR | Heart rate |
LDL | Low-density lipoprotein cholesterol |
MCV | Mean corpuscular volume |
MCH | mean corpuscular hemoglobin |
MCHC | mean corpuscular hemoglobin concentration |
MPV | Mean platelets volume |
PCT | Plateletcrit |
PDW | Platelet distribution width |
PLT | Platelets |
PV | Plasma Volume |
RBC | Red Blood Cells |
RCDW | Red cells distribution width |
RPE | Rating of perceived exertion |
SGOT | aspartate aminotransferase |
SGPT | Serum glutamic pyruvic aminotransferase |
T | Testosterone |
TC | Total cholesterol |
TG | Triglycerides |
TSH | Thyroid stimulating hormone |
UA | Uric acid |
V′O2max | Maximal oxygen uptake |
vV′O2max | velocity of Maximal oxygen uptake |
WBC | White blood cell count |
Yo–Yo IR1 | Yo–Yo Intermittent Recovery test, level 1 |
Appendix A
1st Week | |||||||
---|---|---|---|---|---|---|---|
Days | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Morning | |||||||
Afternoon |
|
|
|
|
|
| Day off |
2nd Week | |||||||
Days | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Morning |
|
| |||||
Afternoon |
|
|
|
| Friendly Match 1 | Day off | |
3rd Week | |||||||
Days | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Morning |
|
| |||||
Afternoon |
|
|
|
| Friendly Match 2 | Day off | |
4th Week | |||||||
Days | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Morning |
| ||||||
Afternoon |
|
|
|
|
| Friendly Match 3 | Day off |
References
- Bradley, P.S.; Carling, C.; Archer, D.; Roberts, J.; Dodds, A.; Di Mascio, M.; Paul, D.; Diaz, A.G.; Peart, D.; Krustrup, P. The effect of playing formation on high-intensity running and technical profiles in English FA premier League soccer matches. J. Sports Sci. 2011, 29, 821–830. [Google Scholar] [CrossRef]
- Carling, C. Influence of opposition team formation on physical and skill-related performance in a professional soccer team. Eur. J. Sport Sci. 2011, 11, 155–164. [Google Scholar] [CrossRef]
- Dolci, F.; Hart, N.H.; Kilding, A.E.; Chivers, P.; Piggott, B.; Spiteri, T. Physical and Energetic Demand of Soccer: A Brief Review. Strength Cond. J. 2020, 42, 70–77. [Google Scholar] [CrossRef]
- Mohr, M.; Draganidis, D.; Chatzinikolaou, A.; Barbero-Álvarez, J.C.; Castagna, C.; Douroudos, I.; Avloniti, A.; Margeli, A.; Papassotiriou, I.; Flouris, A.D.; et al. Muscle damage, inflammatory, immune and performance responses to three football games in 1 week in competitive male players. Eur. J. Appl. Physiol. 2016, 116, 179–193. [Google Scholar] [CrossRef]
- Saidi, K.; Abderrahman, A.B.; Hackney, A.C.; Bideau, B.; Zouita, S.; Granacher, U.; Zouhal, H. Hematology, Hormones, Inflammation, and Muscle Damage in Elite and Professional Soccer Players: A Systematic Review with Implications for Exercise. Sports Med. 2021, 51, 2607–2627. [Google Scholar] [CrossRef]
- Helgerud, J.; Rodas, G.; Kemi, O.J.; Hoff, J. Strength and endurance in elite football players. Int. J. Sports Med. 2011, 32, 677–682. [Google Scholar] [CrossRef]
- Helgerud, J.; Engen, L.C.; Wisloff, U.; Hoff, J. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001, 33, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, M.A.; Parpa, K.M.; Zacharia, A.I. Effects of an 8-Week Pre-seasonal Training on the Aerobic Fitness of Professional Soccer Players. J. Strength Cond. Res. 2019, 35, 2783–2789. [Google Scholar] [CrossRef]
- Bangsbo, J. Energy demands in competitive soccer. J. Sports Sci. 1994, 12, S5–S12. [Google Scholar] [CrossRef]
- Dupont, G.; Akakpo, K.; Berthoin, S. The effect of in-season, high-intensity interval training in soccer players. J. Strength Cond. Res. 2004, 18, 584–589. [Google Scholar]
- Thomakos, P.; Spyrou, K.; Tsoukos, A.; Katsikas, C.; Bogdanis, G.C. High-Intensity Interval Training Combined with High-Load Strength Training Improves Aerobic Fitness, Match Goals and Match Result during the In-Season Period in Under-19 Soccer Players. Sports 2024, 12, 2. [Google Scholar] [CrossRef]
- Thomakos, P.; Spyrou, K.; Katsikas, C.; Geladas, N.D.; Bogdanis, G.C. Effects of Concurrent High-Intensity and Strength Training on Muscle Power and Aerobic Performance in Young Soccer Players during the Pre-Season. Sports 2023, 11, 59. [Google Scholar] [CrossRef]
- Silva, J.R.; Rebelo, A.; Marques, F.; Pereira, L.; Seabra, A.; Ascensão, A.; Magalhães, J. Biochemical impact of soccer: An analysis of hormonal, muscle damage, and redox markers during the season. Appl. Physiol. Nutr. Metab. 2014, 39, 432–438. [Google Scholar] [CrossRef]
- Morcillo, J.A.; Jiménez-Reyes, P.; Cuadrado-Peñafiel, V.; Lozano, E.; Ortega-Becerra, M.; Párraga, J. Relation- ships between repeated sprint ability, mechanical parame- ters, and blood metabolites in professional soccer players. J. Strength Cond. Res. 2015, 29, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Rowell, A.E.; Aughey, R.J.; Hopkins, W.G.; Stewart, A.M.; Cormack, S.J. Identification of Sensitive Measures of Recovery After External Load From Football Match Play. Int. J. Sports Physiol. Perform. 2017, 12, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. The training-injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44, S139–S147. [Google Scholar] [CrossRef]
- Saidi, K.; Zouhal, H.; Rhibi, F.; Tijani, J.M.; Boullosa, D.; Chebbi, A.; Hackney, A.C.; Granacher, U.; Bideau, B.; Ben Abderrahman, A. Effects of a six-week period of congested match play on plasma volume variations, hematological parameters, training workload and physical fitness in elite soccer players. PLoS ONE 2019, 14, e0219692. [Google Scholar] [CrossRef]
- Clemente, F.M.; González-Fernández, F.T.; Ceylan, H.I.; Silva, R.; Younesi, S.; Chen, Y.S.; Badicu, G.; Wolański, P.; Murawska-Ciałowicz, E. Blood biomarkers variations across the pre-season and interactions with training load: A study in professional soccer players. J. Clin. Med. 2021, 10, 5576. [Google Scholar] [CrossRef]
- Athanasiou, N.; Bogdanis, G.C.; Mastorakos, G. Endocrine responses of the stress system to different types of exercise. Rev. Endocr. Metab. Disord. 2023, 24, 251–266. [Google Scholar] [CrossRef]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Cormie, P. Neuromuscular and endocrine responses of elite players during an Australian rules football season. Int. J. Sports Physiol. Perform. 2008, 3, 439–453. [Google Scholar] [CrossRef]
- Chatzinikolaou, A.; Draganidis, D.; Avloniti, A.; Karipidis, A.; Jamurtas, A.Z.; Skevaki, C.L.; Tsoukas, D.; Sovatzidis, A.; Theodorou, A.; Kambas, A.; et al. The microcycle of inflammation and performance changes after a basketball match. J. Sports Sci. 2014, 32, 870–882. [Google Scholar] [CrossRef]
- Chatzinikolaou, A.; Fatouros, I.G.; Gourgoulis, V.; Avloniti, A.; Jamurtas, A.Z.; Nikolaidis, M.G.; Douroudos, I.; Michailidis, Y.; Beneka, A.; Malliou, P.; et al. Time course of changes in performance and inflammatory responses after acute plyometric exercise. J. Strength Cond. Res. 2010, 24, 1389–1398. [Google Scholar] [CrossRef]
- Fatouros, I.G.; Chatzinikolaou, A.; Douroudos, I.I.; Nikolaidis, M.G.; Kyparos, A.; Margonis, K.; Michailidis, Y.; Vantarakis, A.; Taxildaris, K.; Katrabasas, I.; et al. Time-course of changes in oxidative stress and antioxidant status responses following a soccer game. J. Strength Cond. Res. 2010, 24, 3278–3286. [Google Scholar] [CrossRef]
- Souglis, A.; Bogdanis, G.C.; Chryssanthopoulos, C.; Apostolidis, N.; Geladas, N.D. Time course of oxidative stress, inflammation, and muscle damage markers for 5 days after a soccer match: Effects of sex and playing position. J. Strength Cond. Res. 2018, 32, 2045–2054. [Google Scholar] [CrossRef]
- Sotiropoulos, A.; Papapanagiotou, A.; Souglis, A.; Giosos, G.; Kotsis, G.; Bogdanis, C.G. Changes in Hormonal and Lipid Profile After a Soccer Match in Male Amateur Players. Serbian J. Sports Sci. 2008, 2, 31–36. [Google Scholar]
- Souglis, A.G.; Papapanagiotou, A.; Bogdanis, G.C.; Travlos, A.K.; Apostolidis, N.G.; Geladas, N.D. Comparison of inflammatory responses to a soccer match between elite male and female players. J. Strength Cond. Res. 2015, 29, 1227–1233. [Google Scholar] [CrossRef]
- Coppalle, S.; Rave, G.; Ben Abderrahman, A.; Ali, A.; Salhi, I.; Zouita, S.; Zouita, A.; Brughelli, M.; Granacher, U.; Zouhal, H. Relationship of Pre-season Training Load With In-Season Biochemical Markers, Injuries and Performance in Professional Soccer Players. Front. Physiol. 2019, 10, 409. [Google Scholar] [CrossRef]
- Huggins, R.A.; Fortunati, A.R.; Curtis, R.M.; Looney, D.P.; West, C.A.; Lee, E.C.; Fragala, M.S.; Hall, M.L.; Casa, D.J. Monitoring Blood Biomarkers and Training Load Throughout a Collegiate Soccer Season. J. Strength Cond. Res. 2019, 33, 3065–3077. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Belli, A.; Astrua, M.; Tihanyi, J.; Pozzo, R.; Kellis, S.; Tsarpela, O.; Foti, C.; Manno, R.; Tranquilli, C.A. A dynamometer for evaluation of dynamic muscle work. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-Yo intermittent recovery test, a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008, 38, 37–51. [Google Scholar] [CrossRef]
- Ekstrand, J.; Spreco, A.; Windt, J.; Khan, K.M. Are Elite Soccer Teams’ Preseason Training Sessions Associated With Fewer In-Season Injuries? A 15-Year Analysis From the Union of European Football Associations (UEFA) Elite Club Injury Study. Am. J. Sports Med. 2020, 48, 723–729. [Google Scholar] [CrossRef]
- Gabbett, T.J.; Whiteley, R. Two Training-Load Paradoxes: Can We Work Harder and Smarter, Can Physical Preparation and Medical Be Teammates? Int. J. Sports Physiol. Perform. 2017, 12, S250–S254. [Google Scholar] [CrossRef]
- Rampinini, E.; Sassi, A.; Azzalin, A.; Castagna, C.; Menaspà, P.; Carlomagno, D.; Impellizzeri, F.M. Physiological determinants of Yo-Yo intermittent recovery tests in male soccer players. Eur. J. Appl. Physiol. 2010, 108, 401–409. [Google Scholar] [CrossRef]
- Bangsbo, J. The physiology of soccer—With special reference to intense intermittent exercise. Acta Physiol. Scand. Suppl. 1994, 619, 1–155. [Google Scholar]
- Garrandes, F.; Colson, S.S.; Pensini, M.; Seynnes, O.; Legros, P. Neuromuscular fatigue profile in endurance-trained and power-trained athletes. Med. Sci. Sports Exerc. 2007, 39, 149–158. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Tremblay, I. Exercise-induced muscle damage, repair, and adaptation in humans. J. Appl. Physiol. 1988, 65, 1–6. [Google Scholar] [CrossRef]
- Marqués-Jiménez, D.; Calleja-González, J.; Arratibel, I.; Delextrat, A.; Terrados, N. Fatigue and Recovery in Soccer: Evidence and Challenges. Open Sports Sci. J. 2017, 10, 52–70. [Google Scholar] [CrossRef]
- Fellmann, N. Hormonal and plasma volume alterations following endurance exercise. A brief review. Sports Med. 1992, 13, 37–49. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F. Influence of chronic training workload on the hematological profile: A pilot study in sedentary people, amateur and professional cyclists. Acta Biomed. 2020, 91, e2020104. [Google Scholar]
- Gillen, C.M.; Lee, R.; Mack, G.W.; Tomaselli, C.M.; Nishiyasu, T.; Nadel, E.R. Plasma volume expansion in humans after a single intense exercise protocol. J. Appl. Physiol. 1991, 71, 1914–1920. [Google Scholar] [CrossRef]
- Montero, D.; Lundby, C. Regulation of Red Blood Cell Volume with Exercise Training. Compr. Physiol. 2018, 9, 149–164. [Google Scholar] [CrossRef]
- Kröpfl, J.M.; Beltrami, F.G.; Gruber, H.J.; Stelzer, I.; Spengler, C.M. Exercise-Induced Circulating Hematopoietic Stem and Progenitor Cells in Well-Trained Subjects. Front. Physiol. 2020, 11, 308. [Google Scholar] [CrossRef]
- Montero, D.; Lundby, C. Arterial oxygen content regulates plasma erythropoietin independent of arterial oxygen tension: A blinded crossover study. Kidney Int. 2019, 95, 173–177. [Google Scholar] [CrossRef]
- Banfi, G.; Colombini, A.; Lombardi, G.; Lubkowska, A. Metabolic markers in sports medicine. Adv. Clin. Chem. 2012, 56, 1–54. [Google Scholar]
- Bogdanis, G.C.; Mastorakos, G.; Tsirigkakis, S.; Stavrinou, P.S.; Kabasakalis, A.; Mantzou, A.; Mougios, V. Bout duration in high-intensity interval exercise modifies hematologic, metabolic and antioxidant responses. J. Exerc. Sci. Fit. 2022, 20, 216–223. [Google Scholar] [CrossRef]
- Selmi, O.; Levitt, D.E.; Ouergui, I.; Aydi, B.; Bouassida, A.; Weiss, K.; Knechtle, B. Effect of Intensified Training Camp on Psychometric Status, Mood State, and Hematological Markers in Youth Soccer Players. Children 2022, 9, 1996. [Google Scholar] [CrossRef]
- Silva, A.S.R.; Santhiago, V.; Papoti, M.; Gobatto, C.A. Hematological parameters and anaerobic threshold in Brazilian soccer players throughout a training program. Int. J. Lab. Hematol. 2008, 30, 158–166. [Google Scholar] [CrossRef]
- Silva, A.F.; González-Fernández, F.T.; Ceylan, H.I.; Silva, R.; Younesi, S.; Chen, Y.S.; Badicu, G.; Wolański, P.; Murawska-Ciałowicz, E.; Clemente, F.M. Relationships between Fitness Status and Blood Biomarkers in Professional Soccer Players. J. Healthc. Eng. 2022, 11, 5135817. [Google Scholar] [CrossRef]
- Lippi, G.; Salvagno, G.L.; Danese, E.; Tarperi, C.; Guidi, G.C.; Schena, F. Variation of red blood cell distribution width and mean platelet volume after moderate endurance exercise. Adv. Hematol. 2014, 2014, 192173. [Google Scholar] [CrossRef]
- Whittaker, J.P.; Linden, M.D.; Coffey, V.G. Effect of aerobic interval training and caffeine on blood platelet function. Med. Sci. Sports Exerc. 2013, 45, 342–350. [Google Scholar] [CrossRef]
- Bird, S.R.; Linden, M.; Hawley, J.A. Acute changes to biomarkers as a consequence of prolonged strenuous running. Ann. Clin. Biochem. 2014, 51, 137–150. [Google Scholar] [CrossRef]
- Sparkes, W.; Turner, A.N.; Cook, C.J.; Weston, M.; Russell, M.; Johnston, M.J.; Kilduff, L.P. The neuromuscular, endocrine and mood responses to a single versus double training session day in soccer players. J. Sci. Med. Sport 2020, 23, 69–74. [Google Scholar] [CrossRef]
- Mylonis, E.; Bourdas, D.I.; Kompodieta, N.; Tegousis, A.; Bakirtzoglou, P.; Souglis, A.; Bekris, E. Seasonal Changes in Performance Metrics, Hormonal, Hematological, and Biochemical Markers Among Semi-Professional Soccer Players: Implications for Training and Recovery. J. Funct. Morphol. Kinesiol. 2025, 10, 147. [Google Scholar] [CrossRef]
- Souglis, A.; Bogdanis, G.C.; Giannopoulou, I.; Papadopoulos, C.; Apostolidis, N. Comparison of inflammatory responses and muscle damage indices following a soccer, basketball, volleyball and handball game at an elite competitive level. Res. Sports Med. 2015, 23, 59–72. [Google Scholar] [CrossRef]
- Hammouda, O.; Chtourou, H.; Chaouachi, A.; Chahed, H.; Zarrouk, N.; Miled, A.; Chamari, K.; Souissi, N. Biochemical responses to level-1 yo-yo intermittent recovery test in young tunisian football players. Asian J. Sports Med. 2013, 4, 23–28. [Google Scholar] [CrossRef]
Weeks | |||||||
---|---|---|---|---|---|---|---|
Training Elements | 1 | 2 | 3 | 4 | Total | Mean | ±SD |
Warm-up (min) | 60 | 60 | 60 | 60 | 240 | 60.0 | 0.0 |
Strength (min) | 40 | 80 | 80 | 40 | 240 | 60.0 | 23.1 |
High-intensity running (min) | 24 | 45 | 60 | 20 | 149 | 37.3 | 18.7 |
Small-sided games (min) | 0 | 36 | 40 | 40 | 116 | 29.0 | 19.4 |
Medium-sided games (min) | 116 | 48 | 26 | 40 | 230 | 57.5 | 40.0 |
Tactical games (min) | 80 | 52 | 90 | 86 | 310 | 77.5 | 17.3 |
Match play (min) | 0 | 45 | 45 | 55 | 145 | 36.3 | 24.6 |
Cool-down/stretching (min) | 60 | 60 | 60 | 60 | 240 | 60.0 | 0.0 |
Sessions (count) | 6 | 7 | 7 | 7 | 27 | ||
Average session duration (min) | 75 | 72 | 80 | 69 |
Week 1 | After Week 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Day 1 | Day 2 | Day 3 | Day 1 | Day 2 | Day 3 | Week 1 Average | Average After Week 4 | Week 1 vs. After Week 4 p Level (Cohen’s d) |
WBC (Κ/μL) | 6.99 ± 1.77 | 6.72 ± 1.18 | 6.35 ± 1.25 | 6.11 ± 1.55 | 6.47 ± 1.56 | 6.51 ± 1.18 | 6.69 ± 1.41 | 6.37 ± 1.42 | 0.342 (0.23) |
RBC (Μ/μL) | 5.01 ± 0.37 | 5.05 ± 0.32 | 4.88 ± 0.34 | 4.93 ± 0.27 | 4.97 ± 0.32 | 4.80 ± 0.27 | 4.98 ± 0.34 | 4.90 ± 0.29 | 0.075 (0.25) |
Hb (g/dL) | 14.5 ± 1.4 | 14.4 ± 1.2 | 14.1 ± 1.2 | 14.4 ± 1.3 | 14.6 ± 1.3 | 14.2 ± 1.3 | 14.3 ± 1.2 | 14.4 ± 1.3 | 0.495 (0.06) |
Hct (%) | 42.4 ± 3.2 | 42.6 ± 2.7 | 41.1 ± 2.8 | 42.2 ± 3.3 | 42.8 ± 3.4 | 41.3 ± 3.0 | 42.1 ± 3.0 | 42.1 ± 3.2 | 0.996 (0.00) |
MCV (fL) | 85.1 ± 7.5 | 84.9 ± 7.6 | 84.7 ± 7.6 | 85.8 ± 7.5 | 86.4 ± 7.8 | 86.2 ± 7.7 | 84.9 ± 7.4 | 86.1 ± 7.5 | <0.001 (0.17) |
MCH (pg) | 29.0 ± 3.0 | 28.9 ± 3.0 | 29.0 ± 3.1 | 29.4 ± 3.0 | 29.5 ± 3.1 | 29.6 ± 3.1 | 29.0 ± 3.0 | 29.5 ± 3.0 | <0.001 (0.17) |
MCHC (g/dL) | 34.1 ± 1.0 | 34.0 ± 1.0 | 34.3 ± 1.1 | 34.2 ± 0.8 | 34.1 ± 0.9 | 34.3 ± 0.9 | 34.1 ± 1.0 | 34.2 ± 0.9 | 0.334 (0.11l) |
RCDW (%) | 12.9 ± 1.7 | 13.0 ± 1.8 | 13.0 ± 1.6 | 13.0 ± 1.3 | 13.0 ± 1.3 | 13.0 ± 1.3 | 12.9 ± 1.7 | 13.0 ± 1.3 | 0.764 (0.03) |
PLT (Κ/μL) | 286 ± 93 | 281 ± 78 | 265 ± 61 | 247 ± 36 | 259 ± 42 | 249 ± 35 | 278 ± 78 | 252 ± 37 | 0.164 (0.43) |
MPV (fL) | 10.5 ± 0.6 | 10.6 ± 0.6 | 10.8 ± 0.6 | 10.8 ± 0.6 | 10.8 ± 0.6 | 10.9 ± 0.6 | 10.6 ± 0.6 | 10.8 ± 0.6 | 0.052 (0.33) |
PDW (%) | 12.3 ± 1.1 | 12.2 ± 1.1 | 12.7 ± 1.5 | 13.0 ± 1.8 | 13.3 ± 1.5 | 13.3 ± 1.9 | 12.4 ± 1.2 | 13.2 ± 1.6 | 0.075 (0.53) |
PCT (%) | 0.29 ± 0.08 | 0.29 ± 0.07 | 0.28 ± 0.05 | 0.26 ± 0.04 | 0.28 ± 0.04 | 0.27 ± 0.04 | 0.29 ± 0.07 | 0.27 ± 0.04 | 0.458 (0.35) |
Week 1 | After Week 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Day 1 | Day 2 | Day 3 | Day 1 | Day 2 | Day 3 | Week 1 Average | Average After Week 4 | Week 1 vs. After Week 4 p Level (Cohen’s d |
U mg/dL) | 35 ± 9 | 38 ± 9 | 37 ± 7 | 32 ± 1 | 31 ± 1 | 3 ± 7.0 | 37 ± 8 | 32 ± 10 | 0.043 (0.51) |
Cr (mg/dL) | 1.0 ± 0.1 | 1.0 ± 0.2 | 1.0 ± 0.2 | 1.0 ± 0.2 | 1.0 ± 0.2 | 1.0 ± 0.2 | 1.0 ± 0.2 | 1.0 ± 0.2 | 0.833 (0.00) |
UA (mg/dL) | 5.2 ± 0.9 | 5.6 ± 0.9 | 5.4 ± 1.3 | 5.2 ± 0.8 | 4.9 ± 1.0 | 5.0 ± 0.5 | 5.4 ± 1.0 | 5.0 ± 0.8 | 0.026 (0.36) |
SGOT (U/L) | 18 ± 4 | 21 ± 5 | 20 ± 6 | 20 ± 6 | 19 ± 7 | 18 ± 7 | 20 ± 5 | 19 ± 7 | 0.714 (0.12) |
SGPT (U/L) | 10 ± 1 | 10 ± 9 | 10 ± 6 | 10 ± 5 | 9 ± 6 | 9 ± 5 | 10 ± 8 | 9 ± 5 | 0.394 (0.20) |
CK (U/L) | 200 ± 122 | 309 ± 231 | 374 ± 196 | 362 ± 330 | 365 ± 383 | 325 ± 343 | 294 ± 197 | 351 ± 344 | 0.568 (0.20) |
HDL (mg/dL) | 53.1 ± 8.7 | 53.9 ± 9.5 | 51.1 ± 9.9 | 52.7 ± 8.8 | 51.5 ± 7.5 | 52.7 ± 7.1 | 52.7 ± 9.2 | 52.3 ± 7.6 | 0.743 (0.05) |
LDL (mg/dL) | 87.9 ± 27.8 | 89.7 ± 30.6 | 87.3 ± 28.0 | 85.3 ± 24.2 | 81.0 ± 29.8 | 84.0 ± 34.4 | 88.3 ± 28.1 | 83.4 ± 29.0 | 0.276 (0.17) |
TC (mg/dL) | 164 ± 30 | 164 ± 31 | 156 ± 31 | 157 ± 31 | 153 ± 37 | 158 ± 340 | 162 ± 30 | 156 ± 33 | 0.262 (0.18) |
TG (mg/dL) | 111 ± 54 | 103 ± 45 | 90 ± 40 | 95 ± 43 | 101 ± 44 | 109 ± 50 | 101 ± 46 | 102 ± 45 | 0.979 (0.00) |
TSH (mIU/L) | 2.00 ± 0.88 | 1.68 ± 0.67 | 1.87 ± 0.88 | 2.01 ± 0.97 | 1.92 ± 0.87 | 1.97 ± 0.70 | 1.85 ± 0.81 | 1.97 ± 0.83 | 0.343 (0.15) |
T (µg/dL) | 4.8 ± 1.3 | 4.98 ± 1.04 | 4.40 ± 1.41 | 4.67 ± 1.43 | 4.49 ± 1.60 | 4.82 ± 1.25 | 4.73 ± 1.25 | 4.66 ± 1.40 | 0.751 (0.05) |
C (μg/dL) | 7.7 ± 3.7 | 8.5 ± 3.1 | 8.0 ± 2.5 | 8.2 ± 3.0 | 7.8 ± 2.9 | 6.9 ± 2.7 | 8.1 ± 3.1 | 7.6 ± 2.9 | 0.545 (0.15) |
EPO (IU) | 6.3 ± 2.1 | 5.3 ± 4.4 | 8.1 ± 4.0 | 4.5 ± 2.4 | 4.0 ± 3.1 | 4.7 ± 3.1 | 6.6 ± 3.5 | 4.4 ± 2.8 | 0.038 (0.68) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgiadis, P.; Thomakos, P.; Smilios, I.; Papapanagiotou, A.; Evaggelatou, A.; Bogdanis, G.C. Hematological, Biochemical, and Performance Adaptations in Amateur Soccer Players Following a 4-Week Preseason Training Period. J. Funct. Morphol. Kinesiol. 2025, 10, 314. https://doi.org/10.3390/jfmk10030314
Georgiadis P, Thomakos P, Smilios I, Papapanagiotou A, Evaggelatou A, Bogdanis GC. Hematological, Biochemical, and Performance Adaptations in Amateur Soccer Players Following a 4-Week Preseason Training Period. Journal of Functional Morphology and Kinesiology. 2025; 10(3):314. https://doi.org/10.3390/jfmk10030314
Chicago/Turabian StyleGeorgiadis, Panagiotis, Pierros Thomakos, Ilias Smilios, Angeliki Papapanagiotou, Anastasia Evaggelatou, and Gregory C. Bogdanis. 2025. "Hematological, Biochemical, and Performance Adaptations in Amateur Soccer Players Following a 4-Week Preseason Training Period" Journal of Functional Morphology and Kinesiology 10, no. 3: 314. https://doi.org/10.3390/jfmk10030314
APA StyleGeorgiadis, P., Thomakos, P., Smilios, I., Papapanagiotou, A., Evaggelatou, A., & Bogdanis, G. C. (2025). Hematological, Biochemical, and Performance Adaptations in Amateur Soccer Players Following a 4-Week Preseason Training Period. Journal of Functional Morphology and Kinesiology, 10(3), 314. https://doi.org/10.3390/jfmk10030314